Date of Graduation


Level of Access

Open Access

Degree Name

Bachelor of Science

Department or Program

Biological Chemistry

Number of Pages


First Advisor

Austin, Rachel


Structural and mechanistic insight into the non-heme diiron proteins will likely lead to advances in bioremediation, biomimetic catalysis, and directed protein engineering. Iron metalloproteins are capable of catalyzing a wide variety of chemical reactions. The non-heme diiron proteins represent a distinct class of metalloproteins able to activate molecular oxygen and perform key reactions in biological systems including alkane C-H bond oxidation, alkene epoxidation, and lipid desaturation. This thesis focuses on the structural and mechanistic characterization of the integral membrane non-heme diiron protein, alkane monooxygenase (AlkB), from the oil-degrading bacterium, Alcanivorax borkumensis. The purification of active AlkB was optimized and crystallization methodology was developed in an attempt at complete structural resolution. In combination with work on the other diiron proteins, it may be possible to develop a coherent model with which to explore the unique chemistry of this metal-binding motif.

Components of Thesis

1 pdf file


Open Access

Available to all.