
Bates College
SCARAB

Honors Theses Capstone Projects

Spring 5-2012

Two essays on the optimal control of infectious
diseases: Examining discrepancies between
discrete-time and continuous-time models
Arjada Bardhi
Bates College, abardhi@bates.edu

Follow this and additional works at: http://scarab.bates.edu/honorstheses

This Open Access is brought to you for free and open access by the Capstone Projects at SCARAB. It has been accepted for inclusion in Honors Theses
by an authorized administrator of SCARAB. For more information, please contact batesscarab@bates.edu.

Recommended Citation
Bardhi, Arjada, "Two essays on the optimal control of infectious diseases: Examining discrepancies between discrete-time and
continuous-time models" (2012). Honors Theses. 7.
http://scarab.bates.edu/honorstheses/7

http://scarab.bates.edu?utm_source=scarab.bates.edu%2Fhonorstheses%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scarab.bates.edu/honorstheses?utm_source=scarab.bates.edu%2Fhonorstheses%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scarab.bates.edu/capstone?utm_source=scarab.bates.edu%2Fhonorstheses%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scarab.bates.edu/honorstheses?utm_source=scarab.bates.edu%2Fhonorstheses%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scarab.bates.edu/honorstheses/7?utm_source=scarab.bates.edu%2Fhonorstheses%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:batesscarab@bates.edu


Two essays on the optimal control of

infectious diseases:

Examining discrepancies between

discrete-time and continuous-time models

Arjada Bardhi

Department of Economics, Bates College, Lewiston, ME 04240





Two essays on the optimal control of infectious diseases:

Examining discrepancies between discrete-time and continuous-time models

An Honors Thesis

Presented to the Department of Economics

Bates College

in partial fulfillment of the requirements for the

Degree of Bachelor of Arts

by

Arjada Bardhi

Lewiston, Maine

March 23, 2012



Contents

Abstract iv

Acknowledgments vi

Chapter 1. Introduction: Cure, no cure, half-cure? 1

1. Features of the economic approach to infectious diseases 2

2. Advances in the literature 7

3. Questions and structure of the thesis 15

4. Further comments on the relevance of this work 17

Chapter 2. Mathematical preliminaries 21

1. Divide and conquer: Dynamic programming 22

2. Concepts in optimal control theory 28

3. Green’s Theorem and the extremization of line integrals 33

4. The curious case of singular optimal control problems 35

5. Current-value Hamiltonian function 38

6. Euler’s method of approximation 40

7. The logistic nature of the SIS dynamic equation 41

8. Discretization of the discounting factor 43

ii



CONTENTS iii

Chapter 3. Essay One:

Attempting to reconcile a classical debate 45

1. Expository discussion 46

2. Perturbation in continuous time 54

3. Green’s theorem and the Legendre-Clebsch condition 64

4. Pulsing over unequal intervals 69

5. An w-extension of the dynamic programming argument 77

6. Conclusions: Persistence of a (better-defined) puzzle 79

Chapter 4. Essay Two: Good questions persist 83

1. Expository discussion 83

2. Similarities and differences 92

3. Switching-function analysis of the continuous-time case 96

4. Conclusions 101

Chapter 5. Concluding remarks 104

1. Major results revisited 104

2. The conundrum of the “time scale effect” and public health

policies 106

3. Puzzles: Old and new 108

Appendices 110

Bibliography 122

References 125



Abstract

A growing body of literature on the optimal allocation of resources in

controlling the spread of communicable diseases has garnered considerable

attention during the last four decades. Although such literature is relatively

unanimous formally speaking - i.e., marrying tools of optimal control the-

ory with epidemiological nonlinear models - it has been quite polarized over

both the theoretical question of the choice of time scale (i.e., discrete versus

continuous) and, relatedly, the question of the most adequate optimization

tool (Pontryagin’s Maximum Principle versus Bellman’s Dynamic Program-

ming) to be employed in determining the lowest-cost policy for containing

and eradicating the infection. This thesis theoretically investigates the roots

of the discrepancies that exist between these two divided bodies of litera-

ture, seeking for ways to reconcile the results that are obtained by these two

different approaches. The central analysis focuses on two pairs of articles on

the control of SIS infections: i) two classical articles written in the 1970s that

disagree on the pulsing behavior of the optimal policy over discrete and con-

tinuous time, and ii) two recent articles that examine the optimal allocation

of funds between multiple connected populations when the social planner

faces tight budgets, pointing out the difficulties that arise in analytically

iv
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solving the problem in continuous time. The implications of this theoret-

ical investigation extend to similar models in topics as diverse as fishery

management, corruption control, and crime prevention, while its practical

contribution lies in carefully prescribing optimal intervention strategies for

public health policymakers.

Keywords: optimal control - SIS model - time scale - Pontryagin’s Maxi-

mum Principle - dynamic programming - strong Legendre-Clebsch necessary

condition - Green’s theorem - convergence of solutions - tight budgets - pub-

lic health.
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CHAPTER 1

Introduction: Cure, no cure, half-cure?

“Where shall I begin, please your Majesty?” he asked.

“Begin at the beginning,” the King said gravely...

Alice’s Adventures in Wonderland, Lewis Carroll

In the increasingly interconnected world in which we live, infectious dis-

eases represent a growing threat to global public health. Not only do such

diseases remain a significant burden for most of the developing countries,

but also their emerging drug-resistant varieties present a serious source of

anxiety for the developed world. Lopez et al. (2006) have reported that

five infectious diseases (HIV, malaria, tuberculosis, lower respiratory infec-

tions, and diarrheal diseases) were among the top ten global causes of death

in 2001(Laxminarayan and Malani, 189). WHO vividly describes the mag-

nitude of the global impact of infectious diseases in these terms: “Over

the next hour alone, 1,500 people will die from an infectious disease over

half of them being children under five.”1 Furthermore, in 2008, Trust for

Americas Health published a report that announced a quite dramatic mes-

sage: At least 170,000 Americans die each year because of newly emerging

1http://www.who.int/infectious-disease-report/pages/textonly.html

1



1. FEATURES OF THE ECONOMIC APPROACH TO INFECTIOUS DISEASES 2

and reemerging infectious diseases, and this number is predicted to increase

significantly in the coming decades due to the development of new drug-

resistant infections, globalization, and the ongoing changes in the climate.2

The need to understand optimal ways to control the spread of these diseases,

therefore, presents itself stronger than ever in the twenty-first century.

1. Features of the economic approach to infectious diseases

The dynamics of infectious diseases3 and the public health policies aim-

ing to control these infections represent a very fruitful terrain that has only

recently been explored by economists. Although epidemiology has provided

well-equipped mathematical models of the dynamics of such infectious dis-

eases for a long time, only recently have economists taken an interest in

exploring optimal interventions to control and eradicate these diseases. The

issue of controlling the spread of such diseases, nevertheless, represents one

of the major challenges that public health policy makers face not only in

the developing world, but in the developed world as well. Hence, a deeper

formal analysis of the social costs of these infections and of the efficiency

of various interventions is of primary importance in order to have a better

2“Germs Go Global: Why Emerging Infectious Diseases Are a Threat to America”,

Trust for Americas Health. http://healthyamericans.org/report/56/germs-go-global

3Throughout this thesis, the terms infectious disease, “communicable diseases”, and

infection are used interchangeably, although there exist slight biological differences be-

tween the three.
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understanding of these infections and design more effective public health

policies.

A coherent economic modeling of infectious diseases requires a careful

evaluation of the multiple types of costs that these diseases impose upon the

populations that they invade. The loss of lives is the single most important

of these costs. While the lost lives cannot be easily assigned an equivalent

monetary value that needs to be added to the other types of costs in order

to calculate an approximate aggregate cost of the disease, often the number

of lost lives is in itself a good approximation of this aggregate cost and can

be used by itself as an objective function that needs to be minimized under

certain constraints. Secondly, the reduction in the population and the in-

ability of the infected individuals to proceed with the regular life activities

for as long as they are infected are translated into forgone output, decreased

labor productivity, and reduced consumption. Also, several scholars (Bleak-

ley (2010), Miguel and Kremer (2004), Bobonis et al. (2006) etc.) who have

contributed to the literature on the economic impact of infectious diseases

have suggested that health has an indirect effect on the investment deci-

sions regarding human capital, and hence income. A third type of impact

includes costs related to the prevention and treatment methods employed

to control the spread of the diseases. The particular (mathematical) form

of these costs varies according to the specific characteristics of the disease

and the control tools available for that disease. Lastly, because of the com-

municable nature of infectious diseases, infected individuals impose a social
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cost upon the healthy individuals, that is, individuals who have not been

infected yet, but who are susceptible to the disease due to their being sur-

rounded by potential infecting agents. This externality effect that marks

the spread of infections plays a crucial role in the dynamics that govern the

spread of the disease and, consequently, in the policies employed to control

such dynamics.

The particular characteristics of an infectious disease should be kept in

mind when attempting to model the economic dynamics and the impact of

such a disease. Infectious diseases are marked by a variety of characteris-

tics, which makes a general formulation hard to establish. In terms of its

evolution, an infection proceeds either to recovery and further susceptibil-

ity, immunity, or death. In terms of rates and modes of transmission, an

infection might be transmitted at various rates mostly via direct contact

between individuals or via vectors. The typical intervention methods used

to control an infection are prevention and therapy. The most effective pre-

vention method is vaccination, while some secondary less reliable prevention

methods include the strict application of hygiene rules, avoidance of contact

with the source of the infection etc. Therapy, on the other hand, consists

of specific anti-infection medicines, which might be designed particularly for

either early-stage or later-stage treatment of the disease. Several fatal dis-

eases, such as HIV/AIDS, can be avoided only by taking preventive measures

(so far), while for several other infections, such as cholera, malaria, and gon-

orrhea, treatment of the infected people is the only viable form of controlling
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the disease. A mix of the two intervention forms is possible for most of other

infections; this fact brings up questions about the optimal combination of

prevention and therapy, and the circumstances under which one of these

forms is superior to the other. An example of such infectious diseases is

tuberculosis: the widely-used vaccine for TB is the Bacillus Calmette-Gurin

(BCG) vaccine, while anti-TB treatment consists mostly of antibiotics such

as isoniazid and rifampicin.4 In addition, as mentioned earlier, infectious

diseases vary across their costs of intervention, as well as across the target

of the eventual intervention: the entire population, the infected, the unin-

fected, or the contact channels between the two. Therefore, facing such a

myriad of characteristics, the existing economic-epidemiological models have

focused only on selected tractable features that are crucial in the evaluation

of cost-minimizing policies.

While the economic literature on epidemiological control is growing rapidly,

the unique contribution that economists bring to this area of inquiry re-

mains unique in two directions. First and most importantly, economists

bring together behavioral choice and epidemiological dynamics to illustrate

how personal decision making affects the prevalence of an infection in a feed-

back fashion 5. Secondly, economists possess the necessary tools to frame the

problem of epidemiological control as one of “a social planner’s optimization

4World Health Organization: http://www.who.int/mediacentre/factsheets/fs104/en/index.html

5By feedback fashion, I mean that personal choices are both informed by and affect

the prevalence level.
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problem” and to obtain results for the optimal interventions. The insights

that economic analysis is providing to the traditional epidemiological mod-

els are changing fundamentally the way both economists and epidemiologists

think about infection dynamics and infection control. While economic epi-

demiology has already made some substantial advances, further research on

this field is of great significance and interest.

The most widely used epidemiological compartmental model6 in the eco-

nomic literature is the SIS (susceptible-infected-susceptible) model. The SIS

model assumes that individuals do not become immune to the infection after

recovery; instead, they join the pool of susceptible individuals again and can

be reinfected through future contacts with infected individuals. This model

is particularly useful in describing the evolvement of diseases such as gon-

orrhea, meningitis, plague, streptococcal sore throat, malaria, and sleeping

sickness. (Anderson et al. 2011, 1) In the simplest version of the model with

a fixed population, the entire population is comprised of infected and sus-

ceptible individuals only, and individuals can move back and forth between

the states of being infected and being susceptible.7 Therefore, changes in the

number of infected individuals are driven by three main factors: 1) the rate

6The two compartments in the SIS model are: “Susceptible” and “Infected”.

7The model was first introduced by Kermack and McKendrick, in their well-known

article: Kermack, W. O. and A. G. McKendrick, (1927) “A contribution to the mathe-

matical theory of epidemics,” Proceedings of the Royal Society of London Series A, 115,

700-721.
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of spontaneous recovery of infected individuals (i.e. recovery without treat-

ment), 2) the infectiousness of the disease (the rate of susceptible-infected

contacts that cause the infection of the susceptible individual), and 3) the

fraction of the infected subpopulation that gets treated and the efficiency of

the treatment. On the other hand, a positive change in the infected subpop-

ulation implies an equal negative change in the susceptible subpopulation,

so a description of the dynamics of one of the subpopulations is sufficient (in

the simple case of fixed population). A rigorous mathematical presentation

of the SIS dynamics is presented in the next section of this chapter.

2. Advances in the literature

The growing economic literature on infectious diseases can be classified

into four main strands of research (Laxminarayan and Malani, 2011). The

first strand of the literature is the examination of the direct and indirect

impact of infectious diseases on income and economic development. A sec-

ond strand of research deals with the role that individual incentives play

in the dynamics and control of infectious diseases; the questions asked in

this neighborhood of the literature revolve mostly around three main top-

ics: 1) the correlation between the prevalence level of the disease and the

self-protective (analogously, the risk-taking) behavior displayed by the indi-

viduals that are exposed to the disease, 2) the demand for treatment and

vaccination, in light of the positive externalities that they bring to the en-

tire population, and 3) the demand for information about one’s state of the
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disease, i.e. the demand for testing, which can be either voluntary or manda-

tory. The third strand of the literature focuses on institutional and national

incentives for controlling infectious diseases, analyzing the particular con-

textual framework in which institutions and nations respond to outbreaks

of infections and the effect that the incentives arising out of such contextual

frameworks have on the optimal level of the control effort.

The fourth strand of research that has garnered considerable attention

in the literature on economics of infections is the examination of optimal

allocation of resources to control and fight communicable diseases. The first

economic articles on this topic appeared in the early 70s, when optimal

control theory and dynamic programming tools had just started to establish

their influence in the context of epidemiological models. While the work

that has been done on this topic can be classified differently using different

criteria, two of those criteria have substantially shaped the debate in this

literature: 1) the number of the populations over which the treatment effort

is optimized, and 2) the flow of time in these optimization problems (i.e.

continuous-time vs. discrete-time models). This thesis finds its inspiration

in a long-standing controversy around these two criteria.

The main focus of this thesis is centered around two classical articles

published in the early 1970s in Biometrics by Sanders (1971) and Sethi

(1974), which aim to evaluate the socially optimal level of treatment in a

single population facing linear costs of the disease–dependent on the num-

ber of infected people and the chosen treatment effort level–and inequality
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constraints in the treatment level. The two analogous optimization prob-

lems formulated in discrete time and continuous time respectively are the

following:8

(1.1)

minimize
{γt}

T
∑

t=0

αt(Cxt + Kγt)

subject to xt+1 = xt + βxt(N − xt) − γxt,

with 0 ≤ xt ≤ N, 0 ≤ γt ≤ b,

and x0 given.

(1.2)

minimize
{γt}

∫ T

0
e−αt(Cx + Kγ)

subject to
dx

dt
= βx(N − x) − γx,

with 0 ≤ xt ≤ N, 0 ≤ γt ≤ b,

and x0 given.

Notice that in the problems above, x denotes the number of infected

individuals in the population, β denotes the infectiousness rate of the disease,

N denotes the total number of the population, γ reflects the level of the

treatment effort chosen to be applied in the population, C and K represent

8The variable α is the intertemporal discount factor in discrete time. If we let α = 1
1+r

in discrete time, the corresponding continuous-time discount factor will be of the form e−r .

Notice the abuse of notation in the use of the symbol α in the discrete-time formulation

and the later continuous-time formulation.
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the marginal costs of an additional infected individual and an additional unit

of treatment level respectively, and b denotes an upper bound of the possible

treatment level that can be attained by the society due to its technological

limits. Referring to the form in which γ is incorporated in the model, Sanders

states that “the impact [of the level of program effort] is proportional to the

number infected at that time” (Sanders, 885). Finally, this formulation

of the differential/difference equation of motion deviates from the classical

Kermack-McKendick formulation in that it does not account for spontaneous

recoveries, hence it implicitly assumes that everyone that is infected will

return to his susceptible state due only to effective treatment.

The article by Sanders (1971) is one of the earliest articles on the appli-

cation of mathematical modeling techniques to the class of control problems

that are concerned with a health delivery system geared toward the elimina-

tion of a particular health problem(Sanders 1971, 883). Sanders introduced

the linear cost function of the form (Cx + Kγ), where the first term cap-

tures the overall costs that the society bears due to the x infected individuals

present in it, while the second term represents how costly a chosen level of

program effort is. This early article posed the problem in discrete time,

and employed a dynamic programming argument to solve for the optimal

treatment level. The main line of the argument is based on the crucial fact

that although the single-period costs are linear in both the infection level

(the state variable) and the treatment level (the control variable), the value

function is strictly concave with respect to the infection level due to the
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concave SIS equation of motion, which enters the argument because of the

forward-looking nature of dynamic programming. Concavity ensures that

the optimal policy will be of a bang-bang form, i.e. the treatment level in

any period within the considered finite horizon will be either at the maxi-

mal level or at the minimal level, but never at an intermediate one. A social

planner should either choose to apply the maximum treatment effort that

the society is capable of, or he should not intervene at all in the proliferation

of the disease.

Sethi responded to the discrete-time solution offered by Sanders by trans-

ferring the problem in continuous time in the form of Equation (1.2). In

justifying his decision to transfer the problem to another time framework,

he argued that dynamic programming,–the continuous form of which was

highly unexplored at the time–was the problematic optimization tool em-

ployed by Sanders that led to faulty results. On the other hand, Pontryagin’s

maximum principle, originally introduced in its continuous form (and whose

discrete version was formulated rigorously only several years later), was the

preferred continuous-time solution method at the time. He employed Miele’s

interpretation of Green’s theorem in extremization of line integrals in order

to solve for an optimal intermediate level of treatment in the case when the

upper bound b is large enough. He then returned to the method of switching

functions–widely explored and used in the late 1960s as a tool of identifying

singular solutions when the Hamiltonian is linear in the control,–to prove

the optimality of the singular solution in a more general setting.
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While there is no obvious reason why the method of dynamic program-

ming fails to produce the correct optimal control path in discrete time, the

singular control path that Sethi identifies as optimal in continuous time

openly disappoints our pre-conceived intuition that optimal solutions in dis-

crete time and continuous time should be of similar form, even if obtained

via different optimization methods. Taking for granted that both methods

have been applied correctly – an assumption which will be carefully scruti-

nized in the next chapter – this discrepancy between the solutions in discrete

and continuous time might possibly result from the special structure of this

particular optimization problem. Anderson and Salant (2011) consider the

discrete-time problem introduced above and check the optimality of the sin-

gular (turnpike) solution identified by Sethi in discrete time. They do so

by supposing that when the level of the infection is at the turnpike level, a

small perturbation h from the singular policy should increase the costs of

the program as the singular control is supposedly the optimal policy. They

conclude that in this discrete-time framework, Sethi has mistaken a local

maximum for a global minimum, because any perturbation around h = 0

produces lower costs than the case of h = 0. This is a very important re-

sult towards the goal of understanding the source of the differences between

the policies suggested by Sethi and Sanders, but notice that this analysis

is strictly limited to the discrete-time framework. In other words, Ander-

son and Salant have shown that the intermediate level solution proposed by

Sethi is not optimal in the discrete-time formulation of Sethi’s problem, but
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this does not imply much about the continuous-time framework in which he

originally operates.

This debate has been enriched further only recently with the emergence

of a new gap in the literature, seemingly related to the first one. Considering

a similar optimization problem of linear cost and SIS dynamics, Rowthorn

et al. (2009) and Anderson et al. (2011) analyze the case of the optimal al-

location of a tight budget between two subpopulations of a fixed population

living in two interconnected regions in continuous and discrete time, respec-

tively. Rowthorn et al. conclude via numerical methods that the optimal

path to pursue is to allocate treatment to the subpopulation with the lower

level of infection. They point out a major technical difficulty in formulat-

ing analytical solutions for optimal control problems that involve the SIS

model: because the SIS model of disease dynamics contains a nonconvexity,

the standard use of sufficiency conditions to find an analytical solution fails.

Therefore, they turn to numerical approximation methods in order to obtain

an optimal solution for this problem. While unable to pin down analytical

optimal solutions for their model, the authors still manage to analytically

prove that the worst possible path is to adjust treatment levels that equalize

the level of infection in each subpopulation. Anderson et al. address this

technical difficulty by introducing the assumption of tight budgets 9 and

9This discussion will consider the case of tight budgets only when the transfer of funds

across time in the form of borrowing or lending is not possible. The relaxation of this

assumption and its implications present an interesting path for further research.
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employing a modified dynamic programming approach to obtain analytical

solutions for the discrete-time social planner’s problem. The article models

the budget-allocation decisions that a health authority makes in controlling

and combating an SIS-governed infectious disease that spreads in a finite

number of unconnected and interconnected populations (analogous to the

subpopulations in the model of Rowthorn et al). The health authority has

to decide how many infected people from each population should be treated

in every time period. The case of a tight budget granted every period of time

and the case of a certain amount of wealth granted only at the beginning

are discussed separately in the paper. The aim of the health authority is to

minimize the discounted social cost of the infection in all the populations,

which is expressed as a linear combination of the respective infection levels.

The authors conclude that it is optimal, under a tight budget, to focus en-

tirely on one group at a time, rather than treating infected individuals from

several groups simultaneously. In this sense, the optimal solution that they

propose is of a bang-bang form: interior solutions–that is, combinations of

treatment effort in two or more subpopulations in the same time period–are

never optimal. Furthermore, they argue that the groups that should have

priority in receiving treatment are those with the lowest levels of infection.
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3. Questions and structure of the thesis

The main goal of this thesis is to synthesize a unified understanding of

the optimal policies that need to be followed in controlling infectious dis-

eases, focusing on the infections whose dynamics are governed by the SIS

epidemiological model. The discussion develops separately along two main

strands: 1) the attempt to bridge the gap between the discrete-time and the

continuous-time frameworks offered by Sanders and Sethi, by examining pos-

sible ways of resolving their disagreement on whether the optimal treatment

level follows a bang-bang path or a singular path, and 2) the implications

that the earlier debate between Sethi and Sanders has on the extension of

the modified discrete-time dynamic programming approach used by Ander-

son et al. to continuous time in order to overcome the difficulties identified

by Rowthorn et al. (or alternatively, the exploration of potential virtues of

the discrete-model that might allow the approach to be successful in discrete

time but not in continuous time).

The major questions that will guide the discussion throughout this work

can be categorized in three general families of questions:

• What are the particular features of this optimization problem, how

are these features affected by the chosen time scale, and how do

these features contribute to potential incongruence between optimal

solutions in discrete and continuous time? From a chronological

standpoint, have the methods of calculus of variations, optimal
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control theory, and dynamic programming been able to cope with

this particular type of problem successfully in the past, and if so,

how?

• Is the disagreement between Sethi and Sanders a purely method-

ological one–that is, is either Pontryagin’s maximum principle or

Bellman’s dynamic programming particularly ill-suited to this type

of problem due to their classical underlying assumptions,–or is

their disagreement rooted more deeply into a potential time-step-

dependent nature of the optimal solution? How do continuous dy-

namic programming and the discrete maximum principle handle

the problem? In the spirit of the discrete-time variations around

the steady-state solution used by Anderson and Salant, can we find

a continuous-time numerical example of an extremal policy that

dominates the steady-state solution offered by Sethi? How do the

strategies of chattering and pulsing, which are more similar to a

continuous-time version of the optimal solution offered by Sanders,

perform compared to the steady-state solution identified by Sethi?

• How is the problem formulated by Sethi and Sanders similar and/or

different from the problem formulated by Rowthorn et al. and An-

derson et al.? Can the solution method offered by Sethi in contin-

uous time help with the problem posed by Rowthorn et al.? Do we

expect similar divergences between optimal solutions in different

time frameworks for this problem as well? How can the modified
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dynamic programming approach offered by Anderson et al. for the

discrete-time problem be extended in continuous time?

This thesis is organized in five chapters; the introductory chapter you are

reading now is the first one. Chapter 2 offers a technical discussion of the

major mathematical concepts, techniques, and proofs useful for the rest of

this work. Chapter 3, which is the most substantial chapter of this thesis,

offers an analysis of the disagreement between Sanders and Sethi, providing

some attempts to identify potential sources of this disagreement and connect

the work of the two. Chapter 4 turns to the more recent pairs of papers by

Rowthorn et al. and Anderson et al., attempting to apply lessons drawn from

Chapter 3 to the discrepancy between solutions in discrete and continuous

time identified in these papers. The fifth chapter concludes this work with a

summary of useful technical results, policy recommendations, and persistent

old and new questions.

4. Further comments on the relevance of this work

The theoretical assumptions made in the articles that will be discussed

extensively in this thesis and the questions that are built upon those as-

sumptions are not of academic interest only. They are motivated by actual

economic aspects of infectious diseases. In this section, we provide some

facts to illustrate this point.

Sanders provides an example of an infectious disease that illustrates his

assumption about the cost function that he chooses to use in his model.(Sanders
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1971, 887) Trachoma, a disease that is highly prevalent among the Papago

Indian people of Southern Arizona, is a disease that affects the cornea of the

eye and if not treated on time, can degrade to complete vision loss. Con-

sidering data from a trachoma control program that was applied in school

age children in the San Xavier Reservation during the period 1964-1967,

he interprets the variable γ in his model as the screening effort needed to

identify the infected individuals in the population, and Kγ as the cost of a

total screen. Furthermore, he argues that other assumptions of the model

are very realistic in this setting as well, such as the fact that: a)there is

no immune state for trachoma, i.e. people that have been treated once are

still susceptible to it, b)the population is naturally isolated, c)the infected

and the susceptible subpopulations are not isolated from each-other, d)the

program predicted a regular screening procedure every 6 months, and e)the

treatment used in treating people diagnosed with the disease is effective only

in about 60 percent of the cases.

The literature on the optimal treatment level in a single population is

particularly relevant to endemic infectious diseases that prevail in isolated

populations. The case of trachoma is one illustration of such endemic infec-

tions. Furthermore, the issue of controlling infections in one population is

fundamental for decision making at the level of national health ministries.

On the other hand, the issue of treating multiple connected (sub)populations

simultaneously is of great interest in the context of globalization and the
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need to control communicable diseases across boundaries. International pol-

icy making institutions, such as WHO, are continually interested on how to

divide funds across several countries or regions with different prevalence

levels of the same disease.

Also, the assumption of tight budgets that Anderson et al. make in their

article (which then allows them to establish an analytical solution for the

problem) is consistent with the limited treatment resources that countries

and organizations possess. It is quite unrealistic to suppose that we can treat

every infected individual at the same time. As Laxminarayan and Malani

(199) point out, there is not enough funds to treat everybody that has been

infected by a disease, even for a disease such as HIV which has absorbed

enormous funds for treatment over years. Another illustration of this point

comes from Zambia. Zambia has one of the best-funded malaria programs in

Sub-Saharan Africa, yet the percentage of the children who receive effective

treatment does is not higher than 13 percent.

To conclude, the relevance of this work lies in three main directions.

First, the reconciliation of the discrete-time and continuous-time optimal

solutions for the type of optimization problems with linear objective func-

tion and nonlinear dynamics is of theoretical interest. This type of problems

is widely used in contexts where population dynamics need to be modeled.

Secondly, the results of this thesis might be particularly useful for public

health practitioners, whose work constantly aims to control diseases that

spread in continuous time through decisions made in discrete time. The
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examples described above argue further about the relevance of this problem

for the public health field. Thirdly, similar types of problems arise in other

subfield of economics as well, such as resource economics, economics of cor-

ruption etc. A better understanding of the problem at hand will possibly

shed light on solutions to these other problems as well.



CHAPTER 2

Mathematical preliminaries

“Calculus required continuity, and continuity was supposed to require the

infinitely little; but nobody could discover what the infinitely little might be.”

Bertrand Russell

“I turn with terror and horror from this lamentable scourge of continuous

functions with no derivatives.”

Charles Hermite, in a letter to Thomas de Stieltjes

In this chapter, several techniques and results that are important math-

ematical prerequisites to the analysis developed in the next two chapters

will be reviewed. The chapter serves two purposes: 1) the general introduc-

tion of basic ideas in optimization, and 2) the exposition of some particular

mathematical results that are directly related to our problem of interest.

Section 1 and 2 offer a brief discussion of dynamic programming, the Maxi-

mum Principle, and the connection between the two. Section 3 explains the

basic technique of extremization of line integrals by means of Green’s theo-

rem. Section 4 reviews the particular features of singular control problems,

following the classic work of Bell and Jacobson (Bell and Jacobson, 1975).

Section 5, 6, 7, and 8 discuss three other topics that are crucial tools in

21
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understanding the work of Sanders and Sethi discussed in the next chapter:

the current-value Hamiltonian function, Euler’s method of approximation,

the logistic nature of the SIS dynamic equation, and the discretization of

the discounting factor. Readers who are familiar with the mathematical

preliminaries may omit this chapter and go directly to the next chapter.

1. Divide and conquer: Dynamic programming

Dynamic programming – an optimization technique developed in the

mid-1950s by Richard Bellman (Bellman, 1957) – exploits the ability of

a multi-stage decision problem to be broken down in smaller optimiza-

tion subproblems that can be solved separately with greater ease. A dy-

namic programming problem is defined in terms of states, decisions (alter-

natively, actions or controls), and momentary rewards or costs. Once the

tree of states and decisions, along with accompanying rewards for each state-

decision pair, is known, we can define a sequence of value functions {Vi(x)},

which represents the optimal value of a state x at a certain moment in

time i ∈ {0, 1, ..., n}, given that the decision maker will act optimally from

moment i and on. This concept of a value function allows for a recursive

definition of the decision-making process, as Vi−1(x) is equal to the sum

of the one-period reward (or cost) that the agent obtains from acting opti-

mally (making decision uo 1) from time i − 1 to time i, and the subsequent

Vi(x
′), where x′ is the state that results from acting uo from state x. This

1The superscript o stands for “optimal”.
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recursive relationship is captured by Bellman’s Principle of Optimality, the

mathematical form of which will be presented in the next subsection.

1.1. The principle of optimality. Consider a deterministic system

governed by the following difference equation:

xi+1 = xi + fi(xi, ui) i = 0, 1, ..., N − 1

x0 = x̄0

Notice that as N becomes infinitely large, the optimizing horizon becomes

infinite. For convenience, we consider only the finite horizon dynamic pro-

gramming problem. In the general case, the state variable xi is an n-

dimensional vector, the control variable ui is an m-dimensional vector, and

fi is an n-dimensional function of the pair (xi, ui). In order to simplify our

discussion, we will consider the case when x and u take only scalar values,

and fi is a two-dimensional function of the same form independent of i, so

fi = f for all i. Lastly, our discussion considers only the case of costs that

need to be minimized; an analogous discussion that involves rewards would

follow from this.

A control trajectory (or control path) is a sequence of control actions

over time {ui, i = 0, 1, ..., N − 1}. Similarly, a state trajectory (or state

path) is a sequence of states of the form {xi}. All the admissible control

actions form a control space C. Similarly, all the attainable states live in the

state space S.
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The cost function (or the performance index) of a system with initial

state x0 and control path {ui} is defined as:

V0(x0, {ui}) =

N−1
∑

i=0

αiCi(xi, ui) + αNCN (xN)

where Ci represent the one-period costs, CN represents the cost of ending

up in the last state xN , and α is the discounting factor of the future costs.

The major goal of the problem is to find a control path {ui} that mini-

mizes V0(x̄0, {ui}) for any given initial state. Let {uo
i } be the optimal control

path starting from the initial state x̄0, which results in the corresponding

state trajectory {xo
i }. Let πo = {go

i } be the optimal policy, which is a se-

quence of the optimal control laws ui = gi(xi) for every period i. At this

time, we can define the optimal value function V o
i (xi) to be the total future

cost of being in state xi at time i, given that the optimal policy will be fol-

lowed from period i to the last period N . Similarly, V o
0 (x0) is the minimized

total cost of starting from an initial state x0.

The principle of optimality states the recursive nature of the value func-

tion:

V o
i (xi) = minui

[Ci(xi, ui)+αV o
i+1(xi+f(xi, ui))] where V o

N(xN ) = CN (xN)

This forward-looking minimization procedure will yield the optimal control

path for the remaining periods from i to N , given that the system is at

state xi at time i. So, we can obtain the optimal control path for a given

x0. If this procedure is repeated over all the possible initial states x0 ∈ S,
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we will obtain the functions V o
i (·) and π(·) by using an iteration procedure

for either the value function or the policy function.

1.2. Continuous dynamic programming and the Hamilton-Jacobi-

Bellman equation. In its beginnings, the dynamic programming princi-

ple was formulated in discrete-time. Further work carried this principle to

continuous time, where the Hamilton-Jacobi-Bellman equation is the anal-

ogous continuous-time formulation of the discrete-time Bellman equation.

The Hamilton-Jacobi-Bellman (HJB) equation, which can be considered as

an extension and a combination of the work done in classical physics on

the Hamilton-Jacobi equation and Bellman’s work on discrete-time dynamic

programming, is a partial differential equation whose solution is the value

function introduced in the last subsection.

Consider the following continuous-time cost function:

V (t = 0, x0, {ut}) =

∫ T

0

e−αtC(xt, ut)dt + e−αTD(xT )

We need to minimize V (t, x0), subject to the differential equation

dx

dt
= f(xt, ut).

Notice that this differential equation is analogous to the difference equation

from the last subsection. Suppose that u∗ is the optimal control path. Then,

V (t, x) = V (t, x, {u∗}) is the continuous-time counterpart of V o
i (x), and it is

also the solution of the HJB equation. Assuming that the value function is

everywhere continuous and differentiable with respect to t and x, the HJB
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equation can be written in the following form:

minu∈U{C(x, u) +
δV (t, x)

δt
+

δV (t, x)

δx
f(x, u)}

In order to understand the derivation of the HJB equation from the

discrete-time Bellman equation, the following argument is provided. The

argument does not prove all the technical details of this derivation; it just

sketches the reasoning of the derivation. Suppose that the horizon [0, T ] is

partitioned in N parts of length δ each. Then, V (T, x) is approximated by

Ṽ (Nδ, x). Then, Ṽ (kδ, x) = minu{δC(x, u)+ Ṽ ((k+1)δ, x+δf(x, u))}. The

Taylor series expansion for a certain function g(x, y) is:

g(x + ∆x, y + ∆y) =

∞
∑

i=0

{
1

i!
[∆x

dg

dx
+ ∆y

dg

dy
]ig(x, y)}

Therefore,

Ṽ ((k+1)δ, x+δf(x, u)) = Ṽ ((kδ+δ, x+δf(x, u)) =

∞
∑

i=0

{
1

i!
[δ

dṼ

dt
+δf(x, u)

dṼ

dx
]iṼ (kδ, x)}

This infinite sum can be written as:

Ṽ ((kδ + δ, x+ δf(x, u)) = Ṽ (kδ, x)+ δ
dṼ (kδ, x)

dt
+ δf(x, u)

dṼ (kδ, x)

dx
+O(δ)

But, we also know that:

Ṽ (kδ, x) = minu{δC(x, u) + Ṽ ((k + 1)δ, x + δf(x, u))}

Therefore,

Ṽ (kδ, x) = minu{δC(x, u)+Ṽ (kδ, x)+δ
dṼ (kδ, x)

dt
+δf(x, u)

dṼ (kδ, x)

dx
+O(δ)}
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Substracting Ṽ (kδ, x) from both sides and dividing both sides by δ, we get:

0 = minu{C(x, u) +
dṼ (kδ, x)

dt
+ f(x, u)

dṼ (kδ, x)

dx
+ O(δ)}

As δ → 0 and k → ∞ such that kδ = T , assume that

lim
δ→0
k→∞
kδ=T

Ṽ (kδ, x) = V (t, x).

From this assumption and the previous result, we obtain the HJB equation:

0 = minu{C(x, u) +
V (t, x)

dt
+ f(x, u)

V (t, x)

dx
+ O(δ)}

It is generally very hard to obtain solutions for this partial differential

equation. Nevertheless, the HJB equations is a necessary and sufficient

condition for optimality, therefore in case a solution is found, it is guaranteed

that that solution for the value function will yield the minimizing policy.

Secondly, solutions of the HJB equation are usually nonsmooth functions, i.e.

value functions that are not differentiable everywhere. The previous proof

was constructed upon the assumption that the value function is differentiable

everywhere, therefore a lot of work has been done in order to circumvent

this difficulty. The concept of viscosity solutions to the HJB equation has

been introduced as a remedy. A dicussion of viscosity solutions is beyond

the scope of this chapter, but a complete treatment of this topic can be

found in Bardi and Capuzzo-Dolcetta (1997).
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2. Concepts in optimal control theory

Optimal control theory arose out of the inability of the calculus of vari-

ations, the classical method in dynamic optimization, to deal with corner

solutions, not-everywhere-differentiable state trajectories, and constraints

in the control variable. The admissible control trajectories in optimal con-

trol theory are required to be only piecewise continuous, not necessarily

everywhere continuous. The corresponding state trajectory of a piecewise

continuous control trajectory will be differentiable everywhere except for

the points where the control trajectory is discontinuous. Therefore, optimal

control theory is well-equipped to solve problems with discontinuous opti-

mal control paths. A second convenient feature of optimal control theory –

as Chiang (2005, 161-164) notes in his introduction of optimal control the-

ory – is its ability to handle optimization problems with control constraints,

which might, for instance, be in the form of a bounded and closed control

space (such as an interval in the case of a scalar control variable). These

two features of optimal control theory are very important to our analysis

because they allow this method to identify bang-bang solutions: piecewise

continuous solutions where each of the continuous pieces takes a value from

the boundary of the control space.

The basic problem of optimal control theory can be written in the fol-

lowing form:
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(2.1)

max
{γt}

∫ T

0
U(t, x, u)dt

subject to
dx

dt
= f(x, t, u),

with x(0) = a, x(T ) free; a, T given

and u ∈ U for all t ∈ [0, T ].

In the above problem, U and f are continuous in all their arguments

and have first-order partial derivatives with respect to x and t, but not

necessarily with respect to u. (Chiang, 165) Also, the problem is written in

the form of a maximization problem, but it can be easily transformed into a

minimization problem by considering the negative of the momentary utility

−U(t, x, u) as the integrand in the first line of the problem. In this way, the

problem is transformed from a problem of maximization of rewards into a

problem of minimization of costs.

2.1. The Maximum Principle: Basic notions. The most useful re-

sult of optimal control theory is Pontryagin’s Maximum Principle, developed

in the early 1960s independently by both L. S. Pontryagin and his collabo-

rators in former USSR2, and M. Hestenes in the United States3 . In order

2Boltyanskii V.G., R.V. Gamkrelidze. L.S. Pontryagin: “Towards a theory of optimal

processes”, (Russian), Reports Acad. Sci. USSR Vol. 110(1), 1956

3Hestenes, M. R., “A General Problem in the Calculus of Variations with Applications

to Paths of Least Time,” Rand Corporation RM-100, ASTIA Document No. AD 112382,

Santa Monica, California: 1950.
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to introduce the Maximum Principle, the concepts of Hamiltonian function

and costate variable need to be explained first. After presenting the math-

ematical form of the Maximum Principle, an economic digression follows,

which provides the reader with a brief chart of the economic significance of

this principle.

Keeping the same notation throughout this section, the Hamiltonian

function is defined as:

H(t, x, u, λ) = U(t, x, u) + λ(t)f(x, t, u).

The costate variable in the system, λ, can be viewed as the continuous-time

analogue of a Langrange multiplier, and it is a function of time t. So, we can

talk about a costate path: the evolution of the costate variable over time.

The conditions of the maximum principle are the following:

(2.2)

max
u

H(t, x, u, λ) for all t ∈ [0, T ]

x′ =
δH

δλ
,

λ′ = −
δH

δx

λ(T ) = 0.

The second line is the equation of motion for the state variable x (which

is f(x, t, u)), expressed as a partial derivative of the Hamiltonian with re-

spect to the costate variable. The third line is an equation of motion for

the costate variable. The fourth line represents the transversality condition:
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the condition that the costate variable needs to meet at the end of the time

horizon.

While we need to find u∗ that maximizes the Hamiltonian function, that

is not necessarily equivalent with the condition δH
δu = 0. That is because

the Hamiltonian function is not necessarily everywhere differentiable with

respect to u, and even when it is, the first-order condition δH
δu = 0 might

identify a minimum instead of the desired maximum. In such a case, the

maximum has to be searched at the boundaries of the control space. Another

pathological case would be the case when the Hamiltonian is linear in u. If

the control set is a closed set, then the optimal solution might be a corner

solution.

Lastly, the following chart will provide a mapping of the concepts of the

maximum principle into a classical economic example from capital theory.

The chart is based on the discussion of Robert Dorfman in his-well known

article “An Economic Intepretation of Optimal Control Theory”.4 In Dorf-

man’s discussion, the basic problem is the decision problem of a firm that

aims to maximize profits over a time horizon under the capital constraints

it faces. In every moment, the firm has a capital stock that needs to be

managed. The decisions of the firm (that can vary greatly, from decisions

4Dorfman, Robert. “An Economic Intepretation of Optimal Control Theory.” Amer-

ican Economic Review. December 1969: 817-31.
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concerning the rate and price of the output to decisions concerning the de-

sign of the product) affect the rate at which the size of this capital stock is

changing.

Concept in Maximum Principle Economic Significance

state variable x amount of capital

control variable u rate of change of capital

costate variable λ shadow price of capital

λ(0) shadow price of a unit of initial capital

λ(T ) shadow price of a unit of terminal capital

function U current profit

λ(t)f(x, u, t) future profit effect of policy u

Hamiltonian function H overall profit prospect: (current profit) +

(shadow price) · (change in capital correspond-

ing to policy u)

f(x, u, t) = x′ rate of change of capital per unit of time due

to the present amount of capital, policy u, and

moment t

λ′ rate of decrease of shadow price per unit of time

(depreciation of shadow price)
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x′ = δH
δλ the way the policy decision affects the rate of

change of capital: the change in capital is equal

to the contribution of the shadow price to overall

profits.

λ′ = −δH
δx shadow price depreciates at the rate at which

capital contributes to overall profits.

λ(T ) = 0 shadow price is driven down to zero at the end

of the time interval, i.e. the left-over capital has

no economic value to the firm.

Alternative transversality condi-

tion: λ(T ) > 0 and (x(T ) −

xmin)λ(T ) = 0

The shadow price is not driven down to zero

(the firm intends to continue its existence be-

yond the optimizing horizon), but the terminal

capital should be xmin.

3. Green’s Theorem and the extremization of line integrals

This discussion of the application of Green’s Theorem to the extrem-

ization of line integrals will be based on the Pierre’s treatment of this

topic (Pierre 1986). Consider two real-valued functions of the form: V1 ≡

V1(x, s, t) and V2 ≡ V2(x, s, t). Let s be an explicit function of x and t.

Then, we need to extremize the quantity:

∆ = Ja + Jb =

∫

a
(V1

dx

dt
+ V2)dt +

∫

b
(V1

dx

dt
+ V2)dt
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Figure 2.1. Paths and region of integration [Graph from

Pierre 1969, 116]

Consider Rab to be the region enclosed by the paths a and b, and also consider

V1, V2, and s to be analytic functions on a and b. Then, the previous line

integral can be written as the following surface integral:

∆ =

∫∫

R
(
dV2

dx
+

dV2

ds

ds

dx
−

dV1

dt
−

dV1

ds

ds

dt
)dxdt

The paths over which we are integrating are showed in the following picture:

The sign of the double integral is dependent on the direction of the paths

a and b; if a and b would have opposite directions from what is shown in

the graph, then the double integral would be of negative sign. The sign of

the integrand of the surface integral determines the value of x that mini-

mizes/maximizes the initial line integral. If the integrand is positive above
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the path a, negative below it, and zero along it, then Ja is the maximum

value of J. On the contrary, if the integrand is negative above the path a,

positive above it, and zero along it, then the path a is a minimizing path of

J.

4. The curious case of singular optimal control problems

A singular minimizing control path for the general optimal control prob-

lem is defined as one for which the classical Legendre-Clebsch condition is

not satisfied with strict inequality (Bell and Jacobson 1975). Therefore,

along a singular control path, there is nothing we can say about the convex-

ity of the Hamiltonian function with respect to the control variable. Goh

(Goh 1966, Bell and Jacobson 1975) was the first to establish that the ex-

tremal trajectory is singular for the case in which the Hamiltonian H is

linear in one or more elements of the control function u(t).

Definition. Consider ui to be an optimal singular element of the con-

trol vector u on [t1, t2] which appears linearly in H . Suppose that ui appears

explicitly in H after taking the time derivative of δH
δui

2k times. Then, the

integer k is called the order of the singular control path.

Definition. Assuming that all the components of the control vector u

are simultaneously singular, then u is called a totally singular control path

if
δH(x̄,λ,t)

δu = 0 for all t ∈ [0, T ]. The control path is partially singular if
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δH(x̄,λ,t)
δu = 0 holds for k intervals, whose sum of lengths is less than the

total length of the optimizing horizon.

After having introduced these general concepts involved in singular op-

timal control problems, we turn to a brief discussion of singular solutions of

autonomous (time-independent) optimization problems with nonlinear dy-

namic systems and linear utility function.

Suppose that the control variable u is a scalar. Let x′ = f(x) + g(x)u

and U(x, u) = ax + bu. Then, the Hamiltonian function is:

H = ax + bu + λ(f(x) + g(x)u) = ax + λf(x) + u(b + λg(x)).

Taking the derivative of H with respect to u, we obtain:

δH

δu
= b + λg(x).

W = b + λg(x) is called a switching function. This switching function does

not directly determine a stationary control, because it does not depend on

u. Nevertheless, we can find u(t) over a finite interval so that the switching

function is zero over that interval. In order to do so, we need to take time

derivatives of the switching function, and set them equal to zero.

The first time derivative of W does not depend on u. Given that the

coefficient before u in the second time derivative will not be zero, we can

determine an expression for the stationary solution u∗. In order to check

the optimality of this singular control, we introduce the following necessary

condition.
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4.1. Generalized Legendre-Clebsch condition. A necessary condi-

tion for minimality is the usual convexity condition (second-order condition):

δ

δu
(
δH

δu
) ≥ 0 (Classical Legendre-Clebsch condition)

In the case of a singular control, this condition is satisfied trivially, because

δ
δu( δH

δu ) = 0. For this case, we turn to another more well-suited condition,

that looks much like the convexity condition above. The two version of the

condition are the following:

Condition for minimality (Bryson and Ho 1969, Bell and Jacobson 1975):

(−1)k δ

δu

[

(
δ

δt
)2k δH

δu

]

≥ 0

Condition for maximality (Sethi and Thompson 1981):

(−1)k δ

δu

[

(
δ

δt
)2k δH

δu

]

≤ 0

This condition is known as the generalized Legendre-Clebsch condition (al-

ternatively, Kelley-Contensou test). The proof of this inequality for the case

when k = 1 uses second variation of the utility function.

According to Bryson and Ho (Bryson and Ho 1969, 258-261), these fol-

lowing facts always hold:

(i) The variable 2k is always even. A problem is a singular problem of order

2k if the following hold:

(
d

dt
)i δH

δu
= 0 for all i = 0, 1, ..., (2k− 1)

and (
d

dt
)2k δH

δu
= a(x, λ) + b(x, λ)u
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(ii) The singular surface in the (x, λ)-space is of dimension (2n−2k), where

n is the dimension of the state vector x and 2k is the order of the singular

problem.

4.2. Chattering. Zelikin and Borisov (Borisov and Zelikin, 1994) have

studied problems the optimal solutions of which are not piecewise continu-

ous, but merely measurable: these optimal controls have an infinite number

of discontinuous jumps over a finite time horizon. This behavior is known as

chattering. Chattering does not allow for a direct use of Pontryagin’s maxi-

mum principle due to the fact that it is not considered an admissible policy

as it is not piecewise continuous, i.e. there does not exist a non-zero-length

time interval with a continuous control.

5. Current-value Hamiltonian function

Continuing the discussion started in the second section of this chapter,

this section present a revised version of the Maximum Principle. Suppose

that the utility function is of the form: U(t, x, u) = V (t, x, u)e−αt. Then,

we need to revise the conditions of the Maximum Principle to account for

this change in the utility function. The Hamiltonian function will be:

H(t, x, u, λ) = V (t, x, u)e−αt + λf(t, x, u)

so we define the current-value Hamiltonian function to be:

Hc(t, x, u, λ) = V (t, x, u) + λeαtf(t, x, u).
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Letting µ = λeαt, we rewrite the current-value Hamiltonian function as:

Hc(t, x, u, λ) = V (t, x, u) + µf(t, x, u).

Notice that:

x′ =
δH

δλ
= f(t, x, u) =

δHc

δµ

Also,

λ′ = −
δH

δx
= µ′e−αt − αµe−αt

But,

H = Hce
−αt ⇒ −

δH

δx
= −

δHc

δx
e−αt

So,

−
δHc

δx
e−αt = µ′e−αt − αµe−αt

µ′ = −
δH

δx
+ αµ

Therefore, the conditions for the revised Maximum Principle are the

following:

(2.3)

max
u

Hc(t, x, u, λ) for all t ∈ [0, T ]

x′ =
δHc

δµ
,

µ′ = −
δH

δx
+ αµ

µ(T )e−αT = 0.
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6. Euler’s method of approximation

Euler’s method of approximation is a linear one-step approximation

method that will be useful later on when we will need to discretize the

differential equation of the continuous-time problem. In this section, we

first present the method, and then offer a discussion of the magnitude and

the bounds of the error from the approximation. Lastly, we will prove that

as the step used in the approximation decreases, the approximation becomes

more accurate.

Consider the differential equation: y′(t) = f(t, x(t)) with initial con-

dition x(t0) = x0. Then, by choosing a time step h, the discrete form of

this equation becomes xn+1 = xn + hf(tn, xn), or alternatively, x(t0 + h) =

x(t0) + hf(t0, x(t0)). The magnitude of the error produced by this approx-

imation method can be found by comparing this first-order approximation

to the Taylor expansion of x(t0 + h).

Euler’s method: x(t0 + h) = x(t0) + hf(t0, x(t0))

Taylor’s expansion: x(t0 + h) = x(t0) + hx′(t0) +
1

2
h2x′′(t0) + O(h3)

We know that:

x′′(t0) =
df(t0, x(t0))

dt
+

df(t0, x(t0))

dx
f(t0, x(t0))

Hence, Taylor’s expansion can be rewritten as:

x(t0+h) = x(t0)+hx′(t0)+
1

2
h2

[

df(t0, x(t0))

dt
+

df(t0, x(t0))

dx
f(t0, x(t0))

]

+O(h3)
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Therefore, the error that Euler’s approximation yields is:

1

2
h2

[

df(t0, x(t0))

dt
+

df(t0, x(t0))

dx
f(t0, x(t0))

]

+ O(h3).

As h → 0, this error approaches zero.

The error bounds are determined by the following inequality:

|εn+1| ≤
hM

2L
(eL(t−t0) − 1)

where ε is the error, h is the step size, M is an upper bound on |x′′| for all

t in the considered time interval, and L is the Lipschitz constant for f .

7. The logistic nature of the SIS dynamic equation

In this section, I will give a short description of the logistic form and the

solutions of the following differential equation:

x′ = βx(N − x) − γx = f(x, u).

The classical logistic function is of the form:f(x) = ax(1 − x
K ), where K is

referred to as the carrying capacity, or saturation level.

As it can be easily seen, the first part of our differential equation is of

such a form: βx(N − x) = βNx(1 − x
N ). Akin to the analysis of a similar

harvesting model (Gordon-Schaefer fishing model) by Clarke (Clarke 1976),

we can write the differential equation as:

x′ = βNx(1−
x

N
)− γx.
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To obtain the equilibria of this equation, we set x′ = 0. For any γ < βN ,

the equilibria is x = 0 and x = K(1 − γ
β ). It can be shown that the second

equilibrium (the nontrivial equilibrium) is asymptotically stable.

7.1. Solutions to the SIS differential equation. We are given the

homogeneous quadratic differential equation of the form

dx

dt
= βx(N − x) − γx

and we need to find a closed form solution for x(t). By separating the

variables t and x, we get:

dx

x(βN − γ − βx)
= dt

Then, integrating both sides:

∫

1

x(βN − γ − βx)
dx =

∫

dt

By the method of partial fractions, we find that:

1

x(βN − γ − βx)
=

1

(βN − γ)x
+

β

(βN − γ)(βN − γ − βx

Therefore, the left-hand-side integral can be written as:

1

βN − γ

∫

(
1

x
+

β

βN − γ − βx
)dx =

1

βN − γ
(ln |x| − ln |βN − γ − βx|) =

=
1

βN − γ
ln |

x

βN − γ − βx
|

The integral of the right-hand-side is:

∫

dt = t + k
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Therefore,

1

βN − γ
ln |

x

βN − γ − βx
| = t + k

(βN − γ)(t + k) = ln |
x

βN − γ − βx
|

x

βN − γ − βx
= ±e(βN−γ)(t+k) = Aet(βN−γ)

where A = ±ek(βN−γ). Then, by isolating the terms that contain x in them

(note that x is used instead of x(t) out of convenience), we get:

x(t) =
(βN − γ)Aet(βN−γ)

1 + βAet(βN−γ)

By multiplying both the numerator and the denominator of x(t) by e−(t+k)(βN−γ),

we get:

x(t) =
βN − γ

β + Ae−t(βN−γ)

Letting C1 = A
βN−γ , we rearrange the denominator and get a solution of the

form:

x(t) =
βN − γ

β + C1(βN − γ)e−t(βN−γ)

8. Discretization of the discounting factor

This last section briefly clarifies the discrete-time formulation of the

exponential discounting factor used in continuous time. Suppose that we

are looking at time t = T ; the immediate costs incurred at that time are

discounted by a factor e−αT back to the present t = 0. Suppose that we

partition this time horizon [0, T ] into equal intervals of length δ. Then, we

will have T
w such intervals. Consider each of these intervals as one time
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period in the discretized problem. What is the appropriate discount factor

in this discrete-time framework?

If w = 1, then [0, T ] will be divided into T time periods, and the discount

factor will be of the form: a = 1
1+α . In the general case when w is not

normalized to a length of 1, a = 1
1+wα . In order to see how is this discrete-

time discount factor an approximation of the continuous-time exponential

discount factor, we consider the limiting case when w → 0. Viewed from

time t = 0, the momentary costs of the last period T/w are discounted by a

factor of ( 1
1+wα )T/w. But, as the length of each period approaches zero, we

know that

lim
w→0

(
1

1 + wα
)T/w = e−αT .

Therefore, the appropriate discrete-time discount factor corresponding to

e−αt is ( 1
1+wα)t/w.



CHAPTER 3

Essay One:

Attempting to reconcile a classical debate

“It is, in a sense, the single most effective way for the system to grow,

so that if we are planning long-run growth, no matter where we start, and

where we desire to end up, it will pay in the intermediate stages to get into a

growth phase of this kind. It is exactly like a turnpike paralleled by a network

of minor roads. There is a fastest route between any two points; and if the

origin and destination are close together and far from the turnpike, the best

route may not touch the turnpike. But if origin and destination are far

enough apart, it will always pay to get on to the turnpike and cover distance

at the best rate of travel, even if this means adding a little mileage at either

end.”

Robert Dorfman, Paul Samuelson, and Robert Solow

“Is the fate of calculus tied to infinitesimals, or must it not be given a

rigorous status from the point of view of finite representations? It is precisely

this alternative between infinite and finite representation that is at issue

when we speak of the ’metaphysics’ of calculus.”

Gilles Deleuze

45
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This chapter delves into the investigation of potential sources of the

discrepancies between the discrete-time and the continuous-time solutions

offered by Sanders (Sanders 1971) and Sethi (Sethi 1974) respectively. Ex-

tending the discussion begun in the first chapter with the brief description of

the argument of each of the articles, the first section of this chapter provides

further details on the methods employed by the articles and on a recent at-

tempt of Anderson and Salant to shed light on this controversy. The work

of Anderson and Salant opens several research paths that are undertaken

and explored in the second and the third section. Section 4 provides a re-

evaluation of Sanders’ argument by extending the argument to a discrete

model with length of period w. The fifth section reconsiders the optimality

of the singular solution offered by Sethi by checking whether the General-

ized Legendre-Clebsch condition holds for this case. Section 6 concludes the

chapter.

1. Expository discussion

Sanders, being the first one to start this scholarly conversation, set up a

discrete-time model of an infectious disease with costs that depend linearly

in the size of the infected population and in the effort chosen to treat the

disease. His model was one of the earliest attempts that preceded the emer-

gence of an entire area of economics of infectious diseases. Therefore, the

choice of the SIS model was reasonable because of its simplicity: the popula-

tion size is fixed and the population consists of only susceptible and infected
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individuals. Furthermore, in order to keep things simple, he excluded the

possibility of random recoveries from the dynamics of the disease; hence,

the only two factors affecting the spread of the infection are the interactions

between susceptible and infected individuals, and the treatment policy un-

dertaken by a health agent. The treatment effort, expressed as a portion of

the infected individuals chosen to be “removed” of the infected subpopula-

tion, has constant marginal cost and an upper bound due to technological

limitations. So, while Sanders was aiming to set up a simple model of infec-

tious diseases, he managed to include three very problematic features in his

model, – features that, as it will become apparent later on, account for the

atypical solution structure in discrete and continuous time: (i) linear costs,

(ii) nonlinear motion law, and (iii) bounded control.

Equation (1.1) presents the discrete-time optimization problem in math-

ematical form. The corresponding value function equation is the following:

Vn(x) = min{Cx + Kγ + αVn−1(x + βx(N − x)− γx)}

In the way in which Sanders sets up the problem, there are two facts worth

noticing: 1) his interpretation of the upper bound on γ and 2) his general-

ization of the difference equation for a period of length ∆. As mentioned

earlier as well, the treatment parameter γ takes values on an interval [0, b].

Sanders interprets b as the treatment success rate, or alternatively, as 1−T

where T is the treatment failure rate. This formulation implicitly suggests

that b cannot be greater than 1, hence γ takes values between 0 and (at
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most) 1. So, the structure of the optimal policy proposed by Sanders cru-

cially depends on the fact that γ can be at most 1. The question of how

does the maximum value of b – and more fundamentally, the nature and

the interpretation of b – change when going from a discrete-time framework

to a continuous-time framework is of particular importance in our analy-

sis. Secondly, Sanders generalizes the first-order difference equation for the

infection level in the following form:

x(t + ∆t) = x + β∆tx(N − x) − γx.

While he does not make direct use of this formulation in his article, as he

normalizes ∆t = 1, this discrete-time formulation is troublesome because it

does not capture the size of the effect of a treatment policy γ for periods

of different lengths. In other words, according to this formulation, a certain

treatment level, say γ∗, has the same impact γ∗x (where x is the infection

level at the beginning of the period) for both a time period of length ∆t = 0.5

and ∆t = 100.

The major theorem of the article states that: a) the value function is a

monotone increasing function with respect to x, b) it has non-positive second

derivatives with respect to γ and negative second derivatives with respect to

x, and 3) the optimal policy is γ∗ = 0 or b. From this theorem, several results

are concluded: 1) the strict concavity of the value function with respect to x

shows that the optimal policy is either 0 or b, so it is never at an intermediate

level between 0 and b, 2) for a given infection level x∗, if γ∗
n(x∗) = 0 for a
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certain n, then for any n′ < n, γ∗
n′(x∗) = 0; if γ∗

n(x∗) = b for a certain n,

then for any n′ > n, γ∗
n′(x∗) = b, 3) the health agent never treats anybody

if Kb − [ α
1−α ]CN < 0, 4) for infinitely long planning horizons (i.e n → ∞),

in any period n provided that α(1 + βn) < 1 (i.e n is not too far ahead in

the future), γ∗ = 0 if Kb− αCbx
1−α(1+βn) > 0 and γ∗ = b if Kb− αCbx

1−α(1−βn) < 0.

The third result raises the question: what is the optimal policy if x is such

that Kb − αCbx
1−α(1+βn) < 0 and Kb − αCbx

1−α(1−βn) > 0? The previous results

establish that the optimal policy is always in the boundary of the control

range, so although we do not exactly know if γ∗ = 0 or γ∗ = b for such x,

we do know that it will always be extremal. The main proof that Sanders

provides will be revisited in the fourth section, when I attempt to extend it

for periods of length w instead of of unit length.

Sethi transferred Sanders’ model to continuous-time, in the form of the

optimization problem presented in Equation (1.2). Unlike in Sanders’ work,

this article places no restrictions on the value that b can take. Formally

speaking, in the case when b is infinite, the control appears to be an impulse

control: the agent is able to treat every one in a single instant. This distinc-

tion might be rooted in the way in which we think about “action” in discrete

and continuous time. The upper bound on the upper bound is crucial to

the solutions of the problem. The size of the upper bound b is reflected in

the turnpike solutions that Sethi identifies: if b is not large enough, then the

turnpike will not be achieved, therefore the optimal policy will be a strictly

bang-bang solution.
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Because of the linear nature of the costs and the linear dependence of

the change in x on the control, the Hamiltonian function in Sethi’s problem

will be linear in the control:

H = −(Cx+Kγ)+λ[βx(N −x)−γx] = −Cx+λβx(N −x)+ (−K −λx)γ

When the coefficient before the control term in the Hamiltonian function is

not zero, the optimal control will be either 0 or b, depending on the sign

of that coefficient. But, in the case when this coefficient is equal to zero,

Pontryagin’s Maximum Principle fails to provide us with an optimal control

due to the fact that the second derivative of the Hamiltonian with respect to

the control is zero as well. The optimal control for this case should be found

by other methods, and its optimality needs to be proven. As a reminder, in

the second chapter we introduced the notion of singular controls, which may

be either partially singular or totally singular, depending on whether they

are optimal over the entire horizon or only several intervals of that horizon.

Referring back to one of the earliest articles on the study of the existence

of singular controls (Johnson 1963), the authors note that the solution for

the type of problem when the Hamiltonian is linear in the control can be of

several forms: bang-bang (piecewise-continuous control where every “piece”

takes values in the boundary of the control set), chattering (the control is

not even piecewise-continuous, only measurable, in which case the control

switches infinitely many times within a finite horizon), totally singular, or

any finite concatenation of each of these. Hence, unlike Sethi’s statement
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that “the maximum principle immediately yields the form of the optimal

control” (Sethi 1974, 682), the form of the optimal control should be con-

firmed by tools other than the maximum principle, some of which Sethi uses

in his article.

As both the control variable and the state variable are scalars, Miele’s

method of extremization of line integrals, which is based on an application

of Green’s theorem, can be employed to find the expression for the singular

(or steady-state) control (Miele 1961) . The same control can be identified

by taking the time derivatives of the partial derivative of the Hamiltonian

function with respect to γ; this argument will be explored in greater detail in

Section 5. Sethi uses such an application of Green’s theorem to identify an

expression for the singular control, and then he employs a switching-point

analysis to identify the complete structure of the optimal control, which is

a so-called bang-singular-bang (or bang-off-bang) structure. The solution,

hence, turns into totally singular only if x0 = xs and the the problem is

free-end-point or the fixed end point is xf = xs, while it turns into strictly

bang-bang if the upper bound on control is sufficiently small and/or the

optimizing horizon is sufficiently short.

The most recent contribution that attempts to advance the debate be-

tween Sanders and Sethi is a paper by Anderson and Salant titled “Hunting

Bacteria” (Anderson and Salant, 2011). Anderson and Salant consider the

discrete-time problem introduced by Sanders and check the optimality of

the turnpike solution identified by Sethi in discrete time. They do so by
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assuming that when the level of the infection is at the turnpike level xs, a

small perturbation ±h from the steady-state policy γs should increase the

costs of the program as γs is the optimal policy. They first find an ex-

pression for xs = rK
C−Kβ and γs = β(N − xs) which are the discrete-time

counterparts of Sethi’s xs and γs (r is the discrete-time counterpart of the

continuous time discount rate α). Then, the authors suggest a single per-

turbation γs +h at period t, where t is assumed to correspond to a moment

at which the singular solution is optimal in continuous time. This perturba-

tion will result in an infection level xt+1 in the next time period (t + 1), so

the infection level will move away from the steady-state level. Further, they

assume that at period (t + 1), we apply a correct policy γt+1 that would

bring the infection level at period (t + 2) back to xs. Then, Anderson and

Salant show that the two-period costs for this perturbation are lower than

the costs of applying Sethi’s policy γs. In addition, they prove that the cost

function is strictly concave in the neighborhood around h = 0. This means

that any policy that deviates by h from the steady-state solution performs

better than the steady-state policy. Therefore, they conclude that in this

discrete-time framework, Sethi might have mistaken a local maximum for

a global minimum, as any perturbation around h = 0 produces lower costs

than the case of h = 0. This is an important result as it shows the non-

optimality of the steady-state control proposed by Sethi in the discrete time

framework. Nevertheless, this analysis does not bridge the gap between the
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discrete-time framework and the continuous-time framework; it rather rein-

forces the discrepancies between these two frameworks. Secondly, one might

wonder whether the discrete-time steady-state solution that is analogous to

the one that Sethi identifies in continuous time is the only candidate for

being the supposedly optimal singular solution. The intuitive similarity be-

tween discrete-time and continuous-time optimal policies is not the (only)

ground for this statement. In fact, Anderson and Salant prove that if there

exists a steady-state solution in discrete-time, that solution will be of a sim-

ilar form to the one that Sethi identifies in continuous time (Anderson and

Salant 2011, 2).

These three articles have guided the work that will be presented in the

following sections. The questions that we have attempted to answer while

examining these articles have been basically two: (i) are there any faulty

assumptions, mistakes in the optimization techniques, and/or misinterpre-

tations of results in the analysis of each of these papers, and (2) is there a

way to extend the analysis started by Anderson and Salant in continuous

time. Finally, throughout the analysis presented in the following sections,

we have kept in mind the complexities – both known and unknown to us,–

that arise when moving from one time scale to another. Indeed, if there is

one thing that this analysis has made us quite aware of, that is the enormous

variety of such complexities. In this spirit, Jacobson and Mayne (1970) note

the following when attempting to apply their variation-based algorithmic

method of differential dynamic programming to discrete-time problems: “In
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one respect discrete-time systems are simpler to analyze than the continuous-

time systems,[...]– differential equations are replaced by difference equations

whose solutions are easier to compute. However discrete-time systems also

produce complications of their own. A non-infinitesimal change in the con-

trol ui at time i produces non-infinitesimal changes in the subsequent trajec-

tory. For the continuous-time system, on the other hand, a non-infinitesimal

change in the control action u(t) over the interval [t1 − ε, t1 + ε] (ε > 0 but

arbitrarily small) produces small, or order ε, variations in x(t) (t > t1).”

(Jacobson and Mayne 1970, 99).

2. Perturbation in continuous time

This section discusses two alternative approaches that we have explored

aiming to construct an argument that is structurally similar to the one

made by Anderson and Salant, but that tackles the problem in continuous

time. The first approach will extend the exercise of Anderson and Salant

by incorporating the length of the time period w as a variable in the model.

This will be achieved by looking at the difference equation in (1.1) as an

Euler approximation to the original differential equation in (1.2)1. Then, we

will attempt to observe the behavior of the h-perturbation as the length of

the time period approaches zero. Notice that this exercise slightly modifies

the framework of Anderson and Salant, and is still restricted to discrete time

1I call the differential equation “original” because the Kermack-McKendrick model

was at first formulated as a differential equation rather than a difference equation.
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only. The second approach will replicate the exercise proposed by Anderson

and Salant in continuous time, by distinguishing between two cases: 1) when

a perturbed policy γs + h is applied for an interval of length ∆t and then a

restorative policy γt+1 is applied during a second time interval of the same

length, and 2) when ∆t is approaching zero in the previous scenario. This

second approach asks in essence: if we perturb the steady-state policy for a

single instant (whatever that means mathematically), and then correct that

perturbation in the next instant (a strategy parallel to the one that Anderson

and Salant employ), would we have just lowered the costs by doing this?

2.1. Extension of “Hunting Bacteria” in discrete-time. Follow-

ing Euler’s method of approximation of differential equations, the difference

equation corresponding to dx
dt = βx(N − x)− γx is:

(3.1) xt+1 = xt + w(βx(N − x) − γx)

where w denotes the length of the time period. Notice that when we let

w = 1, we return to the standard case discussed in “Hunting Bacteria”.

Based on this discrete-time dynamics, we will rewrite the expressions for xs,

γs, xt+1, and γt+1 following an argument parallel to the one made in the

“Hunting Bacteria” piece. The discrete-time cost function that accounts for

the length of the time period will be of the form:

(3.2)

T
∑

t=1

(δ(w))t(Cwxt + Kwγt)
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The discount rate δ varies for different time period lengths, therefore δ is a

function of w. For a general period length w, the discounting factor will be

of the form:

(3.3) δ =
1

1 + wr

Refer to the discussion of the discounting factor in Chapter 2 for further

details.

Using Lagrange multipliers to minimize the cost function, we let the

Lagrangian be:

L =

T
∑

t=1

(δ(w))t[(Cwxt+Kwγt)+λt(xt+wβxt(N−xt)−wγtxt−xt+1)]+λ0(x̄−x1)

An interior solution will satisfy the first-order conditions: Lγt = 0 and

Lxt = 0 for all t = 1, ..., T . Therefore, from the first-order condition with

respect to γt, we derive that:

Lγt = δt(Kw − wλtxt) = 0

(3.4) λt =
K

xt

The first-order condition with respect to xt is:

Lxt = δt[Cw + λt + λtwβN − 2λtwβxt − λtwγt] − λt−1δ
t−1 = 0

(3.5) δ(Cw +
K

xt
(1 + wβN − 2wβxt − wγt)) −

K

xt−1
= 0
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The turnpike infection level that Sethi suggests is stationary, therefore, in

order for it to be maintained from one period to another, the number of

the newly infected people should be equal to the number of the people that

were effectively treated during the last period. That means that w(βxs(N −

xs) − γsxs) = 0 ⇒ γs = β(N − xs). Also, we know that this steady state

should satisfy equations (1.8) and (1.9) derived above. Therefore,

δ(Cw +
K

xs
(1 + wβN − 2wβxs − wγs))−

K

xs
= 0

where γs = β(N − xs). Therefore, we can derive an expression for xs:

(3.6) xs =
(1− δ)K

wδ(C − Kβ)

Suppose that the steady-state level of treatment effort γs is perturbed

to γs + h. The infection level in the next period will be xt+1, such that:

xt+1 = xs + wβxs(N − xs) − w(γs + h)xs

Hence,

(3.7) xt+1 = xs(1− wh)

Starting from an infection level xt+1, we can find γt+1 that would restore

the infection level at xs in the next period. The difference equation for the

next time period is:

xs = xt+1 + w
(

βxt+1(N − xt+1) − γt+1xt+1

)
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Substituting for xt+1, we can solve for γt+1
2 :

(3.8) γt+1 =
h

hw − 1
+ β

(

N − xs(1− wh)
)

Having obtained expressions for xs, γs, xt+1, and γt+1, we can compute

the costs of this perturbation over the two time periods:

Costs = δt

[

wCxs + wK(γs + h)

]

+ δt+1

[

wCxt+1 + wKγt+1

]

Dividing by δt and simplifying the expression further, we get:

Costs =

[

wC
(1 − δ)K

wδ(C − Kβ)
+ wK

(

β(N − xs) + h
)

]

+

δ

[

wC
(1− δ)K

wδ(C − Kβ)
(1− wh) + wK

(

h

hw − 1
+ β

(

N − xs(1 − wh)
)

)]

For a fixed value of w, we could rearrange the terms by isolating all the

terms that include h in them and labeling all the other terms as constants.

Therefore, the two-period cost function is:

(3.9) Costs = constants + wK

[

h
(

1 − C
1 − δ

C − Kβ
+ βwxs

)

+
h

hw − 1

]

When we differentiate this cost function twice and we evaluate the value of

the second derivative at h = 0, we get the expression:

(3.10) wK (w (1 − 2 (1 + w)))

As the value of w approaches zero, the value of this second derivative ap-

proaches zero as well, so the concavity of the function in the neighborhood

2For further details on the computations of this subsection, please see Appendix A
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around h = 0 remains inconclusive. We are interested to know what happens

to the values of xs,γs, xt+1, γt+1 and the two-period cost function as the

length of the time periods shrinks infinitely, i.e. when w → 0. Our ultimate

goal is to be able to state whether the cost function is concave around the

neighborhood of h = 0 as w approaches 0. When the length of the time

period approaches zero, we obtain the following limits for xs,γs, xt+1, γt+1,

which are in agreement with what we would expect intuitively:

lim
w→0

xs =
Kα

C − Kβ

lim
w→0

γs = β(N −
Kα

C − Kβ
)

lim
w→0

xt+1 =
Kα

C − Kβ

lim
w→0

γt+1 = −h + βN −
Kα

C − Kβ
β

When w = 1, it is easily showed that the cost function is strictly concave

in h when h = 0. For a more general case of a time period length w, as

we showed above, the cost function becomes more complicated due to the

w factor in front of all the terms that contain h in that function. In other

words, as we let w → 0, so as we let the time period become infinitesimally

small, all the terms with h in them disappear from the expression, and we

are left with no clue on what the concavity of that cost function is around

h = 0.

While this exercise provides an elegant extension of the discrete-time

framework that Anderson and Salant have constructed, it yields no specific
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conclusions on whether the results that they find hold even when we shrink

the period length to zero. At this point, it is reasonable to conclude that any

discrete-time method that relies on this shrinking strategy in order to con-

nect to the continuous-time framework will most likely fail due to difficulties

that arise in the limit. In the next subsection, we turn to a method of car-

rying the argument made in “Hunting Bacteria” over to a continuous-time

framework. This method aims to get closer to the continuous-time terrain

in which Sethi’s work lives.

2.2. Continuous-time “Hunting Bacteria”.

2.2.1. When the length of the time interval is not approaching zero. Let’s

suppose that at time t1, the level of the infection level is at the turnpike level

xs and we choose to perturbate the treatment effort from the turnpike level

γs to (γs + h). Analogously to the reasoning in the discrete-time model,

this new level of treatment effort will affect the infection level at time t2

(t2 chosen such that t2 > t1 and t2 − t1 = ∆t). Then, we will need to

apply a treatment effort γt+1 at t2
3 in order for the infection level at time

t3 to return back to the stationary level xs (t3 chosen such that t3 > t2 and

t3 − t2 = ∆t). During the time interval [t1, t2], the infection level changes

according to the differential equation:

(3.11) x′
1 = βx(N − x) − (γs + h)x

3This notation is chosen in order to keep up with the discrete-time notation introduced

in Anderson and Salant.
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with initial condition x0 = xs. Similarly, the infection level during the time

interval [t2, t3] is governed by the differential equation

(3.12) x′
2 = βx(N − x)− (γt+1)x

with initial condition x0 = x(t2) (and terminal condition x(t3) = xs). Our

goal is to calculate the cost function for the time interval [t1, t3] and examine

whether and how this cost function depends on h.

First, we evaluate the steady-state level of infection and the steady-state

treatment level:

xs =
Kα

C − Kβ

γs = β(N − xs) = β(N −
Kα

C − Kβ
)

The closed-form solutions for the differential equations mentioned above

are:

(3.13) x1(t) =
βN − γs − h

β + C1βNe−t(βN−γs−h) − C1(γs + h)e−t(βN−γs−h)

for equation (3.11) and:

(3.14) x2(t) =
βN − γt+1

β + C2βNe−t(βN−γt+1) − C2γt+1e−t(βN−γt+1)

for equation (3.12).

Notice that the initial condition for the first differential equation is x0
1 =

xs, while the initial condition for the second differential equation is x0
2 =
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xt+1. Hence, we can solve for C1 and C2 based on these initial conditions.

Using these initial conditions, we can rewrite the equations in such a form

that they include γt+1 in them; the goal is to isolate an expression for γt+1

so that we can then evaluate the costs for this perturbation and analyze

its dependence on h. After several algebraic manipulations4, we receive the

following:

(3.15) βN − xsβ = γt+1 + xs
(

e−∆t(βN−γt+1)(C2βN − C2γt+1)
)

It is mathematically intractable to isolate γt+1 from the equation above,

as γt+1 appears in the exponential terms and in the linear terms of the

equation. This obstacle does not allow us to talk any further about the

costs of an h-perturbation over non-shrinking time intervals. At this point,

we consider the limit of equation (3.15) to overcome this difficulty, thus

turning our attention to the case of shrinking time intervals.

2.2.2. When the length of the time interval is approaching zero. Building

upon the results of part a, we take the limit of equation (3.15) as ∆t → 0:

lim
∆t→0

(β(N − xs)) = lim
∆t→0

(

γt+1 + xs
(

e−∆t(βN−γt+1)(C2βN − C2γt+1)
))

⇓

β(N − xs) = γt+1 + xs(C2βN − C2γt+1)

⇓

4See Appendix B for a thorough mathematical discussion of this case.
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(3.16) γt+1 =
βN − xsβ − xsC2βN

1− C2xs

At this point, we have determined the treatment level that needs to be

applied at t2 in order to return to the stationary level of infection xs. The

cost function for the interval [t1, t3] can be written as a sum of costs of the

intervals [t1, t2] and [t2, t3]. Hence, the total costs for [t1, t3] are:

(3.17)

∫ 0

∆t
δt1+∆t

(

Cx1(t)+ K(γs + h)
)

+

∫ 0

∆t
δt1+∆t+∆t

(

Cx2(t) + K(γt+1)
)

We are interested to evaluate this expression at ∆t → 0.

Two difficulties that can be noticed this point of our analysis make

the approach of alternating between γs + h and γt+1 not very promising

for further results. First, each of the cost integrals cannot be evaluated

analytically, so there is no analytical way to compute the antiderivative of

the integral. As this problem arises because of the form of the cost function,

we expect such a difficulty to arise repeatedly in similar attempts. The

second obstacle, which is closely tied to the first one, arises out of the fact

that if we attempt to take the limit of the integrals in equation (3.16) without

finding an antiderivative expression first, then based on the Fundamental

Theorem of Calculus, the sum of integrals goes to zero. This is equivalent

to the fact that the instantaneous costs are zero.
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3. Green’s theorem and the Legendre-Clebsch condition

Before introducing the results of this exercise, it would be worthwhile to

point out two important features of the optimization technique that is based

on Green’s theorem and quickly clarify how do the solutions identified by

Sethi using this technique look graphically. First, this technique – although

quite limited in its applicability due to the requirement that both the state

variable and the control variable ought to be scalars – provides necessary

and sufficient conditions for minimality (Leitmann 1967, 64). Secondly, this

approach identifies global, rather than just local, optimal solutions (Pontani

and Teoffilato 2009, 3). These two features, combined together, assure us

that the singular control that Sethi identifies through this technique is indeed

globally optimal. Lastly, as we stated in the introduction of this technique in

the second chapter, the sign of the integrand inside the double integral is very

important when analyzing whether the identified extremum is a maximum

or a minimum. Figure 3.1 and 3.2 below show graphically how the sign of

the integrand Kα
x − C + Kβ changes as shown (both cases of xs < 0 and

xs > 0, where xs is the singular state path graphed in the plane (t, x)-plane,

are considered).

This section reconsiders the results obtained by Sethi through the ap-

plication of Green’s theorem by taking the approach of finding the time

derivatives of the switching function. The same expression for the singu-

lar control path and the singular state path are obtained, but we go one
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Figure 3.1. The sign of the integrand when xs > 0

Figure 3.2. The sign of the integrand when xs < 0

step further and check whether the Generalized Legendre-Clebsch condition
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holds along the singular control.5 The results confirm the optimality of the

singular control.

In the optimal control problem formulated by Sethi, the objective func-

tion is linear in the control variable, the differential equation governing the

changes in the infection level is nonlinear in the control, and there are in-

equality constraints in both the state variable and the control variable. This

specific class of optimal control problems is best handled by finding an ex-

pression for the switching manifold, and then determining the behavior of

the optimal path when approaching this manifold. This behavior is deter-

mined by the form of the switching function and its higher derivatives. If

all its derivatives vanish at a certain time t, then the system has an optimal

control of a singular form. Otherwise, the control has just a switch at time

t, which means that the value of the control changes from one bound of the

control to the other, while the switching function changes sign. Sethi makes

use of the switching-point analysis in finding that a three-piece concatena-

tion of the singular control and the bang-bang control is optimal, while he

does not employ this analysis in identifying the singular control.

5The work of Ledzewicz and Schättler (2002), which contains a successful implemen-

tation of the Generalized Legendre-Clebsch condition to confirm the nonoptimality of the

singular control in a model of cancer chemotherapy, inspired us to take a switching func-

tion analysis and apply the Generalized Legendre-Clebsch condition to Sethi’s problem.

Later on, the need for a deeper technical understanding of this type of analysis guided us

to classical sources such as Bryson and Ho (1969), Bell and Jacobson (1975) etc.
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In order to identify a singular control, one needs to take time derivatives

of the switching function and set them to zero until the control variable

reappears in the derivative, and then solve for that control variable; the

obtained expression will be the singular control (Borisov and Zelikin 1994,

Bryson and Ho 1975). Then, one needs to check whether this singular control

satisfies the Generalized Legendre-Clebsch condition (alternatively known as

Kelley’s condition) in order to determine whether this singular control path

is optimal. These are the steps that I will follow in the rest of this exercise.

Let the Hamiltonian function be:

H = −(Cx+Kγ)+λ[βx(N −x)−γx] = −Cx+λβx(N −x)+γ(−K −λx)

We also know that:

λ′ = λ(α − βN + γ) + 2βxλ + C

So, the switching function is:

dH

dt
= W (t) = −K − λ(t)x(t)

Setting it to zero,

λx = −K
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Taking the first derivative of W (t) with respect to t,6

W ′(t) = −Cx − λβx2 − λαx = −Cx + Kβx + Kα = 0

Solving for xs,

xs =
Kα

C − Kβ

The control variable does not appear in the first derivative of the switching

function, so we need to evaluate its second derivative and solve for the

singular control:

W ′′(t) = (−Cx+Kβx+Kα)′ = −Cx′+Kβx′ = (Kβ−C)(βx(N−x)−γx) = 0

W ′′(t) = Kβ2xN − CβxN − Kβ2x2 + Cβx2 + γ(Cx− Kβx)

Separating γ from the last equation, we get:

γ =
Cβ(N − x) − β2K(N − x)

C − Kβ
= β(N − x)

which is the expression that Sethi [3] gets for the steady-state solution as

well.

In our problem, we are minimizing the discounted costs (Cx+Kγ), so we

are maximizing its negative −(Cx + Kγ). The Legendre-Clebsch condition

for maximality is the following (Sethi 1981):

(−1)k δ

δu

[

(
δ

δt
)2k δH

δu

]

≤ 0

6In searching for connections between Miele’s method and the switching-point analy-

sis, it is worth noticing that W ′(t) is equal to the integrand inside the surface integral in

Green’s theorem.
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So, the singular control identified above is optimal when:

δ

δγ

d2W

dt2
(λ(t), xs(t)) ≥ 0

(C − Kβ)xs ≥ 0

From the expression for xs, this inequality is equivalent to:

Kα ≥ 0.

But K ≥ 0 (treatment is costly) and α > 0 (by assumption), therefore the

singular control is optimal.

4. Pulsing over unequal intervals

Having encountered multiple difficulties with the previous approaches

in which we alternate γ between γs + h and γt+1, we turn our attention

to a different kind of pulsing. In this section, we consider the strategy of

pulsing between minimal and maximal treatment effort over unequal time

intervals. This method is inspired by the solution that Sanders provides for

his discrete-time problem. Intuitively, if Sanders correctly claims that it is

optimal to alternate between γ = 0 and γ = b depending on the current

infection level, then we could think of the time periods of his model as very

very small, and hence extrapolate from his work that starting from xs, it is

optimal to chatter between effort levels of γ = 0 (no effort at all) and γ = b

in continuous time. Part 1 of this section focuses on laying out an analytical

framework for this exercise and identifying several difficulties of approaching
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this method analytically. Part 2 presents a numerical example that makes

use of this analytical framework and concludes a very important result.

Then, this numerical example is extended over an infinite-time horizon to

draw some useful economic implications.

4.1. An analytical discussion. In this first part, we will evaluate

the overall costs of applying a policy treatment γ = 0 over a fixed interval

[0, t1] and γ = b over a second interval [t1, t2] that is long enough to restore

the steady-state infection level at time t2 (we need to keep in mind that

γ ∈ [0, b]). Then, we will compare these costs to the costs of applying the

steady-state treatment policy γs over the entire time interval [0, t2].

For a fixed time interval [0, t1] during which we follow a minimum treat-

ment policy γ = 0, the infection level x1(t) is governed by the differential

equation

x′
1 = βx1(N − x1) with initial condition x1(0) = xs

The closed form solution for this initial value problem is:

x1(t) =
βN

β + C1βNe−βNt
where C1 =

N − xs

Nxs

At the fixed endpoint t1 of the interval, the value of the infection level is:

x1(t1) =
βN

β + C1βNe−βNt1
=

N

1 + C1Ne−βNt1

This will be the initial condition for the differential equation that governs

the second time interval [t1, t2]. Hence, the infection level x2(t) over the
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second time interval, during which we are applying a treatment effort γ = b

is driven by the differential equation

x′
2 = βx2(N − x2) − bx2 with x2(0) = x1(t1)

The closed form solution for this initial value problem is:

x2(t) =
βN − b

β + C2e−(βN−b)t(βN − b)

where the value of C2 is determined by the following equation:

x2(0) =
βN − b

β + C2(βN − b)
=

N

1 + C1Ne−βNt1
= x1(t1)

Notice that we are considering t1 to be the initial moment for the second

interval. We will account for this by discounting appropriately when calcu-

lating the costs. Also, we want x2(t2 − t1) = x2(∆t) = xs, therefore, we set

up the following equation:

βN − b

β + C2e−(βN−b)∆t(βN − b)
=

Kα

C − Kβ

From here, we can evaluate the length of the second interval that restores

the steady-state level of infection:

∆t = −
log
(

βN−βxs−b
xsC1(βN−b)

)

βN − b

So, the length of the second time interval is: t1 + ∆t = t1 −
log

“

βN−βxs
−b

xsC1(βN−b)

”

βN−b .

The cost function for [0, t1] is:

∫ t1

0
e−αt(C

βN

β + C1βNe−βNt
)
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while the cost function for [t1, t1 + ∆t] is:

∫ −
log

„

βN−βxs
−b

xsC1(βN−b)

«

βN−b

0

e−α(t1+t)(C
βN − b

β + C2e−(βN−b)t(βN − b)
+ Kb)

Therefore, the overall costs for alternating between γ = 0 and γ = b over

[0, t2] are:

∫ t1

0
e−αt(C

βN

β + C1βNe−βNt
)+

∫ −
log

„

βN−βxs
−b

xsC1(βN−b)

«

βN−b

0
e−α(t1+t)(C

βN − b

β + C2e−(βN−b)t(βN − b)
+Kb)

The cost of applying γ = γs throughout [0, t2] is:

∫ t1−
log

„

βN−βxs
−b

xsC1(βN−b)

«

βN−b

0
e−αt(Cxs + Kγs)

We need to compare:

∫ t1

0

e−αt(C
βN

β + C1βNe−βNt
)+

∫ −
log

„

βN−βxs
−b

xsC1(βN−b)

«

βN−b

0

e−α(t1+t)(C
βN − b

β + C2e−(βN−b)t(βN − b)
+Kb)

with

∫ t1−
log

„

βN−βxs
−b

xsC1(βN−b)

«

βN−b

0

e−αt(Cxs + Kγs)

which proves mathematically challenging. For this reason, we turn to a

numerical example to compare these two costs.

4.2. A numerical simulation. 7

The initial goal of this exercise (which was undertaken before we took a

deeper look in the optimization approach centered around Green’s theorem)

7The software Maple with 100 digits of accuracy was used for the computations of

this example. Maple was used also for most of the complicated algebraic manipulations

throughout this chapter.
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was to attempt to prove Sethi’s proposed optimal solution wrong by use of

a numerical counterexample. Indeed, we found one, which in light of what

we know now about the effectiveness of Miele’s technique, stands out as

quite odd. We present this (most likely anomalous) numerical result in this

subsection, kindly inviting the reader to identify any potential errors in the

procedure. We show that, starting from the turnpike infection level, the

costs of applying γ = 0 for a fixed interval [0, t1] and γ = b for an interval

long enough to restore the steady-state infection level xs are lower than

the costs of applying γs throughout these two intervals. Sethi argues that,

starting from an infection level xs, it is always optimal (i.e. cost-minimizing)

to follow a treatment policy γs and remain in the turnpike level xs as long

as possible. Clearly, this result should hold for any value of the parameters

of the population (β and N ) and of the cost function (δ, C, and K). We

will show that for a set of values for the parameters of the model, applying

γs is not optimal. Notice that the problem is approached in continuous

time (so we are not discretizing the time in unequal periods of length t1 and

t2 − t1, but rather applying γ = 0 repeatedly over [0, t1] and applying γ = b

repeatedly over [t1, t2], where t2 is dependent on t1).

Let β = 0.2, N = 100, δ = 0.4065696597... (which corresponds to the

value α = 0.9 in Sethi’s specification of the cost function, knowing that

e−α = δ), C = 2.5, K = 3.5, b = 25. The first step in this analysis is to
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evaluate xs and γs for these parameters. So,

xs =
Kα

C − Kβ
=

0.9 · 3.5

2.5 − 0.2 · 3.5
= 1.75

The corresponding γs is:

γs = β(N − xs) = 0.2 · (100− 1.75) = 19.65

We choose the length of the first time interval to be t1 = 0.00001, and

then solve for the length of the second time interval following the reason-

ing presented in Section 3.1. A thorough discussion of the numerical steps

followed to reach the results that we are about to introduce can be found

in Appendix C. We found that the difference between the cost of applying

γs = 19.65 and the cost of alternating between γ = 0 and γ = 25 is:

6.11 · 10−10

Therefore, once we are in the turnpike, it is better to alternate between γ = 0

and γ = 25 over carefully-chosen intervals (where the first interval is 0.00001

units of time long, while the second interval is long enough to restore the

stationary level of infection xs = 1.75 than to apply a steady-state treatment

effort γs = 19.65 8.

Now, we will extend the result obtained from the previous numerical

example to the infinite horizon. Let the set of two adjacent intervals over

which we first apply γ = 0 and then γ = b compose a phase. Then, the

8Notice that b > 1 and γs > 1 represent instantaneous intensity efforts, therefore they

can take values greater than 1.



4. PULSING OVER UNEQUAL INTERVALS 75

numerical example that we have already worked out considers one single

phase; our task is to extend the same strategy over an infinite number of

phases. A phase starts with the steady-state infection level xs, and it ends

with the same steady-state infection level. The infection level is perturbed

in between intervals within a phase, but then it is restored to xs during the

second time interval of the phase. Therefore, the phase length and the costs

for one single phase are the same for all the phases over the infinite-time

horizon. The only difference is that, from one’s perspective at t = 0, the

costs of later phases are discounted more heavily than the costs of earlier

phases. Given that we know the length of one phase, we can say that at

t = 0, the costs of the second phase are discounted by a factor of e−α∆t, the

costs of the third phase are discounted by a factor of (e−2α∆t, and so on,

the costs of the nth phase are discounted by a factor of e−α∆t(n−1), where

∆t denotes the phase length. Similarly, it can be argued that the costs of

the steady-state strategy that Sethi proposes can be discounted in the same

way.

In the numerical example, we have shown that the difference between

the costs of these different strategies is 6.11 · 10−10. When calculating the

infinite-horizon difference between these costs, we notice that:

∞
∑

n=1

e−α∆t(n−1)Costs/phase = Costs/phase

∞
∑

n=1

e−α∆t(n−1)

= (Costs/phase) ·
1

1 − e−α∆t
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Hence, the difference should be weighted by a factor of 1
1−e−α∆t . In the

numerical example,

(6.11·10−10)·
1

1− e−α∆t
≈ 0.000014528631272132107723838190808570360240128981

11692201944940361772282038611307804603311789650058198431...

This is the difference between the costs of the two strategies applied over an

infinite-time horizon. In other words, this is by how much Sethi’s strategy

is more costly than the strategy that we propose in this example if we

keep applying these treatment levels forever. If we were to assign units to

the values of the parameters that we have been working with so far, we

could say that the total costs in the numerical example are in terms of

thousands of dollars, then the difference between the costs of the strategies

is approximately 14 cents. If the units were millions of dollars, the difference

would be about 14 dollars.9

Note: Appendix D contains two more attempts that we undertook while

struggling to understand the chattering policy and its advantages compared

to the turnpike policy. We saw it reasonable not to include this material in

our main discussion, but it might be useful to present these efforts for the

sake of completeness.

9Note that for this numerical example, the population was very small (N = 100). The

difference in the costs becomes even more significant as we consider larger populations.

Also, note that if we let the units of time be years, then these are costs per year. It would

follow that in the numerical example: t1 = 0.00001 years = 5.256 minutes.
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5. An w-extension of the dynamic programming argument

In this section, a reevaluation of the theorem provided in Sanders’ work

and presented in the introductory discussion of this chapter will be under-

taken. More specifically, we will write the difference equation in its general

form for the period of length w, and then we will investigate whether the

same results that Sanders establishes in the theorem still hold.

This exercise will attempt to mimic the proof of the weak concavity on

γ and the strict concavity on x of the value function provided in Appendix

A in the article by Sanders (Sanders 1971, 889). The proof will take the

length of the time period to be w = 
n . Alternatively, suppose we start with

a single period problem where w = 1, and suppose we divide that time

period in n smaller intervals. Then, we make all the necessary changes in

the cost function, the difference equation, and the bounds of the treatment

level so that they will reflect the change in the length of the time period.

Section 2 of this chapter has given a discussion of these changes; that section

has modified the control term from γ to wγ. In this section, we will keep γ

as it is in the formulation with w = 1, but we will change the upper bound

of the control from b to b
n . This different formulation resembles Sanders’

suggestion about the equation for x(t + ∆t) (discussed in Section 1), while

making the necessary changes in the control set. The major goal of the

exercise is to check that the optimal solution is never an interior solution.
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If w = 1
n , then the current-period utility function would be of the form:

U(x, γ) = C
n x+Kγ, where γ ∈ [0, b

n ]. The difference equation governing the

changes in the infection level is: x(t + 1
n ) = x(t) + β

nx(N − x)− γx.

Knowing that V0(x) = 0 (where V0 is the value function at the end of

the last period), V1(x) = C
n x. The condition V0(x) = 0 is analogous to a

transversality condition: there is no return from spending in treatment in

the last period, as it takes one period for treatment to become effective.

Then,

V2(x, γ) = min
γ

{
C

n
x + Kγ + α

C

n
(
β

n
x(N − x) − γx)} where γ ∈ [0,

b

n
].

So,

dV2(x, γ)

dγ
= K −

αCx

n

and

d2V2(x, γ)

dγ2
= 0.

V2(x, γ) is twice differentiable and its second derivative is non-positive, there-

fore the function is (weakly) concave with respect to the control. Also,

dV2(x, γ)

dx
=

C

n
+ α

CβN

n2
− 2α

Cβx

n2
.

So, for x < n
αβ + N

 , V2(x, γ) is increasing in x. Notice that as n → ∞,

V2(x, γ) will be strictly increasing for the entire domain of x. Taking the

second derivative with respect to x:

dV 2
2 (x, γ)

dx2
= −2α

Cβ

n2
< 0
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So, V2(x, γ) is strictly increasing and strictly concave on x. By induction,

we repeat the reasoning for all the previous minimizing value functions up

to Vn(x, γ).

Therefore, we see that the same results that Sanders concludes in his

work carry over to a framework with discrete time periods of length w. The

value function is increasing in x, and concave in both x and γ. Hence, the

optimal control is either γ = b
n or γ = 0 for all n. In any discrete-time

model – no matter what the length of a certain period – the optimal policy

is a strictly bang-bang policy.10

6. Conclusions: Persistence of a (better-defined) puzzle

In conclusion, we would like to summarize the attempts that we have

made in our quest for the sources of discrepancies between discrete-time and

continuous-time optimal solutions for a specific SIS model with linear costs

and nonlinear dynamics. Our efforts have been channeled in four major

directions: 1) evaluation and generalization of the discrete-time dynamic

programming approach taken by Sanders to frameworks of time periods of

general length w, 2) validity check of the continuous-time optimal solution

identified by Sethi, 3) generalization of the argument made by Anderson and

Salant to continuous time, 4) modification of the argument of Anderson and

10We have extended this theoretical exercise to a numerical level as well, by setting

up a model (with the same parameter values as the ones that Sanders uses in his trachoma

illustration) and solving for the optimal policy for w = 1, 1
2
, 1

4
, 1

8
.
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Salant by analytically and numerically experimenting with the strategy of

pulsing over unequal time intervals.

While the major question that we presented in the first chapter of this

thesis still stubbornly persists - namely, why do we get different solutions

in discrete and continuous time – we have been successful in clarifying some

issues revolving around this puzzle. First, the application of discrete-time

dynamic programming to this problem is arguably reasonable. Dynamic

programming is a well-suited tool to problems where the decision times can

be divided into discrete pieces and the state space has a finite number of

values (Lenhart and Workman 2007). Both of these features seem to char-

acterize our problem. Furthermore, the solution that Sanders identifies in

discrete time is optimal for discrete-time models with periods of length w.

Secondly, the analytical generalization of the argument of Anderson and

Salant to continuous time seems to be particularly challenging mathemati-

cally. Thirdly, the solution that Sethi identifies in continuous time is correct;

this chapter has provided a second approach, besides the Green’s theorem

approach that Sethi takes to verify the optimality of the singular control.

Fourthly, we have been able to numerically find a pulsing control that dom-

inates the singular control in continuous time. This anomalous result might

be due to some conceptual error, or to potential limitations of the computa-

tional capabilities of Maple (the software used in this example); as of now,

we have unable to identify any errors in this example. Lastly, this work has
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raised the possibility that the problem might have not been translated cor-

rectly from the discrete-time framework to the continuous-time one. This

means that both Sethi and Sanders are providing us with distinct solutions

because they are not essentially solving an identical problem. To this end,

we have raised the issue of the size of b, the upper bound for the treatment

rate, in discrete and continuous time. While Sanders seems to explicitly

state that b cannot be any greater than one, Sethi does not provide any

upper bound for this upper bound. When interpreting his results, he even

considers the case when b → ∞ (Sethi 1974, 684). This raises more general

questions on how do we treat the inequality constraints on the control in a

control-constrained optimization problem when passing from a discrete-time

model to a continuous-time one. Section 5 of this chapter provides a possi-

ble suggestion on these questions, which is seemingly at odds with Sethi’s

continuous-time interpretation of b.

Lastly, we would like to remark that the controversy between Sanders

and Sethi is not the only, and maybe not even the first, time that economists

have encountered different-looking optimal solutions in discrete and contin-

uous time. Spence and Starrett (1975) provide a theorem that establishes an

instance when the most rapid approach path is optimal in the continuous-

time problem but not in its discrete-time counterpart. Under the time con-

straints of this thesis, we have not been able to investigate whether the

conditions of this theorem hold in the case of the problem of Sanders and
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Sethi, but further research might show whether Spence and Starrett’s results

are applicable or not.

The following chapter turns to a more recent debate that seems to be

related to, and at some degree even rooted in, the disagreement between

Sethi and Sanders. The resurfacing of this issue is further proof of the

persistence of the puzzle discussed in this chapter.



CHAPTER 4

Essay Two: Good questions persist

“I wish I had an answer to that because I’m tired of answering that

question.”

Yogi Berra

This second essay will focus on a more recent pair of articles – the article

by Rowthorn et al. (2009) and the article by Anderson et al. (2011) – the

arguments in which are marked by the tension between discrete-time and

continuous-time formulations discussed in the previous essay. We will first

present the arguments made in each of the articles, highlighting the similar-

ities and differences between these arguments and the classical arguments

made by Sanders and Sethi. Then, we will apply the method of switching

functions to the continuous-time article by Rowthorn et al. A discussion

of the difficulties of obtaining analytical solutions in continuous time will

follow. Lastly, we conclude with a summary of the insights obtained by our

analysis.

1. Expository discussion

Both the article by Anderson et al. and the article by Rowthorn et al.

examine the optimal allocation of a limited per-period budget in minimizing

83
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the discounted social cost of the total infection level in two interconnected

subpopulations. So, the dilemma that the social planner faces is how to

divide the funds between the two subpopulations, given that these subpop-

ulations start off with different initial infection levels. In general terms, the

set of choices available to the social planner can be categorized into two large

categories: 1) policies that devote the entire budget to only one subpopula-

tion each period, and 2) policies that treat people from both subpopulations

in each period. As it will become clearer later in this discussion, the policies

in the first category can be viewed as strictly bang-bang policies, while the

policies in the second category can be treated as singular (or intermediate

solutions). This broad categorization of admissible policies will shape our

discussion of these two articles in the spirit of the classical debate covered

in the previous chapter.

Methodologically, these two articles differ in the time scale that they

choose in their models: one of the papers considers the problem in discrete

time, the other in continuous time. The article by Rowthorn et al., the

earliest of the two, considers the continuous-time model, and observes that it

is extremely difficult to obtain the optimal solution analytically. In order to

circumvent this difficulty, Anderson et al. transferred the model in discrete

time and employed dynamic programming to find the optimal discrete-time

policy. In order to keep up with the order established in the first essay,

we summarize the major points of the discrete-time article first, and then

proceed with the findings of the continuous-time one.
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The discussion in this essay is limited to the case of two subpopulations,

although both articles extend their results further to the general case of more

than two subpopulations. Also, we will limit our discussion to the case of

per-period budget only, although results can be obtained for the case of a

one-time endowment that needs to be managed over time as well. Having

set these limitations, we proceed with the article by Anderson et al. first.

The discrete-time minimization problem that Anderson et al. look at is

the following:

(4.1)

minimize
FA, FB

T
∑

t=1

δt−1(sAIA
t + sBIB

t )

subject to I i
t+1 = (1− µi)I i

t +
βiI i

t + χiIj
t

N i + N j
(N i − I i

t) − αiF i
t for i, j = A, B,

with pAFA
t + pBFB

t ≤ Mt, 0 ≤ F i
t ≤ I i

t ,
Mt

pi
≤ I i

t ≤ N i,

and IA
1 , IB

1 given.

where I i is the number of infected people for subpopulation i, Fi is the

number of treated people in subpopulation i, si is the social cost due to an

additional infected person in subpopulation i, δ is the discount factor, µi

is the rate of spontaneous recoveries (lucky recoveries that happen despite

treatment) in population i, βi is the transmission rate in group i, χi is the

rate at which infected individuals in group j cross-infect people in group i,

αi is the success rate of the treatment, pi is the cost of treatment per person

in population i, Mt is the budget for use in period t, and I i
1 is the initial

infection level in group i. While the more interesting case is the one that
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allows for interaction between the subpopulations, Anderson et al. start

their analysis with the base case χi = 0 and establish the concavity of the

SIS dynamics and the value function with respect to the infection level. As

it turns out, it is very easy to carry these results to the case when χi 6= 0.

The objective function in this minimization problem is linear in the state

variables IA and IB, while the dynamics of the problem are linear in the

controls FA and FB . The value function corresponding to this problem will

be:

Vt(I
A
t , IB

t ) = min
FA

t ,FB
t

{sAIA
t + sBIB

t + δVt+1(I
A
t+1, I

B
t+1)}

This linearity (or nonconvexity, as Anderson et al. refer to it) in the objective

function is problematic to the application of standard dynamic programming

techniques in the case when it is possible to treat every infected individual

in a certain group and use the left-over budget to treat some infected in-

dividuals in the other group. In such a case, in the backward recursion of

dynamic programming, every value function will have kinks (so it will not

be differentiable everywhere) and it will be only piecewise concave. The in-

clusion of the assumption of tight budgets (budgets that are not sufficient to

treat everyone in a certain subpopulation) reduces the state space. because

now we are not considering 0 ≤ I i
t ≤ N i but instead we are considering only

a subset of it, namely Mt

pi ≤ I i
t ≤ N i for a group i. So, the reduced state

space will now be a rectangle in the (IA, IB)-plane, with sides NA − IA
t and

NB − IB
t . As Anderson et al. argue, “the standard algorithm would first
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establish properties of the cost function and policy rule that hold over the

entire state space; only afterward would it use the initial condition and tran-

sition rule to determine the optimal trajectory through the subset of that

space” (Anderson et al 2011, 4). So, by modifying the standard dynamic

programming technique, Anderson et al. establish the strict concavity of

the value function with respect to the state and control variables for this

subset of the state space first. Then, they use this concavity to make the

argument that the optimal policy is always a corner policy.

The recursive nature of the dynamic programming techniques is very

helpful when establishing the strict concavity of the value function for every

period. In the last period, the value function will be linear in I i, as the

optimal policy is to treat nobody from either group. But, in the second-to-

last period, the value function is concave due to the concave dynamics of the

SIS disease that come into play through the recursive formulation of VT−1

in terms of VT . Once we have established the strict concavity of VT−1, the

value function of every previous period will be a sum of a linear function

(the momentary costs) and a strictly concave function (the value function of

the next period). The strict concavity of the value function with respect to

the infection levels implies its concavity with respect to the treatment levels.

Hence, the indifference curves (i.e. “level curves” of equal social discounted

cost) are strictly concave in the (FA, FB)-plane, while the budget constraint

line will have slope −pB

pA in this plane. Hence, the optimal policy will be

a corner policy that assigns all the available funds to the treatment of a
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portion of the infected individuals in one of the subpopulations only. This is

the heart of the dynamic-programming argument in Anderson et al. In the

next section, we will discuss how Sanders employs a dynamic-programming

argument that is very similar to this one.

Therefore, the major result in the work of Anderson et al. is the cor-

ner policy that they identify as optimal: when the (tight) budget cannot

be transferred from one period to another and there are only two subpop-

ulations isolated from each other, it is always optimal to focus treatment

on a single subpopulation only. Then, they show that this result holds in

the following three more general cases : a) when there are more than two

subpopulations, 2) when the subpopulations interact, provided that χi < βi,

and 3) when there is a one-time endowment instead of a per-period budget,

provided that in no period is there sufficient wealth to treat every infected

individual in every subpopulation. Furthermore, in the budget-constrained

problem with two or more subpopulations, Anderson et al. show that if the

subpopulations share the same infection dynamics, treatment price, and so-

cial cost (so they differ in the initial infection level only), the subpopulation

that will receive treatment will be the one with the lowest initial level of

infection.

Rowthorn et al. considered the continuous-time version of this problem.

In their analysis, they do not make use of the assumption of tight budgets,

because as we mentioned above, this assumption was employed by Anderson

et al. precisely in order to circumvent the difficulty of obtaining analytical
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solutions pointed out in the article by Rowthorn et al. Therefore, the upper

bound of F i is I i. The continuous-time problem is written in the following

form:

(4.2)

minimize
FA, FB

∫ ∞

0
e−δt(IA + IB)

subject to
dI i

dt
= (βI i + χIj)(N − I i)− µI i − αF i for i, j = A, B,

with c(FA + FB) ≤ M, 0 ≤ F i ≤ I i,

and IA
0 , IB

0 given.

Most of the notation is the same as before. The constant c denotes the price

of the treatment per person: this price is the same for both subpopulations.

If we compare this problem to the discrete-time problem discussed above, we

notice several differences. First, as we already noted, the treatment price for

each of the subpopulations is equal: pA = pB = c. Secondly, the marginal

social cost for each subpopulation is normalized at sA = sB = 1. In other

words, this problem is concerned with minimizing the total infection in both

subpopulations, assuming that an additional infected individual causes equal

social harm to his subpopulation in both groups. Thirdly, this continuous-

time problem is based on the assumption of identical populations. The

parameters β, χ, µ, N , and α that determine aspects of the spread of the

infection are equal in both subpopulations.

The optimization method used by Rowthorn et al. is Pontryagin’s Max-

imum Principle. The authors combine analytical and numerical approaches
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to evaluate the performance of three strategies under the assumption of lim-

ited budgets (i.e. when at least for some intervals of the time horizon, the

total number of infected individuals in the two subpopulations exceeds the

availability of treatment): a) treating in the region with higher infection level

first, b) treating in the region with lower infection level first, c) applying an

intermediate level of treatment in both subpopulations simultaneously. A

brief description of the analytical argument made by Rowthorn et al. is

useful for our further discussion in the third section of this essay.

The case when the available budget is sufficient to treat every infected

individual in each of the subpopulations is trivial in terms of minimization

of costs, as it is always optimal to treat everybody. Eventually, the infection

is either totally eradicated or driven down to some equilibrium in each of

the subpopulations. The case when IA + IB ≥ M
c is the one of interest

to us. Rowthorn et al. set the Hamiltonian function, which includes the

negative of costs, as well as two co-state variables λ1 and λ2 accompanied

by the dynamic equation for each of the subpopulations. The relationship

between the control variables FB = M
c − FA simplifies the Hamiltonian;

we could rewrite the Hamiltonian function in terms of just one control, and

then attempt to maximize it in terms of that control only, say FA. The

Hamiltonian function is linear in this control:

H = −e−δt(IA+IB)+λ1[(N−IA)(βIA+χIB)−µIA]+λ2[(N−IB)(βIB+χIA)−µIB]

−λ2α
M

c
+ α(λ2 − λ1)F

A
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This linearity in the control makes it very easy to maximize the Hamilton-

ian when the coefficient before the control is nonzero. As we have seen in

chapter 2 and 3, problems arise when this coefficient is zero. By taking time

derivatives of this coefficient and setting them equal to zero, we obtain a

singular solution for the system. The most rapid approach path (MRAP)

will consist of reaching this solution as fast as possible and staying in it for

as long as possible.1 After identifying this singular solution, Rowthorn et

al. check its optimality. In order to prove that the most rapid approach

path is the less optimal of all possible paths, they replace −e−δt(IA + IB)

with e−δt(IA + IB) in the Hamiltonian function and show that this function

is concave in IA, IB, and FA. The concavity of the Hamiltonian estab-

lishes that the Mangasarian’s sufficiency conditions for maximality hold for

the most rapid approach path, which means that this path maximizes this

positive-cost Hamiltonian. Hence, MRAP is the maximizing, rather than

the minimizing strategy for this problem. We return to this argument in

the third section, where we analyze the optimality character of the singular

path.

Rowthorn et al. numerically establish that the optimal path is to treat

as many infected individuals as we can in the subpopulation with the lowest

1In the finite horizon problem, the optimal solution would be to apply this singular

solution for as long as it is possible, before deviating from it in order to meet the endpoint

requirement. In the infinite horizon, though, the optimal path is to stay in the singular

solution forever.
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level of infection first. Only after having treated all the infected individuals

in this subpopulation, the planner can use the left-over budget to treat

infected individuals from the other subpopulation. So, they claim that the

optimal solution for the continuous-time problem is:

if I i < Ij then Fi = min(Ii,
M

c
) and Fj =

M

c
− Fi

if I i = Ij then Fi = min(Ii,
M

c
) and Fj =

M

c
− Fi or vice versa

It is important to notice that the optimal solution that Rowthorn et al.

identify in continuous time is identical to the one identified by Anderson et

al. in discrete time, provided that the subpopulations are identical and the

budgets are tight.

2. Similarities and differences

This section will provide a comparison of the problem considered by

Sanders and Sethi (referred to as problem 1 hereafter in this section) and

the problem considered by Rowthorn et al. and Anderson et al. (referred to

as problem 2 hereafter in this section). The problems can be compared with

respect to: (i) their mathematical formulation, (ii) the economic context

captured by the model, (iii) methodology being employed, and (iv) results.

The first and the second aspect –the mathematical formulation and the

underlying economic context – are closely related. Problem 1 considers the

case of a single population, while problem 2 considers the case of multiple

populations, interconnected or not with each other. So, problem 2 has added
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a spatial context to the spread of infectious diseases. Also, this additional

feature complicates the problem, because the number of state and control

variables increases by increasing the number of the subpopulations. Sec-

ondly, both problem 1 and problem 2 are concerned with the optimization

of funds to control diseases of similar nature. Both problems have similar

SIS law of motions, although problem 2 accounts for spontaneuous recover-

ies from the infection as well. We anticipate that this difference does not

change much in the dynamics of the disease.

What is of major importance is the way in which the control enters the

law of motion in these two problems. In problem 1, the control is described

as a treatment effort: the planner is able to screen everyone, identify the

infected individuals in the population, and then treat them with a certain

effort level (which takes values between 0 and a maximal treatment level b).

In problem 2, on the other hand, the planner chooses the number of infected

individuals that will be treated, and each of them gets well with probability

α, which is the success rate of the treatment. The control variable in this

second problem is F i, which is also bounded between 0 and min{I i, M
c }.

Therefore, the control variable in the first problem appears as: x′ = f(x) +

g(x)u, while in the second problem it appears in the form: x′ = f(x) + ku

(where x is the state variable, u is the control variable, k is a constant, and

the problem is autonomous).

Thirdly, the momentary costs in both problems are of linear form. In

problem 1, the costs are linear in both the state variable and the control,
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while in the second problem, the costs are control in the state variables only.

The control does not appear in the cost. Also, both problems consider the

discounted costs over a finite/infinite horizon.

Fourthly, the existence of a budget constraint in the problem is of major

importance and economic significance. In problem 1, the planner needs to

minimize the costs of the control of an infectious disease without worrying

about any per-period budget or endowment constraints. This lack of a

budget constraint is compensated by the existence of an upper bound on the

treatment effort that can be implemented. In problem 2, the existence of a

budget (or one-time endowment) constraint imposes an upper bound on the

cumulative number of people that can be treated in both subpopulations.

Particularly, the assumption of a tight budget imposes an upper bound

on the number of the infected people that can be treated in each of the

subpopulations. Also, it might be useful to note that when the upper bound

on F i is simply I i, this upper bound is changing over time, unlike in the

world of the problem of Sethi and Sanders, where b is fixed over the entire

horizon.

There are major similarities between the approaches taken in solving the

two problems in discrete and continuous time. Sanders uses dynamic pro-

gramming in order to solve the discrete-time version of problem 1. As it was

thoroughly explained in the previous chapter, he exploits the concavity of

the value function with respect to the infection level and the treatment effort

in order to establish that the optimal policy is always a strictly bang-bang
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policy. The argument of Anderson et al. is very similar in nature: Anderson

et al. use precisely this strict concavity to establish that only one sub-

population should be treated in every period. Secondly, we notice that the

continuous-time versions of both problems require a discussion of the form of

the Hamiltonian function. Both Sethi and Rowthorn et al. make use of the

Pontryagin’s maximum priniciple. The scalar nature of the state variable

in Sethi’s problem enables the use of Green’s theorem in order to identify

the singular solution and confirm its optimality. Such an opportunity does

not arise in Rowthorn et al.’s problem, which has two state variables. The

switching function method can be employed in both cases: Sethi employs

this method in order to find the form of the concatenations of the optimal

solution, while Rowthorn et al. make use of the switching function, but do

not refer to it explicitly. Relatedly, the Generalized Legendre-Clebsch nec-

essary condition can be checked for both problems as well. The next section

will apply this condition to the continuous-time problem 2.

In terms of the results drawn for both problems in the four articles un-

der consideration, the major difference between the solutions obtained for

problem 1 and problem 2 is that the discrete-time and the continuous-time

optimal solutions agree in the case of the second problem but not in the

case of the first problem. Rowthorne et al. and Anderson et al. agree

that the optimal solution of problem 2 is to spend all the available budget

on treating one subpopulation only. Meanwhile, Sethi and Sanders don’t

agree on whether a strictly bang-bang solution is optimal. Nevertheless, in
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both these problems, we see the discussion of the same type of solutions

–namely, bang-bang and singular solutions. An interesting question is the

following: can we draw an analogy between what a bang-bang policy and a

MRAP is in Sanders’ and Sethi’s world and what it is in Anderson et al.’s

and Rowthorne et al.’s world? In problem 1, a bang-bang policy is that

you either treat as intensively as you can or you don’t treat anyone in the

single population under consideration. Similarly, in problem 2, a bang-bang

policy consists in the maximal treatment of the infected individuals in one

subpopulation and the total lack of treatment for the other subpopulations

(under the assumption of tight budgets). In both problems, a singular con-

trol signifies an intermediate level of treatment: in the case of only one

subpopulation, an intermediate level of treatment is between 0 and b, while

in the case of multiple subpopulations, an intermediate level of treatment

is between 0 and min{I i, M
c } for each of the subpopulations (so funds are

divided between all subpopulations). This similarity in the solutions that

appear in these two problems reinforces the fundamental similarity between

these two optimization problems and the persistence of essentially the same

issues for this class of problems.

3. Switching-function analysis of the continuous-time case

Continuing the switching function analysis started in the previous chap-

ter, this section will discuss the optimality of the singular solution identified
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by Rowthorn et al. The aim of this section is threefold: 1) to reinter-

pret Rowthorn et al.’s procedure of identifying a singular solution in terms

of the sign of the switching function, 2) to check whether the Generalized

Legendre-Clebsch necessary condition for maximality holds, and 3) to reeval-

uate Rowthorn et al.’s argument that identifies MRAP as the least optimal

solution.

The Hamiltonian function for the problem of Rowthorn et al. is the

following:

H = −e−δt(IA + IB) + λ1[(N − IA)(βIA + χIB) − µIA − αFA]+

+λ2[(N − IB)(βIB + χIA) − µIB − αFB ].

where λ1 and λ2 are the costate variables. Knowing that all funds that will

not be spent in one subpopulation will be spent in the other, i.e. FB =

M
c − FA, we rewrite the Hamiltonian function in the following form:

H = −e−δt(IA+IB)+λ1[(N−IA)(βIA+χIB)−µIA]+λ2[(N−IB)(βIB+χIA)−µIB]

−λ2α
M

c
+ α(λ2 − λ1)F

A

So, now the Hamiltonian contains only one control variable, FA. As the

Hamiltonian is linear in the control, we can identify the switching function:

W = α(λ2 − λ1).

When W > 0, so when λ2−λ1 > 0, we need to make FA as large as possible

in order to maximize the Hamiltonian. The opposite holds for the case when
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W < 0 (⇔ λ2−λ1 < 0). The problematic case is when W = 0 ⇔ λ2−λ1 = 0.

In this case,

(4.3) λ2 = λ1.

Then, we take the first time derivative of W and set it equal to zero:

W ′ = 0 ⇔ λ′
2 − λ′

1 = 0

From the canonical equations of the maximum principle, we know that:

λ′
1 = −

dH

dIA
=

= −e−δt + λ2[Nχ − χIB ] + λ1[Nβ − 2βIA − χIB − µ]

λ′
2 = −

dH

dIB
=

= −e−δt + λ1[Nχ − χIA] + λ2[Nβ − 2βIB − χIA − µ]

Therefore, combining equation (4.3) with these two last equations, we get

the following:

(4.4) λ′
1 = λ′

2 ⇔ IA = IB

W ′ = IA − IB

The first time derivative has given us the singular state path, but not an ex-

pression for the singular control. We need to take the second time derivative

in order to determine the singular control:

W ′′ = (IA)′ − (IB)′ = 0



3. SWITCHING-FUNCTION ANALYSIS OF THE CONTINUOUS-TIME CASE 99

After several algebraic transformations, and after taking into account equa-

tion (4.3) and (4.4), we get that:

W ′′ = −αFA + αFB = α(
M

c
− FA − FA) = α

M

c
− 2αFA

The singular control is:

(4.5) FA =
M

2c
= FB

In order to check whether the Generalized Legendre-Clebsch condition

holds, we notice that the singular control that we have found is of first order.

So,

(−1)1
d

dFA
W ′′ = (−1)(−2α) = 2α ≥ 0

Therefore, the Legendre-Clebsch condition for maximality does not hold.

The singular control FA = M
2c is not optimal, as it does not satisfy this

necessary condition for optimality.

After having presented the switching function analysis and having veri-

fied that the singular solution is not optimal, we return to a brief discussion

of the method that Rowthorn et al. use in order to argue for the non-

optimality of the MRAP. In Appendix A.3. of the article (Rowthorn et al

2009, 8), the authors employ the Mangasarian’s sufficiency conditions for

maximality in order to show that MRAP maximizes, rather than minimizes

the total costs. They consider the Hamiltonian of the positive momentary

costs:

H = e−δt(IA+IB)+λ1[(N−IA)(βIA+χIB)−µIA]+λ2[(N−IB)(βIB+χIA)−µIB]
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−λ2α
M

c
+ α(λ2 − λ1)F

A

and show that if this Hamiltonian function is strictly concave in IA, IB, and

FA in a neighborhood around the singular control, then the singular control

maximizes the positive costs. In this exercise, I will extend the discussion a

bit further in order to show why this argument does not work for the original

Hamiltonian function, i.e. why cannot we establish the concavity of the

original negative-momentary-cost-based Hamiltonian in this same fashion.

The Mangasarian’s sufficient condition of maximality requires the following

Hessian matrix to be negative semi-definite:

M =

















d2H
(dIA)2

d2H
dIBdIA

d2H
dFAdIA

d2H
dIAdIB

d2H
(dIB)2

d2H
dFAdIB

d2H
dIAdFA

d2H
dIBdFA

d2H
(dFA)2

















After finding these derivatives:

M =

















−2βλ1 −χ(λ1 + λ2) 0

−χ(λ1 + λ2) −2βλ2 0

0 0 0

















M will be negative semi-definite if: i) λ1 ≥ 0, and ii) the determinant of the

matrix is nonnegative, i.e. 4β2λ1λ2 − χ2(λ1 + λ2)
2 ≥ 0.

Up to this point of the analysis it is normal to wonder why is this analysis

any different for the original (−e−δt(IA + IB))-based Hamiltonian function,

given that all the terms in the matrix are second derivatives of this function,

which, due to the linearity of the cost function, are not affected at all by the
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sign of the cost function. Also, for λ1 = λ2 along the singular control path,

we notice that condition (ii) holds, provided that β > χ.2 The condition

that is dependent on the sign of the costs is condition (i). The costate

variable measures the marginal value of an additional infected person in the

population; condition (ii) requires an additional infected individual to bring

positive marginal benefits to the population. This clearly holds only if we

are aiming to maximize the number of infected people, not to minimize it

(which is the case when we aim to maximize the Hamiltonian containing

the negative momentary costs). When trying to minimize costs, the costate

variables are in fact nonpositive, following the same reasoning. So, this first

condition is the reason why we cannot establish the concavity of the original

Hamiltonian, which would give us the optimality of the singular solution.

The two exercises of this section have analyzed further why the singular

solution is not optimal for the continuous-time problem of Rowthorn et al.

4. Conclusions

This second essay has briefly reviewed two recent articles on the allo-

cation of limited funds to control the spread of an SIS infectious disease

throughout multiple subpopulations. The essay has argued that the prob-

lem considered in this pair of articles is very similar to the optimization

2It is sensible to assume that β > χ, which, in other words, states that the likelihood

that an infected person infects a susceptible person from his group is higher than the

likelihood that he infects a susceptible person from the other group, for instance, due to

the fact that the groups are geographically distant from each other.
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problem treated by Sanders and Sethi. Furthermore, this pair of articles

is characterized by a similar-looking tension between the discrete-time and

the continuous-time framework; what is different in this tension, though,

is that the tension is not due to the disagreement of the discrete-time and

continuous-time optimal solutions, but to the methodology used to reach

these solutions. Obtaining analytical solutions in the discrete-time frame-

work becomes possible only due to the additional “tight budget” assumption

that Anderson et al. include in their analysis. On the other hand, an analyti-

cal solution for the continuous-time problem is hard to find; the continuous-

time optimal solution is identified by numerical means only. Lastly, this

essay has extended the discussion of the non-optimality of the singular solu-

tion by employing the Generalized Legendre-Clebsch condition: this exten-

sion has provided us with an optimization problem that looks very similar

to the problem of Sethi and Sanders, but in which this necessary condition

fails.

To conclude, it is important to emphasize the fact that questions con-

cerning the superiority of bang-bang solutions over singular solutions and

vice versa continue to persist for this class of SIS optimization problems.

There is, apparently, something special in the structure of this problem that

creates tensions between these two types of optimal solutions. Had we had

more time to work on this recent pair of articles, we would have liked to

extend our discussion to the applicability of tools from continuous dynamic
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programming. More specifically, we would have researched on possible mod-

ifications of the standard continuous dynamic programming methods that

are analogous to the modified dynamic programming argument made by An-

derson et al. This would have most likely required for the inclusion of the

“tight” budget assumption in continuous time, which is not assumed in the

work of Rowthorn et al. Another potentially fruitful path would have been

to analyze the sensitivity of the Maximum Principle-based method explored

in Rowthorn et al. to the introduction of the “tight” budget assumption.



CHAPTER 5

Concluding remarks

“Funeral after funeral, theory advances.”

Paul A. Samuelson

This final chapter will briefly summarize some of the results drawn in the

previous two essays, discuss potential implications for public health policy-

makers, and review the old and new puzzles that have persisted throughout

or arisen along the analysis in this thesis.

1. Major results revisited

Our interest in the discrepancies between discrete-time and continuous-

time optimal solutions and optimization techniques originally arose out of

the recently published article by Anderson et al. This article seemed to

offer a way to bypass the difficulty of obtaining analytical continuous-time

solutions by a simple modification of the standard dynamic programming

technique in discrete time. The article naturally incited questions such as:

Can we identify any virtues characteristic of the discrete-time problem –

not possessed by the continuous-time problem – that enabled scholars to

obtain analytical solutions in discrete time but not in continuous time? Is

there any way to extend the argument of Anderson et al. in continuous

104
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time? If not, what is so problematic about continuous-time formulations?

As we investigated the literature on the topic, we noticed that a similar

kind of discrepancy between discrete and continuous time – albeit related to

the form of the optimal solution rather than to methodological difficulties

of obtaining analytical solutions at all – had marked this literature since

its beginnings, with the articles by Sanders and Sethi. This observation

enriched our research in ways that were unimaginable to us at the start of

this thesis project.

Issues with formulations of SIS control models in discrete and contin-

uous time arise out of the particular form of these optimization problems:

typically, the cost function is linear in the infection level and the treatment

control variable, and the law of motion of an SIS disease is nonlinear. In

the first essay, we evaluated the arguments offered by Sanders and Sethi,

and we concluded that as we cannot find any faults with their arguments

– in fact, we were able to check the optimality of the singular solution in

continuous time by an alternative approach as well, – we are bound to fail

to reject the hypothesis that the discrete-time and continuous-time optimal

solutions should be similar-looking. The time scale chosen in a model might

fundamentally alter the shape of the optimal solutions in discrete and con-

tinuous time. Secondly, in this essay, we have provided a numerical example

that examines the dominance of the singular control proposed by Sethi by
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a pulsing strategy. Given that we have analytically established the optimal-

ity of the singular control, such a numerical example strikes us as highly

anomalous.

The second essay returned the attention to our original interest on the

articles by Rowthorn et al. and Anderson et al. Although using a slightly

different specification in their model, these articles confirm the tension be-

tween singular and bang-bang controls and between dynamic programming

and Pontryagin’s maximum principle previously observed in the work of

Sanders and Sethi. By a comparative analysis, we noticed the similarities

between the two pairs of articles in terms of the model specifications, the

techniques being used, and the form of the optimal solutions. In the arti-

cles of Rowthorn et al. and Anderson et al., though, the singular control is

not optimal in continuous time. This shows the high sensitivity of the op-

timality of the singular control on the specification of the model: although

Sethi’s and Rowthorn et al.’s models are very similar, the singular control is

optimal in one but not in the other. We confirmed the nonoptimality of the

singular control in this case by employing the Generalized Legendre-Clebsch

necessary condition as well.

2. The conundrum of the “time scale effect” and public health

policies

The central problem of this thesis revolves around a normative mod-

elling issue: namely, how should we treat the flow of time in modelling the
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control of SIS infectious diseases? There are three parts to this dilemma:

1) an infection spreads in continuous time, 2) continuity of time implies

continuity of the state variable (the number of the infected people), while

in fact people get sick in a discrete fashion, and 3) decisions are made in

discrete time, usually in monthly or annual intervals. The question, then, of

how frequently we can make decisions depends highly on the type of the SIS

disease being fought, the type of treatment being applied, the technology in

screening and identifying infected individuals etc. The horizon chosen for

the model – either finite or infinite – depends on whether we are modelling

a seasonal infection or a permanent one. In a finite horizon problem, the

factors that determine the endpoint constraint, the target infection level,

are crucial. Also, in the real world, the limitations of our treatment capa-

bilities are always changing due to rapid medical advances. Budgets vary,

subpopulations merge, people die. All these issues need to be kept in mind

when attempting to draw implications of these models to the public health

policies intended to fight infectious diseases.

Admitting the real-world limitations, these models nevertheless offer a

general framework to guide our thinking of how to optimally control in-

fectious diseases under limited funds and limited medical capabilities. The

strictly bang-bang solutions of Sanders suggest that treating below your

maximal capabilities – at an intermediate level of treatment – is never op-

timal: you either treat everyone that you can, or you don’t treat anyone.

The singular solution of Sethi, on the other hand, aims to keep a stable
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number of infected people in the population. When applied to the real

world, though, “staying in the turnpike infection level” is not an easy task

to do: random disturbances will constantly drive the number of infected

people away from the turnpike, and the public health officials might need

to constantly apply bang-bang policies to get back to the turnpike. The

articles by Rowthorn et al. and Anderson et al., while being more unani-

mous on their recommendations for public health policies, suggest that the

region with the lowest level of infection should deserve all the funds first.

This is very counterintuitive because of two widely-spread misperceptions:

a) funds should be divided among populations, b) funds should go to the

areas where the infection levels are more dramatic first. So, these policy

prescriptions, while still debated and grounded in a quite abstract frame-

work, provide food for thought for policy-makers when dealing with optimal

ways to control SIS-driven diseases.

3. Puzzles: Old and new

We conclude this final chapter with a list of puzzles, old and new, that

have been present or have emerged while analyzing the discrepancies between

discrete and continuous time optimal solutions. While we have answered

some of our initial questions (under the time constraints and the mathe-

matical limitations present), many puzzles remain unsolved. The following

questions attempt to capture and formulate some of these puzzles:
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• Can we provide a mathematically rigorous argument that shows

why the singular solution is not optimal in discrete time in Sanders’

model, while it is in the continuous-time model in Sethi’s article?

• In the framework of a single population, would the continuous-time

solution analogous to Sanders’ solution look more like pulsing or

chattering? In other words, as the time discretization approaches

zero, does the number of switchings go off to infinity, or does it

remain finite?

• What could explain the anomalous numerical result that we have

presented in the third chapter?

• The behavior of the upper bound on the treatment effort in Sanders’

article as the time discretization becomes finer remains not fully

explored.

• Are there any other alternative ways, different from the ones we

have already pursued, to extend the argument made by Anderson

and Salant in continuous time?

• Are there any hidden factors that are making the solution of the

singular control optimal in Sethi’s problem but not in Rowthorn et

al.’s problem?

• How applicable is the discrete maximum principle to Sethi’s prob-

lem? How useful (if at all) is continuous dynamic programming in

extending the modified dynamic programming argument of Ander-

son et al. in continuous time?



Appendices

APPENDIX A

Starting from an infection level xt+1, we can find γt+1 that would restore

the infection level at xs in the next period. The difference equation for the

next time period is:

xs = xt+1 + w
(

βxt+1(N − xt+1) − γt+1xt+1

)

Substituting for xt+1, we can solve for γt+1:

xs = xs(1− wh) + w

(

βxs(1− wh)
(

N − xs(1− wh)
)

− γt+1x
s(1 − wh)

)

⇓

(5.1) γt+1 =
h

hw − 1
+ β

(

N − xs(1− wh)
)

Now that we have expressions for xs, γs, xt+1, and γt+1, we can calculate

the costs for these two periods:

δt

[

wCxs + wK(γs + h)

]

+ δt+1

[

wCxt+1 + wKγt+1

]

= δt

[

wC
(1 − δ)K

wδ(C − Kβ)
+ wK

(

β(N − xs) + h
)

]

+

+δt+1

[

wC
(1− δ)K

wδ(C − Kβ)
(1− wh) + wK

(

h

hw − 1
+ β

(

N − xs(1 − wh)
)

)]

(5.2)
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Dividing through by δt and simplifying the expression, we get:

[

wC
(1 − δ)K

wδ(C − Kβ)
+ wK

(

β(N − xs) + h
)

]

+

δ

[

wC
(1 − δ)K

wδ(C − Kβ)
(1 − wh) + wK

(

h

hw − 1
+ β

(

N − xs(1− wh)
)

)]

=

[

C
(1− δ)K

δ(C − Kβ)
+ wK

(

β(N − xs) + h
)

]

+

+[C
(1− δ)K

(C − Kβ)
(1− wh) + wK

(

1

hw − 1
+ β

(

N − xs(1 − wh)
)

)]

(5.3)

For a fixed value of w, we could rearrange the terms by isolating all the

terms that include h in them and labeling all the other terms as constants.

Therefore, the two-period cost function is:

constants + wKh − whC
(1 − δ)K

(C − Kβ)
+

wK

hw − 1
+ w2Kβxsh

= constants + wK
(

h − C
(1− δ)h

C − Kβ
+

h

hw − 1
+ βwxsh

)

= constants + wK

[

h
(

1 − C
1 − δ

C − Kβ
+ βwxs

)

+
h

hw − 1

]

(5.4)

Computing the limits:

lim
w→0

xs = lim
w→0

(
(1− δ)K

wδ(C − Kβ)
) =

Kα

C − Kβ

lim
w→0

γs = lim
w→0

β(N − xs) = β(N −
Kα

C − Kβ
)

lim
w→0

xt+1 = lim
w→0

xs(1− wh) = lim
w→0

xs −
Kh

C − Kβ
lim
w→0

1 − δ

δ
=

=
Kα

C − Kβ
−

Kh

C − Kβ
lim
w→0

rw =
Kα

C − Kβ

lim
w→0

γt+1 = lim
w→0

(
h

hw − 1
+β
(

N−xs(1−wh)
)

= lim
w→0

h

hw − 1
+βN−β lim

w→0
(xs(1−wh))
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= −h + βN −
Kαβ

C − Kβ

APPENDIX B

The closed-form solutions for the differential equations mentioned above

are:

x1(t) =
βN − γs − h

β + C1βNe−t(βN−γs−h) − C1(γs + h)e−t(βN−γs−h)

for (3.11), and:

x2(t) =
βN − γ∗

β + C2βNe−t(βN−γt+1) − C2γ ∗ e−t(βN−γ∗)

for (3.12). The constants C1 and C2 depend on the initial conditions of the

differential equation, so they depend on xs and x(t2) respectively. In order

to make this point clear, we can start with t1, at which x(t1) = x0 = xs.

Then,

xs =
βN − γs − h

β + C1(βN − γs − h)
⇒ C1 =

βN − γs − h − xsβ

xs(βN − γs − h)

Our goal at this point is to find the policy γt+1 that we need to apply

to return back to the infection level xs at t3. The value of γt+1 depends

on x(t2), therefore we need to solve for x(t2) first, i.e. we need to find the

new infection level that has been caused by the perturbation in the policy

at time t1. As t2 − t1 = ∆t, then:

x(t2) =
βN − γs − h

β + C1βNe−∆t(βN−γs−h) − C1(γs + h)e−∆t(βN−γs−h)

where C1 is as determined above. Therefore, for the interval [t2, t3], the

initial level of infection is x0 = x(t2). In order to determine the value
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of the constant C2 that appears in the closed-form solution of the second

differential equation, we solve for C2 in the following equation:

x0 = x(t2)

⇓

βN − γt+1

β + C2βN − C2γt+1
=

βN − γs − h

β + C1βNe−∆t(βN−γs−h) − C1(γs + h)e−∆t(βN−γs−h)

Letting the right-hand side be denoted by x(t2), the value for C2 is:

C2 =
βN − γt+1 − βx(t2)

x(t2)(βN − γt+1

Now that we have an expression for C2, we can solve for γt+1. We know

that:

x(t3) = xs

⇓

βN − γt+1

β + C2βNe−∆t(βN−γt+1) − C2γt+1e−∆t(βN−γt+1)
= xs

⇓

βN − xsβ = γt+1 + xs
(

e−∆t(βN−γt+1)(C2βN − C2γt+1)
)

It is mathematically intractable to isolate γt+1 from this equation, as γt+1

appears in the exponential terms and in the linear terms of the equation.

Therefore, taking the limit of both sides as ∆t → 0 might be helpful in this

case.

lim
∆t→0

(β(N − xs)) = lim
∆t→0

(

γt+1 + xs
(

e−∆t(βN−γt+1)(C2βN − C2γt+1)
))
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⇓

β(N − xs) = γt+1 + xs(C2βN − C2γt+1)

⇓

γt+1 =
βN − xsβ − xsC2βN

1− C2xs

Nevertheless, this shortcut might cause trouble if we would like to calculate

the costs of treatment for time intervals that are not infinitesimally small.

We will refer to this point later.

At this point, we have determined the treatment level that need to be

applied at t2 in order to return to the stationary level of infection xs. The

cost function for the interval [t1, t3] can be written as a sum of costs of the

intervals [t1, t2] and [t2, t3] (which are not equal to each-other because their

respective functions of the infection level and the treatment levels are not

equal). Hence, the total costs for [t1, t3] are:

∫ 0

∆t

δt1+∆t
(

Cx1(t) + K(γs + h)
)

+

∫ 0

∆t

δt1+∆t+∆t
(

Cx2(t) + K(γt+1)
)

and we are interested to evaluate it when ∆t → 0.
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APPENDIX C

During the first time interval [0, t1], we will apply a treatment level of γ = 0, therefore the infection level x1(t) (the

infection level during the first time interval) is governed by the differential equation

x′
1 = 0.2x1(100− x1)

Solving this differential equation for an initial level of infection x1(0) = xs, we obtain the solution:

x1(t) =
700

7 + 393e−20t

We fix t1 = 0.00001. Therefore,

x1(0.00001) =
700

7 + 393e−20·0.1
= 1.7503439081859935877620046479877732293

94334679253640735713210615584041244294211790082845391477926928...
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This is the infection level by the end of the interval [0, t1]. At time t1, we switch to γ = b = 25. Hence, the differential

equation that governs the infection level x2(t) over the time interval [t1, t2] is:

x′
2 = 0.2x2(100− x2) − 25x2

with initial value x2(0) = x(t1). Its closed-form solution is:

x2(t) =
5.4698247130812299617562645249617913418572958726675 · 1049

−2.187929885232491984702505809984716536742918349067 · 1048 + 3.3437929885232491984702505809984716536742918349067cdot1049e5t

We will apply γ = 25 long enough for the infection level to return to the steady-state level xs = 1.75. Therefore, we can

solve for the length of the interval over which we need to apply the maximum γ in order to return to that level of infection;

we need to solve the equation:

x2(t) = 1.75

5.4698247130812299617562645249617913418572958726675 · 1049

−2.187929885232491984702505809984716536742918349067 · 1048 + 3.3437929885232491984702505809984716536742918349067cdot1049e5t
= 1.75



A
P

P
E

N
D

IC
E

S
1
1
7

So,

t = 0.00003672863891041700491638102381714690545340082767018136926147114674617091865951016909922797271827706943

This solution of the equation tells us that the length of the second time interval is

t2−t1 = 0.00003672863891041700491638102381714690545340082767018136926147114674617091865951016909922797271827706943

Hence, the second time interval is

[0.00001, 0.00001+0.00003672863891041700491638102381714690545340082767018136926147114674617091865951016909922797271827706943].

At this point, we can calculate the costs over the two time intervals.

∫ 0.00001

0
e−0.9t

(

2.5 ·
700

7 + 393e−20t

)

dt =

= 0.00004375410181384388197072800021540151294352765137275529253614462726151151859465350050974699040136192886

∫ 0.00003672863891041700491638102381714690545340082767018136926147114674617091865951016909922797271827706943

0
e−0.9(0.00001+t



A
P

P
E

N
D

IC
E

S
1
1
8

(

2.5 ·
5.4698247130812299617562645249617913418572958726675 · 1049

−2.187929885232491984702505809984716536742918349067 · 1048 + 3.3437929885232491984702505809984716536742918349067cdot1049e5t
+ 25

= 0.003374373346917587433108636093785797215159392184588165267236789582263773572670643437429150750800314154

Therefore, the sum of costs for both intervals is:

0.003418127448731431315079364094001198728102919835960920559772934209525285091265296937938897741201676083

We need to compare this total cost to the cost of applying γs = 19.65 over both intervals (the solution of the respective

differential equation x′ = 0.2x(100− x) − 19.65x is the steady-state solution xs(t) = 1.75):

∫ 0.00001+0.00003672863891041700491638102381714690545340082767018136926147114674617091865951016909922797271827706943

0
e−0.9t (2.5 · 1.75 + 19.65 · 3.5)dt =

= 0.003418128059750366269824880251418245283046984672194205770391915487887588284751351111869646981561843345

The difference between the cost of applying γs = 19.65 and the cost of alternating between γ = 0 and γ = 25 is:

6.11 · 10−10
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Appendix D

In this part, we briefly introduce two alternative approaches that we have

explored in order to make sense of the numerical result discussed in 3.2. The

first one attempts to formalize an intuitive idea about chattering between

γ = 0 and γ = b at an instant. Because of the fact that the instantaneous

costs of applying a certain policy γ are linear in γ, the comparison of costs

between the case of applying γs and the case of pulsing between γ = 0, b

can be reduced in a mere comparison of treatment policies (weighted appro-

priately based on the share of an instant during which they get applied).

Therefore, we need to compare γs with limt1→0
∆t

t1+∆t b, or alternatively, we

need to compare limt1→0(1 + t1
∆t) with b

γs . We have an expression for ∆t as

a function of t1:

(5.5) ∆t = −
log
(

βN−βxs−b
xsC1(βN−b)

)

βN − b

Therefore, in evaluating the limit, we can apply L’Hopital’s rule with respect

to t1. After several mathematical transformations, we obtain that

(5.6) lim
t1→0

(1 +
t1
∆t

) =
b

γs

This equality suggests that a chattering policy and an intermediate level

policy are equally costly in this framework.

The second analytical approach that we have taken deals with the ratio

of the costs of Sethi’s optimal policy and the chattering policy (in the rest

of this discussion, we will refer to the pulsing strategy between γ = 0 and
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γ = b as Sanders1 and Sanders2, as this pulsing strategy is motivated

by the optimal solution that Sanders provides). As mentioned above, the

overall costs for the pulsing strategy are:

(5.7)

∫ t1

0

e−αt(C
βN

β + C1βNe−βNt
)+

∫ −
log

„

βN−βxs
−b

xsC1(βN−b)

«

βN−b

0

e−α(t1+t)(C
βN − b

β + C2e−(βN−b)t(βN − b)
+Kb)

So, we are interested in the following limit:

(5.8) lim
t1→0

(

Sethi

Sanders1 + Sanders2

)

Hence,

(5.9)

lim
t1→0













∫ t1−
log

„

βN−βxs
−b

xsC2(βN−b)

«

βN−b

0 e−αt(Cxs + Kγs)

∫ t1
0 e−αt(C βN

β+C1βNe−βNt ) +
∫ −

log

„

βN−βxs
−b

xsC2(βN−b)

«

βN−b

0 e−α(t1+t)(C βN−b
β+C2e−(βN−b)t(βN−b)

+ Kb)













Because all these integrals approach 0 as t1 → 0, we apply L’Hospital’s Rule

in taking the limit, so:

(5.10)

lim
t1→0

(

Sethi

Sanders1 + Sanders2

)

= lim
t1→0

(

δ
δt1

Sethi
δ

δt1
Sanders1 + δ

δt1
Sanders2

)

After several mathematical steps (see below for greater details), we obtain

the following expression for the limit of the ratio of costs:

(5.11)

lim
t1→0

(

δ
δt1

Sethi
δ

δt1
Sanders1 + δ

δt1
Sanders2

)

=
b(Cxs + Kγs)

(b − γs)Cxs − (CβNxs−KbβN+Kb2)b
βN−b
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We are trying to figure out whether we can specify combinations of

values of the parameters for which this expression is greater than 1, i.e. a

combination of parameter values for which Sethi’s strategy can be dominated

by chattering. For instance, notice that if we can find a combination of values

such that 0 < Cγsxs +
(CβNxs−KbβN+Kb2)b

βN−b < Cxsb (keeping in mind that

xs = Kα
C−Kβ and γs = β(N − Kα

C−Kβ ), then it is certain that this limit is

greater than 1. The numerical simulations that we were able to run have

not yielded any useful results, but we have consistently obtained values that

are less than 1 for the limit expression.

Finally, notice that these additional analytical approaches are somehow

contradicting each other. The first approach establishes that a chattering

policy is as costly as a turnpike policy, while the second one leaves open the

possibility that these policies are not equally costly (numerical simulations

have shown so far that the turnpike policy dominates the chattering policy).
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