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Abstract

The unroofing rate of Mt. Washington, NH is being calculated using apatite fission-track 

ages (AFT) of thirteen samples along the Cog Railroad on Mt. Washington’s western slope using 

the relief method. Samples were collected approximately every 500 vertical feet from the summit 

(6280’) to the base (1770’) of Mt. Washington. The AFT ages determined thus far are: 148.0 ± 

15 Ma at 1914 m, 147.2 ± 15 Ma at 1886.7 m, 114.5 +/- 18 Ma at 1743.5 m, 114.4 +/- 12 Ma at 

1624.6 m, 119.3 +/- 13 Ma at 1482.2 m, 126.6 +/- 14 Ma at 1392.0 m, 114.4 +/- 16 Ma at 1325.9 

m, 118.4 +/- 12 Ma at 1190.6 m, 110.1 +/-13 Ma at 1089.7 m, 102.9 ± 11 at 930.6 m, 96.4 +/- 9 

Ma at 842.8 m, 86.4 +/- 8 Ma at 647.1 m and 89.2 ± 10 at 539.5 m. These ages are analogous to 

ages determined along Mt. Washington’s Auto Road at similar elevations. These values yield an 

exhumation rate of 0.022 mm/yr between approximately 150 Ma and 80 Ma, which is comparable 

to the exhumation rate of 0.027 mm/yr calculated for the eastern slope of Mt. Washington along 

the Auto Road (Roden-Tice et. al., 2011) during this time. Trends in exhumation correlate with 

with late Cretaceous regional magmatic events associated with local asthenospheric upwelling 

that reactivated zones of crustal weakness.
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1 .2 Apatite Fission Track Dating

Apatite Fission-Track (AFT) dating is used to determine the low-temperature history of a 

sample. Apatite is a commonly occurring mineral that has significant amounts of Uranium. When 

238U spontaneously decays in apatite minerals, it creates a trail of damage, or fission-track, in the 

crystal lattice (Figure 1.1) that anneal at or above apatite’s closure temperature, approximately 

100°C (Roden-Tice and Wintsch, 2002). If the apatite is reintroduced to these high temperatures, 

the AFT clock essentially resets itself and, therefore, starts above the 100 °C isotherm. Because 

the spontaneous decay half-life for 238U is a known constant, the total number of fission tracks 

relative to initial abundance is proportional to the cooling age, or time at which the sample passed 

through the 100°C isotherm. 

Between the temperatures of 60°C and 100°C, the partial annealing zone (PAZ) (Roden-

Tice and Wintsch, 2002), the tracks will shorten in length based on the duration of time spent 

at a certain temperature within this range (Figure 1.2). A frequency distribution of track lengths 

informs the low temperature-time path of the sample through the PAZ. This time-temperature 

path is constrained by the AFT age, thus a comprehensive reconstruction of the low-temperature 

history can be created. 

Figure 1.1: Apatite Fission Track development over time. Over times, tracks develop 
as 238U decays over time. When tracks get exposed to temperatures above 100 °C, 
tracks anneal; between temperatures 60 °C and 100 °C tracks partially anneal.   
(d’Alessio et. al, 2003)

1 .1 Purpose

The purpose of this study is to obtain cooling ages from samples along the western 

edge of Mt. Washington, New Hampshire using apatite fission-track (AFT) dating. The results 

from the age dating can be used to constrain the unroofing history of Mt. Washington through 

the Mesozoic and Cenozoic.  This study completes an AFT project for Mt. Washington and 

contributes to the understanding of Mesozoic and Cenozoic low-temperature cooling in the 

Northern Appalachians. It also illuminates the North Atlantic margin’s cooling history and path 

to the current topographic setting. 

This study is based on data from 13 samples along the Cog Railroad on the western slope 

of Mt. Washington; seven are from the Littleton Formation, five from the Rangeley Formation 

and two from the Bretton Woods Granite. The summit sample is at 1914 m elevation and the base 

sample is at 540 m in elevation, thus the study covers a 1374 m change in elevation. 

Given this elevation change, the relief method is employed to determine the exhumation 

rate. Mt. Washington is among the few sites in the Northern Appalachian range that provide 

enough topographic variation that allow for the comparison of age v. elevation that is used to 

interpret exhumation rates. 
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Central New Hampshire Anticlinorium (CNHA) and the Lebanon Antiformal Syncliorium (LAS) 

(Eusden, et.al., 1996). 

The CMT and neighboring terranes are naturally linked to a series of orogenies eventually 

forming Pangea. In the middle Silurian, the Iapetus Ocean began to close after a series of 

mountain-building events during the Taconic Orogeny (Figure 1.4). Land masses included in the 

Taconic Orogeny were Gander, Avalon and Laurentia. The closing of the Iapetus Ocean accounts 

for the sedimentation of marine turbidites that now partially make up the CMT. In the early 

Silurian, the Salinic orogeny began as back-arc basins from the Ordovician subducted beneath 

Laurentia. 

In the early Devonian, the now Laurentia/Gander landmass created in the first stages of 

the Salinic Orogeny collided with Avalon (Figure 1.4). This was the beginning of the Acadian 

Orogeny and the final closing of the Iapetus Ocean basin. During this time, ocean crust was 

subducting beneath the Laurentia/Gander landmass resulting in a long period of Presidential 

Range deformation through 355 Ma (Hibbard et. al, 2007, Van Staal et. al, 2009).

The central Appalachians were deformed further in the late Mississippian when 

Gondwanaland collided with Laurentia, closing the pre-existing Rheic Ocean. This end of this 

orogeny, the Alleghenian Orogeny, was the final stage in the creation of the supercontinent 

Pangea, which lasted for approximately 75 my. Pangea eventually broke up during a series of 

rifting events starting 210 Ma (Figure 1.5). During the period of intraplate rifting, deformation 

and normal faulting occurred within plates (Faure et al., 2006), including reactivation of 

previously existing thrust faults originated during the initial mountain building events (McHone 

and Butler, 1984). 

Some of these reactivated faults are particularly relevant to the Mt. Washington setting. 

The Presidential Range is in a region bounded between the Norumbega Fault to the southeast 

and the Amonoosuc Fault to the west (Figure 1.3). The Norumbega Fault extends from northeast 

southwest coastal Maine. It is a system of orogen-parallel faults and shear zones 400 km in length 

and up to 40 km in width activated in the middle Devonian during the Acadian Orogeny. and 

Apatite is a commonly occurring mineral that can be produced under various conditions. 

It is frequently found in the metamorphic formations and igneous intrusions throughout New 

England. The general equation for apatite is Ca5(PO4)3(F,Cl,OH); the variations in F, Cl and OH 

concentrations have a significant impact on the minerals’ exact closure temperature. Fission 

tracks in Cl-rich apatites (chloroapatite) anneal at higher temperatures than F-rich apatites 

(fluoroapatite) (Warnock, et. al, 1996). 

1 .3 Geologic Setting

1.3.a Regional Geologic Setting

The Presidential Range sits in the Central Maine Terrane (CMT) which stretches from 

Maine to Connecticut and is bounded to the northwest by the Bronson Hill Anticlinorium (BHA) 

and to the southeast by the Campbell Hill-Nonesuch River Fault (Figure 1.3). BHA is composed 

of two Ordovician volcanic sequences with Silurian and Devonian marine sediments overlying 

the volcanics (Eusden et al., 1996, Bennett et al., 2006). 

The southern bound is the Massabesic Gneiss Complex; the eastern bound is comprised 

of Ordovician belts of metavolcanic and metasedimentary units that were deposited on the 

Laurentia-Gondwarna boundary (West et. al, 2007).  From west to east the subregions of the 

CMT are the Bronson Hill Anticlinorium, Kearsage Central Maine Synclonorium (KCMS), 

Figure 1.2: Comparison of full tracks and partially annealed 
tracks after time in the PAZ (Geotrack, 1987)
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Figure 1 .4: Sequential schematic of Early Ordovician through Early Devonian orogenies, 
sedimentation and volcanism oriented west-to east (Eusden, 2010)

Figure 1.3: Generalized map of New Hampshire terranes, including Presidential Range location 
relative to regional setting (Wintsch et. al, 2003)

Presidential Range
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as schists (from the mud deposits) and quartzites (from the sand deposits). The metasedimentary 

formations have undergone significant periods of deformation, resulting in a series of folds and 

faults throughout the range.

The youngest and lowest topographic unit in this study area is the Paleozoic Bretton 

Woods Granite, approximately 360 million years old. The age corresponds to two other low-

elevation granites in the area: The Peabody River and Bickford Granites. They are approximately 

40 million years younger than the peak of deformation and metamorphism associated with the 

onset of the Acadian orogeny. 

These igneous intrusions originated from the release of the tectonic stress on the 

Presidential Range, which caused the range to collapse. As this occurred, the base of the crust 

rose and was heated by the mantle. The base of the crust then began to melt and new magma 

rose into the crust, creating these granitic intrusions (Eusden, 2010). Because the Bretton Woods 

granite and corresponding granites were formed at the end of the orogeny they were not subject 

to the extreme metamorphism and deformation of the Littleton and Rangeley Formations. 

1 .4 Regional Thermochronology and Paleozoic to Mesozoic Exhumation

Periods of long erosion and exhumation ensued from the Pangea rifting. While some 

of the unroofing can be attributed to Mesozoic rifting, other forcings were acting upon the 

Appalachinan Range causing it to decrease in elevation and shape the modern topography. 

Calculated exhumation rates detail the unroofing history and can potentially explain the driving 

erosional forces. 

Based on 40Ar/ 39Ar mineral ages by the Auto Road using the relief method, Eusden and 

Lux (1994) calculated an exhumation rate of 0.04 mm/yr in the Middle Pennsylvanian through 

Early Permian. This slow initial exhumation was associated with the Acadian orogeny and 

stopped approximately 305 Ma. Eusden and Lux (1994) concluded that this initial exhumation 

did not create the present topography of the Mt. Washington massif, and thus a renewed period of 

exhumation occurred sometime after 274 Ma. 

oriented perpendicular to orogenic stress in a Ne-SW direction (Ludman and West, 1999). The 

Amonoosuc Fault lies on the boundary of New Hampshire and Vermont and extends from 

northern New Hampshire into southern Connecticut. Its origins and activity are similar to that of 

the Norumbega Fault.

While these faults were principally initiated by orogenic means, forcings from the 

asthenosphere outside normal collisional tectonism dictated fault behavior.  Reactivation of the 

Norumbega and Amonoosuc Faults, and postorogenic extension, have affiliated the reactivation 

of these faults, along with other zones of crustal weakness, with some regional igneous provinces 

formed from localized asthenospheric upwelling (Faure et al., 1996). These events are similarly 

connected to the intrusion of primarily mafic dikes throughout the region, which loaded flood 

basalts into the rift basins of prior faulting (McHone, 2000). 

1. 3. b Local Geologic Setting

The metamorphic formations that are included in this study are the Rangeley and 

Littleton Formations. The Rangeley Formation is Silurian in age, identified from shelly fauna 

in the formation (Moench and Zartman, 1976). Its origin is in the deep marine sediments of 

the Kronos Ocean. It is a gray gneiss that is subdivided based on compositional variations. The 

Rangeley Formation incorporates different units, including calc-silicate granofels, rusty schist and 

amphiboles (Eusden, 2010). These blocks range in size from cm to m scale.

Formations not included in the study area, but chronologically following the Rangeley’s 

deposition, are the Perry Mountain, Smalls Falls and Madrid Formations. Also Silurian in age, 

these formations originated from sediments deposited above the Rangeley formation in the 

Kronos Ocean (Eusden, 2010). These formations are made of quartzites, rusty schists and calc-

silicate granofels; they primarily occur in thin, discontinuous bands. 

Above these formations is the Devonian Littleton Formation. The Littleton formation is 

derived from mud and sand sediments deposited in the deep Kronos Ocean approximately 410 

Ma. Both have subsequently been metamorphosed during the Acadian Orogeny and now appear 
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Figure 1.5: Mesozoic Rifting and corresponding faults and rift basins (Schlische et. al, 2004)

Study Area

Exhumation resumed in the Jurassic period since when Doherty and Lyons (1980) have 

calculated an average erosion rate .031 mm/yr. This was calculated with a geothermal gradient 

of 25 to 30 °C. Therefore, the depth of emplacement ranged from 5.3 to 7.6 km in the Middle 

Jurassic to 3.0 to 3.6 km in the Middle Cretaceous. Ten Jurassic and Cretaceous plutons were 

analyzed using apatite fission tracks and zircon fission tracks of the White Mountain Plutonic-

Volcanic Series. Site locations are scattered throughout New Hampshire and a few are in the 

border of Vermont. With the 40Ar/ 39Ar ages a preliminary exhumation reconstruction can begin 

to constrain the average cooling history from the Late Paleozoic into the Mesozoic. 

Doherty and Lyons (1980) acknowledged that .031 mm/yr was a calculated average and 

periods of faster or slower exhumation were likely to have occurred throughout this time. Roden-

Tice et. al (2009) collected new AFT ages and reexamined Doherty and Lyons’ data to conclude 

that later in the Mesozoic, after the initial Jurassic exhumation renewal, there was a period of 

faster unroofing with rates ranging from 0.055 to 0.118 mm/yr in the Early Cretaceous. Rates 

returned to the relative slower rate of 0.01 to 0.04 mm/yr in the Late Cretaceous. Doherty and 

Lyons’s (1980) erosion rate is comparable to that documented by Roden-Tice et. al (2009), who 

calculated an average erosion rate of 0.03 to 0.04 mm/yr from 100 to 60 Ma. 

From the late Jurassic to the Early Cretaceous, exhumation rates stopped acting 

uniformly throughout northern New England as postorogenic extension was initiated (Figure 

1.3). Cretaceous extension can result in both for the region’s unroofing during this time and the 

reactivation of faults that led to localized differential unroofing.

West and Roden-Tice (2003) obtained AFT ages for opposite sides of the Norumbega 

Fault Zone in southern Maine. Their analysis indicated differential erosion rates on either side of 

the fault. AFT ages on the western side of the fault ranged from 113 to 89 Ma, while ages of the 

eastern side ranged from 159 to 140 Ma. This discontinuity was explained by the reactivation of 

the Norumbega Fault in the Late Cretaceous less than 80 Ma and was localized to the northern 

Casco Bay region of Maine.

AFT ages along other northern New England faults document localized reactivation 
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moved through the PAZ faster, cooling at approximately 0.6 °C/my from 100 Ma to 60 Ma while 

the summit and middle samples were cooled at 0.2 °C/my during this time. 

Two theories exist to explain this period of differential exhumation. One attributes it to 

differential erosion from a paleo-drainage system. The other theory suggests that faults were 

reactivated in the region causing localized uplift. These two theories, however, are not mutually 

exclusive and a combination of the two is possible, if not more likely.

As studies along faults both east and west of the Presidential Region have revealed late 

Mesozoic fault reactivation a similar event is not unlikely, although it would require a fault to 

exist that spatially separates Mt. Washington’s summit from base. This would allow the summit 

to stay put throughout the period of differential exhumation, while the base rocks were tilted 

upwards thus exhibiting higher exhumation rates. 

AFT ages from this study add to the understanding of both regional and local Mesozoic 

and Cenozoic topographic setting and development. With the addition of AFT ages varying in 

elevation, previously limited to Roden-Tice et. al’s (2011) study, an even more comprehensive 

chronology can be constructed.

during the late Cretaceous. While there is no significant offset documented in AFT ages across 

the Ammonoosuc fault in the Connecticut River valley, there was a significant AFT age offset in 

northwestern New Hampshire between the Bill Little, Amonoosuc, and Northery Hill faults. This 

is also indicative of Cretaceous normal displacement at times <80 Ma (Roden Tice et. al., 2009). 

All known studies present a relatively similar picture of Mesozoic average exhumation 

into Cretaceous differential unroofing and the reinstatement of uniform exhumation 

approximately 60 Ma. This is further evidenced in data explicitly applicable to this study. 

AFT ages along Mt. Washington’s Auto Road, on the eastern side of the mountain yield 

an average erosion rate of 0.2 mm/yr between ~160 Ma and ~100 Ma. Between ~140 Ma and 

~120 Ma there was a period of slower erosion, 0.01 mm/yr, bounded by 0.03 mm/yr from ~140 

mm/yr from ~140 Ma to ~160 Ma and 0.04 mm/yr from ~100 Ma to ~120 Ma. These generalized 

values, based solely on the AFT age from summit to base, are comparable to the average erosion 

rate, 0.04 mm/yr from 304 Ma to 274 Ma determined by Eusden and Lux’s (1994) 40Ar/ 39Ar 

ages. It is also comparable to Doherty and Lyons’ (1980) erosion rate of 0.03-0.04 mm/yr since 

the Jurassic (Roden-Tice et. al, 2011).

There is a large discrepancy, however, in the calculated geothermal gradient. Where 

Doherty and Lyons based their study on a geothermal gradient of 25 to 30°C, Roden-Tice et. 

al (2011) found an average geothermal gradient of ~ 40 °C during the Mesozoic. The relief 

method yielded a geothermal gradient of ~ 36 °C while the time-temperature history yielded a 

geothermal gradient of ~ 43 °C. Roden-Tice et. al (2011) extrapolated the data to extend back 

to ~ 300 Ma. These values are significantly higher than that of both Doherty and Lyons’ (1980) 

study and Roden-Tice et.al’s (2009) calculation that also assumed a geothermal gradient of ~25 – 

30 °C for the same time period. 

From 120 Ma to 60 Ma erosion patterns changed relative to the modern topographic 

profile. While samples from the summit of Mt. Washington and topographic middle of the 

mountain travel through the PAZ relatively synchronously, indicating uniform exhumation, the 

sample from the near Pinkham Notch diverges at approximately 120 Ma. The sample at the base 
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Methods

2 .1 Field Sampling

Thirteen samples were collected from the summit of Mt. Washington at 2523.7 m to near 

the base at 539.5 m. during one day of field work in mid-June, 2011. Samples were collected 

approximately every 150 m. in vertical elevation along the Cog Railroad on the western ridge of 

Mt. Washington (Figure 2.1). The sites were chosen from elevation change determined by Garmin 

Etrek GPS unit. At each site, two sample bags were filled using both a 10 pound sledge hammer 

and smaller rock hammer. 

The thirteen sample sites crossed through two metamorphic rock formations and one 

granitic intrusion. Samples CR01 through CR 07 (starting at high elevation) are from the Littleton 

Formation (Figure 2.2). Samples CR08 through CR11, intermediate elevations, are from the 

Rangeley Formation (Figure 2.2). Samples CR12 and CR13, at low elevations, are from Bretton 

Woods Granite (Figure 2.2). As mentioned previously, the rock formations are not integral for the 

purpose of this study. It is more important to note that each of samples rock is likely to contain 

enough apatite to perform this work. 

Table 2.1: Sample Locations
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Figure 2.1: Sam
ple Locations of C

og Railroad Sam
ples (m

odified from
 Eusden, 2010)

CR01: Littleton,1914.1 m CR02: Littleton, 1886.7 CR03: Littleton,1743.5 m

CR04: Littleton, 1624.6 m CR05: Littleton, 1482.2 m CR06: Littleton, 1392.0 m

CR07: Littleton, 1325.9 m CR08: Rangeley, 1190.6 m CR09: Rangeley, 930.6 m

CR13: Bretton Woods, 539.5 mCR11: Rangely, 842.8 m
Figure 2.2: Photo Locations
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2 .2 Crushing and Pulverizing

At least one hand sample from each site was archived prior to crushing. Remaining 

sample was crushed with a Braun Chipmunk jaw crusher (Figure 2.5). To eliminate cross-sample 

contamination the jaw crusher would be completely vacuumed, blown with compressed air 

and swept. After the initial cleaning, a small fragment of the sample would be crushed before 

another around of cleaning. If a sample is, then, contaminated with the previous run it would be 

contaminated with itself, thus reducing the risk of error in later results. During both crushing and 

pulverizing, an external vacuum was placed within the hood to remove airborne dust produced 

by the working machines. The cleaning process was extensive and most essential here because of 

the necessity to preserve the purity of all samples. 

After the second round of cleaning, the remaining sample was crushed resulting in 

approximately 1 cm diameter fragments. Samples too large to fit in the mouth of the crusher 

were physically crushed first with a hammer before mechanically crushing them. If this was 

done, the surface where the rock was crushed was also extensively cleaned with a vacuum. After a 

sample was crushed, the resultant fragments were collected in 1L plastic containers. Each sample 

yielded different quantities of crushed rocks, but 1L was chosen to pulverize, while the remaining 

fragments were archived.

Using a 2hp belt drive Bico disc mill 1L of each sample was then pulverized with ceramic 

plates. An identical pre-screening cleaning was conducted to reduce the risk of cross-sample 

contamination. Once cleaned for a sample, the 1L of crushed rock was run twice through the 

pulverizer. First, the ceramic discs were approximately 0.5 cm apart which resulted in a mix of 

coarse sand size grains and powder. For the second run, the discs were approximately 1 mm apart 

resulting in fine sand to silt size grains and powder. 

2 .3 Sieving Samples

The pulverized samples were sieved using a fine cloth sieve. This removed the larger 

grains, primarily micas that were not able to be pulverized into a fine grain with the Bico discs. 

The same cloth sieve was used for all samples; between samples the cloth was washed with 

hand soap and scrubbed with a brush. It was blown with compressed air to dry and remove any 

remaining grains from a previous sample. 

2 .4 Rogers Table Separation

A Rogers Table was used to separate the pulverized and sieved material by specific gravity. 

To prepare, the table was scrubbed with a plastic brush and rinsed thoroughly to ensure that all 

residual grains were washed out. The table was cleaned before each sample was run. In addition, 

Figure 2.3: Chipmunk Crusher and Pulverizer
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buckets where sediment was collected were washed and rinsed. Water pressure combined 

with appropriate levels of shaking separated the minerals. When a sample was run, grains 

with intermediate and heavy specific gravity were collected in the smaller collecting buckets 

together while grains with light specific gravity were collected separately in the large bottom 

bucket (Figure 2.6). After one run, the light grains were archived back in the 1L containers. 

The intermediate and heavy grains were run again to separate out any residual light grains. The 

remaining intermediate and heavy grains were dried in small aluminum trays. 

Figure 2.4: Rogers Table Specific Gravity Separator; Sample CR08 is being 
run

Heavy material 
(darker) collects at 
the bottom

Lighter material 
washes to the side

2 .5 Magnetic Separation

After samples were dried, they were separated by magnetic susceptibility. A hand magnet 

was used to initially separate all the extremely high-magnetic minerals. The high-magnetic 

fractions were archived. 

The samples were then run through a Frantz Isodynamic Magnetic Separator. The track 

was set with a forward tilt of 15° and a side tilt of 25° (Figure 2.5). Before each sample was run, 

the Frantz was disassembled and cleaned with compressed air and Kimwipes. The samples were 

first run at 0.5 Å. This removed the highly magnetic minerals, which were archived. They were 

then re-run at 1.2 Å. Apatite had a magnetic susceptibility of 1.3 Å (Rosenblum, 2000); at 1.2 Å 

was preserved while slightly more magnetic minerals were removed (Figure 2.6). Quartz, among 

others, remained after this step. All magnetic fractions were archived. 

Steps 2.6 to 2.10 took place at SUNY Plattsburgh 

2 .6 Heavy Liquid Separation

LST (containing lithium heteropolytungstates) can be used for heavy liquid separation 

with a recommended density of 2.85 g/mL at 25°C was used for heavy liquid separation the initial 

separation (Figure 2.7). Apatite and the remaining heavy separates were then separated using 

Methylene Iodide (MI), which has a specific gravity of 3.32 g/mL. This second liquid is used to 

separate the apatites from the zircons, as zircon has a specific gravity greater than the MI and 

apatite less. Remaining grains were cleaned with 100, 300 mesh sieves (.152 mm and .044 mm 

respectively).

2 .7 Grain Mount and Polishing

Grains were mounted on petrographic slides in epoxy; each sample was measured to be a 

1 cm by 1.5 cm size rectangle. Using 400 grit paper, the surfaces of the grains were cut to expose 

the apatites before being briefly polished with 600 grit paper. 9 micron and 1 micron diamond 

paste was, sequentially, used to polish the mounts. Polishing was finalized with 0.3 micron Al8O3 
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Figure 2.7: Frantz Isodynamic Magnetic Separator (Robinson, 1997)

Figure 2.6: Table of Mineral Susceptibility (adapted from Rosenblum, 1953)
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Figure 2.7: H
eavy Liquid D

ensity C
om

parison

powder twice for 3+ minutes until smooth. 

2 .8 Etching Tracks

Mounted slides were submerged in 5M HNO3 for 20 seconds at 21ºC. This revealed 

spontaneous fission tracks in the apatite grains. 

2 .9 External Detector Attachment

The mica detector was cut with an Exacto-Knife to fit over the epoxy mount; the mica was 

cut to be slightly smaller in size than the 1 cm x 1.5 cm rectangle mount. The samples and the 

detectors were taped together and tightly bound using the dull end of the Exacto-Knife. 

2 .10 Packaging Samples

The thirteen samples, with attached mica detectors, were stacked and bound with tape. 

Additionally, CN1 dosimeter glasses with attached mica detectors were placed at the top and 

the bottom of the stack in order to later monitor neutron flux during irradiation. Samples CR01 

to CR08 were in a package with CN1 L dosimeter. Samples CR09 to CR13 were in a separate 

package with CN1 N dosimeter. Together, the stack was packaged in a polyTRIGA tube and sent 

to Oregon State University. 

2 .11 Irradiation and U235 Track Etching

The samples were irradiated at the Oregon State University TRIGA reactor using a 

nominal flux of 8.0 x 1015 n/cm2. This induced U235 fission tracks in the samples; only the tracks in 

the mica replicas were etched after this point such that U238 tracks are only visible on the apatite 

samples and U235 tracks are only visible on the mica replicas. 

2 .13 Zeta Calculation

In order to quantify potential error, tracks on known samples were counted. The samples 
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used were Durango apatite from Durango, Mexico. Tracks on twenty grains were counted for 

Durango A and Durango B over a given area for each grain. Tracks were counted on the replica 

of each grain over the same area. Brandon age calculation computer program generated ages 

for each grain and averaged them. These ages were compared to the known age of the sample to 

define personal error. As this was done for both Durango A and Durango B, the two error scores 

were averaged to attain one standard zeta score to be used for all calculations of Mt. Washington 

samples.

2 .14 Fluence Calculation

In order to later accurately calculate AFT ages, the fluence was determined for each 

package containing Mt. Washington samples. Approximately 1000 tracks were counted for each 

mica glass (four in total at the top and bottom of each package). The exact number counted 

was divided by the total area tracks were counted within to reach 1000, giving a total density of 

tracks within the glass. This is proportional to the flux of particles intersecting the mica glass. 

Fluence for the individual samples was determined by interpolating between the two measured 

dosimeters. 

2 .15 Track Counting and Calculation

For each sample, tracks on approximately 20 grains were counted with an Olympus 

BMAX 60 microscope at x 1600. For each grain, tracks were counted within in a certain area 

representing the spontaneous fission. The same grain on the mica replica, representing the 

induced tracks, was found and tracks were counted within the same area. 

These values, along with the area counted, were entered into the Brandon age calculation 

program. This program, using the counted track values, the decomposition half-life of U238 and 

relative abundances of U235 to U238 generated ages for each grain. The program also takes into 

account the previously determined personal zeta score (which is constant for all samples) and 

fluence (which differs for each sample). The average for all of the grains was used for the final 

measured age, indicated by the program as the central age. Based on the zeta score, an error 

histogram was also generated. 

2 .16 Track Measurement

Track lengths were measured for samples CR01 (summit) and CR13 (base). 77 tracks were 

measured for CR01 and 57 tracks were measured for CR13. Data was then input into a386 Zenith 

PC to generate track length frequency histograms. These histograms were used to model the time 

temperature path of the sample through the PAZ using Cal Comp Model 31120 program. 

2 .17 Microprobe Composition Analysis

Slides were prepared for Samples CR13, CR12, CR10, CR08, CR06 and CR01. These 

samples represent all formations being studied. Once mounted in epoxy, the slides were polished 

first with 400 and 600 grit papers. Slides were then polished with 60/90 grit silicon carbine and 

500/600 grit silicon carbide. The polishing was finalized with Alumina G. Slides were finally 

carbon coated. F and P were calibrated using an apatite standard while Na and Cl were calibrated 

with a tungtapite standard. Samples CR01, CR08, CR12 and CR13 were scanned with a MAC 

400S electron microprobe at UMaine Orono to determine the weight percent of F, Cl and Ce. 

For CR01, five grains were analyzed with ten points run for each grain. For CR08, three grains 

were analyzed with seven points run for each grain. For CR13, five grains were analyzed with ten 

points run for each grain. 
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Results

3 .1 Microprobe

Grains from samples CR01, CR08, CR12 and CR13 were analyzed for F, Cl and Ce 

content. Grains C 01 is Littleton Formation. Grains CR08 is Rangeley Formation and CR12 and 

CR13 are Bretton Woods Granite. The five grains analyzed for CR01 yielded an average F weight 

percent of 3.41, Cl weight percent of .029 and Ce weight percent of 0.03 (Figure 3.1). The three 

grains analyzed for CR08 yielded an average F weight percent of 4.14, Cl weight perfect of 0.00 

and Ce weight percent of .12 (Figure 3.2). The five grains analyzed for CR12 yielded an average 

F weight percent of 3.42, Cl weight percent of 0.03 and Ce weight percent of 0.08 (Figure 3.3). 

Only one grain was analyzed for CR13 and had a Fl weight percent of 3.96, Cl weight percent of 

0.00 and Ce weight percent of 0.05 (Figure 3.4). Given that these are all fluoroapatites, the closing 

temperature of apatite does not need to be adjusted to account for excess Cl content.

3 .2 Zeta Score

Standard deviations of age are based on the zeta score determined off a measured variance 

from a known standard (Durango apatite of Durango, Mexico). The zeta score was determined on 

samples 2A, 6A, 7A, 11A and 13A. The mean zeta was determined to be 101.6 +/- 7.18. This is an 

average of the error calculations from two Durango samples. All other samples are calculated with 

a zeta score of 98.4 ± 1.7 from Roden-Tice.

3 .3 Fluence

For Package PL061, the measured fluence for the top and bottom mica glasses, acting as 

fluence dosimeters for the package, were 3.8403E+06 at the top (CN1 N) and 4.1310E+06 at the 

bottom (CN1 O). Fluence values for the samples within this package were interpolated (Table 3.5) 

accordingly. This package included samples CR09 to CR13.

For Package PL060, the measured fluence for the top mica glass was 3.7431E+06. The 

fluence for the bottom mica glass was 4.3383E+06. Fluence values were interpolated in this 

package for samples CR01 to CR 08 (Table 3.6). These values are similar to those determined by 
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Roden-Tice, therefore can confindently be used to compared ages between Anderson and Roden-

Tice. 

3 .4 Ages

Thirteen samples from the Cog Railroad, Mt. Washington yielded ages ranging from 148.0 

+/- 15 Ma to 89.2 +/- 10 Ma, therefore ranging from late Jurassic to Late Cretaceous. The samples 

yielded an average exhumation rate of .0215 mm/yr during this period (Table 3.7).

Near the summit, elevations 1914.14 m (CR-01) and 1886.71 m (CR-02) yielded ages, 

respectively, 180.0 +/- 15 Ma and 147.3 +/- 25 Ma. The latter age was confirmed by Roden-Tice’s 

determined age of 147.2 +/- 15 Ma at the same elevation.

Between 1743.5 m elevation and 1089.7 m elevation, ages show small variations and range 

between 110.1 +/- 13 Ma and 126.6 +/- 13 Ma. The previously established trend of increasing age 

with elevation is similarly neglected during this period (Figure 3.1). Ages for elevations 1743.5 

m (CR03), 1624.6 m (CR04), 1482.2 m (CR05), 1392.0 m (CR06), 1325.9 m (CR07), 1190.6 m 

(CR08) and 1089.7 m (CR09) are, respectively, 114.5 +/- 17 Ma, 114.4 +/- 12 Ma, 119.3 +/- 13 

Ma, 125.8 +/- 22 Ma, 117.7 +/- 22 Ma, 118.4 +/- 12 Ma and 110.1 +/- 13 Ma. CR06 and CR07 ages 

were confirmed by Roden-Tice. The Roden-Tice ages were 126.6 +/-15 Ma for CR06 and 114.4 

+/- 16 Ma.

Table 3.4: AFT Ages from Cog Railroad
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Bottom samples are similarly all within error of each other. Elevation 930.6 m (CR10) 

yielded an age of 102.9 +/- 11 Ma. Elevation 842.8 (CR11) yielded an age of 96.4 +/- 9 Ma. This 

sample had a confirmed age of 96.4 +/- 9 Ma, calculated by Roden-Tice. The lowest elevation 

samples, Bretton Woods Granite, had ages 86.4 +/- 8 Ma (at elevation 647.1; CR 12) and 88.7 

+/- 16 Ma (at elevation 539.5 m; CR13). Roden-Tice calculated an age of 89.2 +/-10 Ma for this 

sample.

3 .5 Exhumation Rate

The samples yield an average exhumation rate of .0234 mm/yr during this period. 

Exhumation, however, does not appear to be constant throughout. There is no obvious separation 

of distinct exhumation rates, but there is one clear trend from 110 Ma to 125 Ma, where all AFT 

are nearly uniform (Figure 3.2). Samples CR03 to CR09 are represented in this period, ranging in 

elevation from 1743.5 m to 1089.7 m. The exhumation rate of these samples jumps to .03924 mm/

yr. Keeping consistent with this separation, the remaining low elevation samples, CR10 to CR13 

yield an exhumation rate of.0350 mm/yr. The high elevation samples, CR01 and CR02 yield an 

exhumation rate of .0342 mm/yr. These upper two samples, however, are extremely close both in 

elevation and age that this upper exhumation rate is relatively insignificant.

If the exhumation separations presented by Roden-Tice et. al (2011) are followed, groups 

are based on similarities in elevation more so than ages. Doing this, Samples CR01 to CR04 would 

yield an exhumation rate of .0285 mm/yr between elevations 1914.14 m and 1624.58 m (Figure 

3.3). Samples CR05 to CR09 would yield an exhumation rate of .0427 mm/yr between elevations 

1482.24 m and 1089.66 m. Finally, samples CR10 to CR13 would again be grouped together 

yielding that exhumation rate of .0342 mm/yr between elevations 930.55 m and 539.50 m. 

3 .6 AFT Ages of Separate Rock Units

The Littleton Formation encompasses samples CR01 to CR07 from elevations 1914.14 m 

to 1325.88 m. Littleton Formation ages range from 148.0 +/- 15 Ma to 114.4 +/-16 Ma (Figure 

3.4). Rangeley Formation encompasses samples from CR08 to CR11 from elevations 1190.55 m 

to 842.77 m. These ages range from 118.4 +/- 12 Ma 96.4 +/- 9 Ma. Bretton Woods Granite is 

represented in samples CR12 and CR13 from elevations 647.09 m to 539.50 m. Bretton Woods 

Granite ages range from 89.2 +/- 10 Ma to 86.4 +/- 8 Ma. Evaluating the differences in slopes 

between rock type does not yield any significant trends so it can be assumed that lithology does 

not play a role in differences of exhumation rate throughout the study period. 

3 .7 Track Length Modeling

Track lengths were measured for samples CR1 at elevation 1914.1 m and CR13 at 539.5 m. 

For CR1, 77 tracks were measured and yielded a mean track length of 12.3 +/-1.8 µm. 

Lengths ranged from approximately 6 µm to 17 µm. For CR13, 57 tracks were measured and 

yielded a mean track length of 13.1+/- 1.2 µm. Lengths ranged from 9 µm to 16 µm. CR1 had a 

relatively normal distribution around the mean track length (Figure 3.5), while CR13 was slightly 

skewed to the left (Figure 3.6). 
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Discussion

4 .1 AFT Ages

AFT ages from the Cog Railroad display a significant period of rapid exhumation that 

correlates chronologically with differential exhumation also evidenced in the Auto Road time-

temperature history lasting from approximately 125 Ma to 60 Ma. This period of geologic time 

is well documented in the sedimentary record from Georges Bank off of the North Atlantic 

continental margin. As these sediments are derived from mountainous interior of New England 

there should be a temporal correlation between rapid sedimuent influx offshore and rapid 

exhumation on land. AFT ages from this study also align with a local and regional tilt when 

compared with AFT ages throughout New England and northern New York. These models 

typically invoke fault reactivation and/or paleo-drainage systems both of which contribute to the 

measured accelerated and differential exhumation.

4 .2 Rapid Exhumation 

Contrary to the separation of exhumation rates from the Auto Road proposed by Roden-

Tice et. al (2012) (Figure 4.1), comparing the Cog Railroad ages suggests that - while times 

of different exhumation are evident - grouping data by AFT age rather than elevation is more 

significant. This teases out the trend of rapid exhumation from approximately 125 Ma to 110 Ma. 

Samples between 1743.5 m and 1089.7 m show a period of rapid exhumation documented with 

ages ranging from only (not respectively) 126. 6 +/- 15 Ma to 110.2+/- 13 Ma. 

A similar trend it evident in Auto Road samples, with ages between elevations 1762 m and 

1173 m ranging from 143.8 +/-19 Ma to 123.5 +/- 14 Ma (Figure 4.2). Although there is a gap of 

approximately 10 my, consistent with the general offset between sample sets, rapid exhumation 

evidenced from both Cog Railroad and Auto Road coincide with magmatic events.This period 

lies within the Cretaceous Peri-Atlantic Alkaline Pulse (PAAP) (Matton and Jebrak, 2009). PAAP 

describes a surge of alkaline activity during the Cretaceous, specifically from 125 Ma to 80 Ma 

(Figure 4.3) that was caused by local shallow asthenospheric upwelling that reactivated zones of 

crustal weakness initially formed during Atlantic rift-drift tectonism (Matton and Jebrak, 2009). 
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This further aligns with the formation of the Monteregian Hills alkaline province 

(MHAP) in Quebec, Canada to the northwest of Mt. Washington. It consists of nine alkaline 

intrusions approximately 124 my old. While the original explanation for the hills was the passage 

of North America over the Great Meteor Hot Spot, this theory has been dismissed because of 

inconsistencies in the their age relative to the Hot Spot’s path. 

McHone (1996) first rejected the hot spot theory and introduced an alternative one 

involving alkaline basalts from the mantle occurring in concert with tectonic reactivation of 

lithospheric structures. Roulleau et. al (2010) concluded that the hills formed during continental 

rifting associated with upper mantle source upwelling. 

The MHAP is the northwestern bound to the New England-Quebec Igneous Province 

(NEQ), a series that extends into southern New England (Figure 4.4) composed of Cretaceous 

Figure 4.1: Separations of Exhumations Rates fro mAuto Road AFT Ages (Roden-Tice et. al,. 
2011)

Figure 4.2: C
og Railroad A

ges v. Auto Road A
ges; slopes indicate period of potential rapid exhum

ation in both data 
sets
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Figure 4.3: Timing of PAAP and tectonic activity synchronous with rapid exhumation (Matton and 
Jébrak, 2007)

Cog Railroad 
Ages

gabbro-syenite alkali plutons and dikes (McHone and Butler, 1984). As with MHAP, the source 

of the NEQ is asthenospheric upwelling that caused zones of crustal weakness to be reactivated 

(Faure et al, 1996). 

Local evidence of this reactivation has been recently documented by the presence of a 

dike in Huntington Ravine (Kindley, 2011; Gardner, 2010). This dike, the Escape Hatch dike, with 

an E-W orientation, is an alkali dolerite, similar to the composition of features in the Cretaceous 

NEQ (Figure 4.5). Kindley (2011) asserts, then, that this dike is related to the N-S extensional 

stress field throughout New England and into Quebec. Faure et. al (1996) links E-W striking dike 

intrusions to the rifting event approximately 125 mya that marks the final stages of the breakup of 

Pangea and accelerated plate motion (Figure 4.6).  Along with the upwelling, the NEQ-aged dikes 

could have introduced increased heat just west of the present day summit, causing the cluster of 

Cog Railroad ages not found in the Auto Road data set. 

This is all synchronous with the rapid period of exhumation evidenced in AFT ages along 

the Cog Railroad. Upwelling from these magmatic events, therefore, is likely to have triggered the 

onset of increased rates of exhumation. 

Figure 4.5: Huntington Ravine Dikes geochemical classifcation against 
those put forth by McHone and Butler (1984) (Gardner, 2010)
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Figure 4.4: Map of Mesozoic Igneous intrustions through New England and Quebec (McHone and 
Butler, 1984)

Figure 4.6: Timing of North Atlantic Tectonism and New England Igneous 
Provinces (McHone and Butler, 1984)

Cog Railroad 
Ages
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4 .3 Differential Exhumation

4.3a Evidence in Track Length Measurement

Track length measurements for the summit and base samples yielded nearly identical 

frequency distributions to the Auto Road measurements (Figure 4.7), allowing the use of the 

time-temperature path for the Auto Road samples to be applied to the Cog Railroad samples. 

The model suggests that the base and summit samples underwent uniform exhumation between 

approximately 160 and 130 Ma of 1.5 – 2.0 °C/my (Figure 4.8). At 130 Ma the summit samples, in 

the case of the Auto Road at elevation 1762 m, was essentially at a standstill, while base same at 

elevation 510 m experienced exhumation of 0.6 °C/my. At 60 Ma, the base and summit resumed a 

uniform exhumation of 0.6 °C/my with the current topographic relief in place. 

Figure 4.7: Frequency Track Length Histograms; Top figure is from Auto Road (Roden-Tice et. al, 
2011) and bottom two graphs are from Cog Railroad

The onset of differential exhumation roughly coincides with the phase of rapid 

exhumation for middle-elevation Cog Railroad samples between approximately 100 and 125 Ma. 

As middle elevation samples were passing quickly through the 100°C isotherm, they continued to 

exhume through the PAZ with relative speed. 

Roden-Tice et. al (2012) suggest that this differential erosion is a result solely of a paleo-

drainage system that cut down topography east of the present day summit. The uniformity of 

track lengths between Cog Railroad and Auto Road would suggest that a paleo-drainage system 

likewise existed to the west of the present day summit somewhere in the vicinity of Crawford 

Notch. This suggets that the initiation of Pinkham and Crawford Notches, and perhaps others in 

the White Mountains, such as Evans and Franconia Notches, began along N-S trending paleo-

river systems in response to magmatic uplift associated with the NEQ Cretaceous magmatic 

events. 

Figure 4.8: Time-Temperature Path of Auto Road Samples through PAZ (Roden-Tice et. al, 
2012)



58 59

4.3b Sedimentation Record

It would be expected that a large influx of clastic, as opposed to marine-influenced 

limestone, would be present to account for unroofing of Mt. Washington during the same time 

period of rapid exhumation. There is unlikely to be too long of a response time between rapid 

exhumation and sediment inflow to Georges Bank and it would certainly have within the 10-20 

my uncertainty of the AFT ages reported here and by Roden-Tice et al. (2012). 

Marine core logs reveal an inflow of terrestrial-derived sediment that could be in response 

to rapid mountain incision. The stratigraphic column from the USGS Wells Cost No. G-2 from 

Georges Bank off of North Atlantic (Figure 4.9) continental margin shows an influx of clastic 

sediment during the Aptian and Albian, between approximately 125 Ma and 100 Ma (Figure 

4.10). 

This period is marked by a mudstone unit commencing right after the Barremian – Aptian 

(130 Ma) border and lasting just past the Aptian- Albian border (112 Ma). The mudstone is 

primarily silty with interbeds of sandstone. After this is a thin layer of very coarse, rounded sand 

and medium to fine grained sandstone. Stratigraphy above and below these clastic are biogenic 

units of limestone, reflecting a quiet water, equatorial setting without significant clastic influx.

Carbonate unites define most of the rest of the Cost No. G-2 stratigraphic column which extends 

from the Late Triassic to the Tertiary (Figure 4.10). 

The mudstone and sandstone layers that are interpreted here to be synchronous with 

the rapid and differential exhumation seen in the Mt. Washington region are relatively atypical. 

These sediments can be attributed to this exhumation as sediment from Mt. Washington would 

have entered the Gulf of Maine to Georges Bank through the local Cretaceous river systems. The 

stratigraphic record also reveals a decrease in organic carbon during this period that would be 

related to marine-origin sediments, possibly confirming the mountainous source of sediments 

then.

Cost No. G-1 Well similarly reveals an influx of clastic material and decrease in organic 

carbon content during the Albian and Aptian (Figure 4.11). This well further shows sandstone 

Figure 4.9: Location Map of COST G Wells Relative to Mt. Washington
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layers extending to Santonian, approximately 80 Ma, corresponding further with the period 

of differential exhumation that lasted from approximately 120 Ma to 60 Ma. It is described as 

unconsolidated coarse to very coarse grained sanstone.  Surrounding this layer on both sides 

are beds of gumbo-like shale, which is along with the limestone some of the most commonly 

occuring sediments found throughout the core log. The unconsolidated sandstone, on the 

other hand, is more anomalous requiring an external event separate from the regular cycles of 

sedimentation.

This explanation could be the increased inflow of sediment from rapid exhumation on Mt. 

Washington. Like with Cost G-2, the response time is likely to be relatively sudden, therefore an 

offset of rapid exhumation on Mt. Washington and sediment appearing in the Georges Bank core 

would not be vastly significant. 

4 .4 Age Gradation

4.4a Local Tilt

Cog Railroad samples from the western slope are all within error of the Auto Road 

samples on the eastern side of the mountain. Cog Railroad ages are, however, consistently 

younger at comparable elevations; similarly, at comparable ages, Cog Railroad samples are higher 

in elevation. While ages are within error, this undeviating relationship is indicative of a westward 

surficial tilt during the period of cooling of no more than 5° W (Figure 4.12). 

AFT ages from Mt. Washington align with a general trend of AFT ages from Roden-

Tice et. al (2009). These samples were taken along roads and riverbeds, and their elevations are 

likely relatively low-lying and vertical relief is therefore negligible. Given that, the westward tilt 

evidenced on Mt. Washington can be extended locally through the Amonoosuc Fault on the 

New Hampshire/Vermont border (Figure 4.13) . The region of lower-lying elevation surrounding 

the Mt. Washington massif is characterized by younger ages, approximately 80 to 90 Ma. Ages 

generally increase to both the east (southeast) and west (northwest).
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Figure 4.13: Local Age Gradation of AFT Ages across New Hampshire and proposed western tilt and 
regional arc (modified from Roden-Tice et. al, 2009)

4.4bRegion Tilt Trend Westward

Adding in data from Roden-Tice and Tice (2005), this tilt extends further westward into 

the Adirondacks (Figure 4.14). Excluding age discrepancies on either side of Adirondack faults, 

AFT ages increase westward. Again assuming that samples were taken at low-lying elevations 

(presumably along riverbeds or roadways), westward-most ages past the Adirondacks correlate 

with high-elevation Mt. Washington samples with ages approximately 120 Ma and above. Middle 

elevation Mt. Washington Samples at approximately 100 to 120 Ma fall east of the oldest AFT ages 

right in and just east of the Adirondacks. Youngest and lowest-elevation Mt. Washington AFT 

ages correspond with nearby AFT ages of less than 100 Ma in neighboring Vermont. 

4.4c Region Tilt Trend Southward

This data could further fit into a regional W-E age gradation proposed by Roden-Tice 

and Wintsch (2002) based on AFT and ZFT ages of southern New England, primarily in the 

Connecticut River Valley. In Massachusetts, AFT ages rise to the east from 106 to 146 Ma and 

in Connecticut from 113 to 164 Ma (Roden-Tice and Wintsch, 2002). The Bronson Hill Terrane 

lies just west of the Central Maine Terrane, in which Mt. Washington lies, and has elevations 

significantly lower (Figure 4.15).

The west- to-east gradient in the Early Cretaceous was approximately a 40 my difference. 

The gradient measured from the Cog Railroad to the Auto Road on Mt. Washington is 20 my at 

most. Roden-Tice and Wintsch (2002) proposed that a rotation to account for the lack of such 

tilt now was Early Cretaceous or younger in age. With the noted decrease in age gradient from 

west to east between the studies, it appears that the corrective rotation was occurring in the Early 

Cretaceous into the Late Cretaceous. 

4 .5 Faulting and Pale-drainage Systems

Roden-Tice and Wintsch (2002) attributed the initial gradation to a faulting event that 

occurred between 120 Ma and 60 Ma and up-threw the Bronson Hill Terrane rocks along the 
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Figure 4.14: Regional Westward Tilt from AFT Ages of Cog Railroad and AFT Ages of the 
Adirondacks; offset from Ammonoosuc Fault is estimated (modified from Roden-Tice and 
Tice, 2005)

Figure 4.15: Bronson H
ill A
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radation (Roden-Tice  and W
intsch, 2002)
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Eastern Border Fault. The Bronson Hill Faulting event was followed by the reactivation of normal 

faulting in the Norumbega Fault Zone east of Mt. Washington (West and Roden-Tice, 2003). 

Kindley (2011) asserted that the Norumbega Fault reactivation initiated the Pinkham Notch 

drainage, east of Mt. Washington and accounted for in the Auto Road data. 

On the eastern side of Mt. Washington, this paleo-drainage system that downcut into 

the mountain eroded away the eastern limb as Pinkham “Mountain” became Pinkham Notch 

(Figure 4.16). As the same trend of differential exhumation, rapid exhumation and age gradation 

is apparently evident on the western side of the mountain, it is possible that a Great Gulf drainage 

system was acting to remove sediment on the west. Kindley (2011) suggested that the paleo-

drainage system was in fact fault driven and that faults on either side of Mt. Washington would 

have created a graben-like structure in which the down-cutting of reactivated faults would have 

driven the onset of such paleo-drainage system.

As it is now evident that there was fault reactivation to the west of Mt. Washington with 

the Bronson Hill event, it is likely that a paleo-drainage system was, in fact, initiated to explain 

the period of differential exhumation on the western slope of the mountain.

Figure 4.16: Profile of Topographic Evolution (Roden-Tice et. al, 2012)
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Conclusion

This project added thirteen AFT ages to a local data set on Mt. Washington. It further 

contributed to a greater regional data set of AFT ages throughout New England and upstate New 

York. Ages ranged from  148.0 +/- 15 Ma at 1914.1 m to 89.2 +/- 10 Ma at 539.5 m. Ages revealed 

a west-down tilt when compared to ages on the eastern Auto Road that fits into a greater regional 

west-down tilt when compared to ages from Roden-Tice et. al (2009) throughout New Hampshire 

and Roden-Tice and Tice (2005) into the Adirondacks.

Mt. Washington Cog Railroad ages themselves revealed a period of rapid exhumation 

from approximately 125 to 80 Ma that is synchronous with magmatic events. These events include 

the Peri-Atlantic Alkaline Pulse, formation of the Monteregian Hills and New England-Quebec 

Igneous Province and the intrusion of alkalic dikes proximal to Mt. Washington documented 

by Kindley (2011) and Gardner (2010). Local asthenospheric upwelling is thought to have 

reactivated zones of crustal weakness and, along with the onset of paleo-drainage systems, 

contributed to this period of rapid exhumation. 

While Mt. Washington provided the ideal location for this study given the topographic 

variation, other mountains in the Presidential Range of New Hampshire provide significant 

enough topographic relief to collect AFT ages by change in elevation. This would provide further 

insight to the local extent of trends on Mt. Washington.

With the archived samples from both the Auto Road and Cog Railroad, zircon fission 

track ages could be analyzed. Zircon has a closure temperature of 200°C as composed to apatite 

at 100°C. This would extend the cooling history further back in the Mesozoic. This would add 

further texture to the Mesozoic cooling history of the Presidential Range region.
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Figure A .2: CR2 Data Sheet 2
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Figure A .4: CR2 Grain Sheet 1
Figure A .5: CR6 Data Sheet 1
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Figure A .6: CR6 Data Sheet 2
Figure A .7: CR2 Grain Sheet 1
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Figure A .8: CR2 Grain Sheet 2
Figure A .9: CR7 Data Sheet 1
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Figure A .10: CR7 Data Sheet 2 Figure A .11: CR7 Grain Sheet 1
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Figure A .12: CR2 Grain Sheet 2

Figure A .13: CR11 Data Sheet 1
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Figure A .14: CR11 Data Sheet 2
Figure A .15: CR2 Grain Sheet 1
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Figure A .16: CR2 Grain Sheet 2

Figure A .17: CR13 Data Sheet 1
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Figure A .18: CR13 Data Sheet 2

Figure A .19: CR13 Grain Sheet 1
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Figure A .20: CR13 Grain Sheet 2
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