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Abstract

The unroofing rate of Mt. Washington, NH is being calculated using apatite fission-track
ages (AFT) of thirteen samples along the Cog Railroad on Mt. Washington’s western slope using
the relief method. Samples were collected approximately every 500 vertical feet from the summit
(6280°) to the base (1770°) of Mt. Washington. The AFT ages determined thus far are: 148.0 +
15Maat 1914 m, 147.2 £ 15 Ma at 1886.7 m, 114.5 +/- 18 Ma at 1743.5 m, 114.4 +/- 12 Ma at
1624.6 m, 119.3 +/- 13 Ma at 1482.2 m, 126.6 +/- 14 Ma at 1392.0 m, 114.4 +/- 16 Ma at 1325.9
m, 118.4 +/- 12 Ma at 1190.6 m, 110.1 +/-13 Ma at 1089.7 m, 102.9 + 11 at 930.6 m, 96.4 +/- 9
Ma at 842.8 m, 86.4 +/- 8 Ma at 647.1 m and 89.2 + 10 at 539.5 m. These ages are analogous to
ages determined along Mt. Washington’s Auto Road at similar elevations. These values yield an
exhumation rate of 0.022 mm/yr between approximately 150 Ma and 80 Ma, which is comparable
to the exhumation rate of 0.027 mm/yr calculated for the eastern slope of Mt. Washington along
the Auto Road (Roden-Tice et. al., 2011) during this time. Trends in exhumation correlate with
with late Cretaceous regional magmatic events associated with local asthenospheric upwelling

that reactivated zones of crustal weakness.
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1.1 Purpose

The purpose of this study is to obtain cooling ages from samples along the western
edge of Mt. Washington, New Hampshire using apatite fission-track (AFT) dating. The results
from the age dating can be used to constrain the unroofing history of Mt. Washington through
the Mesozoic and Cenozoic. This study completes an AFT project for Mt. Washington and
contributes to the understanding of Mesozoic and Cenozoic low-temperature cooling in the
Northern Appalachians. It also illuminates the North Atlantic margin’s cooling history and path
to the current topographic setting.

This study is based on data from 13 samples along the Cog Railroad on the western slope
of Mt. Washington; seven are from the Littleton Formation, five from the Rangeley Formation
and two from the Bretton Woods Granite. The summit sample is at 1914 m elevation and the base
sample is at 540 m in elevation, thus the study covers a 1374 m change in elevation.

Given this elevation change, the relief method is employed to determine the exhumation
rate. Mt. Washington is among the few sites in the Northern Appalachian range that provide
enough topographic variation that allow for the comparison of age v. elevation that is used to

interpret exhumation rates.
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1.2 Apatite Fission Track Dating

Apatite Fission-Track (AFT) dating is used to determine the low-temperature history of a
sample. Apatite is a commonly occurring mineral that has significant amounts of Uranium. When
23U spontaneously decays in apatite minerals, it creates a trail of damage, or fission-track, in the
crystal lattice (Figure 1.1) that anneal at or above apatite’s closure temperature, approximately
100°C (Roden-Tice and Wintsch, 2002). If the apatite is reintroduced to these high temperatures,
the AFT clock essentially resets itself and, therefore, starts above the 100 °C isotherm. Because
the spontaneous decay half-life for **U is a known constant, the total number of fission tracks
relative to initial abundance is proportional to the cooling age, or time at which the sample passed
through the 100°C isotherm.

Between the temperatures of 60°C and 100°C, the partial annealing zone (PAZ) (Roden-
Tice and Wintsch, 2002), the tracks will shorten in length based on the duration of time spent
at a certain temperature within this range (Figure 1.2). A frequency distribution of track lengths
informs the low temperature-time path of the sample through the PAZ. This time-temperature
path is constrained by the AFT age, thus a comprehensive reconstruction of the low-temperature

history can be created.

Initial CGrystal

Tracks Devalop

Figure 1.1: Apatite Fission Track development over time. Over times, tracks develop
as 28U decays over time. When tracks get exposed to temperatures above 100 °C,
tracks anneal; between temperatures 60 °C and 100 °C tracks partially anneal.
(d’Alessio et. al, 2003)
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Apatite is a commonly occurring mineral that can be produced under various conditions.
It is frequently found in the metamorphic formations and igneous intrusions throughout New
England. The general equation for apatite is Ca (PO,),(ECL,OH); the variations in E Cl and OH
concentrations have a significant impact on the minerals’ exact closure temperature. Fission
tracks in Cl-rich apatites (chloroapatite) anneal at higher temperatures than F-rich apatites

(fluoroapatite) (Warnock, et. al, 1996).
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Figure 1.2: Comparison of full tracks and partially annealed
tracks after time in the PAZ (Geotrack, 1987)

1.3 Geologic Setting
1.3.a Regional Geologic Setting

The Presidential Range sits in the Central Maine Terrane (CMT) which stretches from
Maine to Connecticut and is bounded to the northwest by the Bronson Hill Anticlinorium (BHA)
and to the southeast by the Campbell Hill-Nonesuch River Fault (Figure 1.3). BHA is composed
of two Ordovician volcanic sequences with Silurian and Devonian marine sediments overlying
the volcanics (Eusden et al., 1996, Bennett et al., 2006).

The southern bound is the Massabesic Gneiss Complex; the eastern bound is comprised
of Ordovician belts of metavolcanic and metasedimentary units that were deposited on the
Laurentia-Gondwarna boundary (West et. al, 2007). From west to east the subregions of the

CMT are the Bronson Hill Anticlinorium, Kearsage Central Maine Synclonorium (KCMS),
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Central New Hampshire Anticlinorium (CNHA) and the Lebanon Antiformal Syncliorium (LAS)
(Eusden, et.al., 1996).

The CMT and neighboring terranes are naturally linked to a series of orogenies eventually
forming Pangea. In the middle Silurian, the Iapetus Ocean began to close after a series of
mountain-building events during the Taconic Orogeny (Figure 1.4). Land masses included in the
Taconic Orogeny were Gander, Avalon and Laurentia. The closing of the Iapetus Ocean accounts
for the sedimentation of marine turbidites that now partially make up the CMT. In the early
Silurian, the Salinic orogeny began as back-arc basins from the Ordovician subducted beneath
Laurentia.

In the early Devonian, the now Laurentia/Gander landmass created in the first stages of
the Salinic Orogeny collided with Avalon (Figure 1.4). This was the beginning of the Acadian
Orogeny and the final closing of the Iapetus Ocean basin. During this time, ocean crust was
subducting beneath the Laurentia/Gander landmass resulting in a long period of Presidential
Range deformation through 355 Ma (Hibbard et. al, 2007, Van Staal et. al, 2009).

The central Appalachians were deformed further in the late Mississippian when
Gondwanaland collided with Laurentia, closing the pre-existing Rheic Ocean. This end of this
orogeny, the Alleghenian Orogeny, was the final stage in the creation of the supercontinent
Pangea, which lasted for approximately 75 my. Pangea eventually broke up during a series of
rifting events starting 210 Ma (Figure 1.5). During the period of intraplate rifting, deformation
and normal faulting occurred within plates (Faure et al., 2006), including reactivation of
previously existing thrust faults originated during the initial mountain building events (McHone
and Butler, 1984).

Some of these reactivated faults are particularly relevant to the Mt. Washington setting.
The Presidential Range is in a region bounded between the Norumbega Fault to the southeast
and the Amonoosuc Fault to the west (Figure 1.3). The Norumbega Fault extends from northeast
southwest coastal Maine. It is a system of orogen-parallel faults and shear zones 400 km in length

and up to 40 km in width activated in the middle Devonian during the Acadian Orogeny. and
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Figure 1.3: Generalized map of New Hampshire terranes, including Presidential Range location
relative to regional setting (Wintsch et. al, 2003)
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A. 470 Ma: Plate configuration predating the Taconic Orogeny
Thelbazme Fallz Arc

and Felated Volcanic Focic o
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B. 450 Ma: The end of the Taconic Orogeny and formation of Bronson Hill Arc

Coewen Mountun: Bromsen Fall Ar:
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C. 420 Ma: Silurian and Devonian marine sediment deposition
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Figure 1.4: Sequential schematic of Early Ordovician through Early Devonian orogenies,
sedimentation and volcanism oriented west-to east (Eusden, 2010)
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oriented perpendicular to orogenic stress in a Ne-SW direction (Ludman and West, 1999). The
Amonoosuc Fault lies on the boundary of New Hampshire and Vermont and extends from
northern New Hampshire into southern Connecticut. Its origins and activity are similar to that of
the Norumbega Fault.

While these faults were principally initiated by orogenic means, forcings from the
asthenosphere outside normal collisional tectonism dictated fault behavior. Reactivation of the
Norumbega and Amonoosuc Faults, and postorogenic extension, have affiliated the reactivation
of these faults, along with other zones of crustal weakness, with some regional igneous provinces
formed from localized asthenospheric upwelling (Faure et al., 1996). These events are similarly
connected to the intrusion of primarily mafic dikes throughout the region, which loaded flood

basalts into the rift basins of prior faulting (McHone, 2000).

1. 3. b Local Geologic Setting

The metamorphic formations that are included in this study are the Rangeley and
Littleton Formations. The Rangeley Formation is Silurian in age, identified from shelly fauna
in the formation (Moench and Zartman, 1976). Its origin is in the deep marine sediments of
the Kronos Ocean. It is a gray gneiss that is subdivided based on compositional variations. The
Rangeley Formation incorporates different units, including calc-silicate granofels, rusty schist and
amphiboles (Eusden, 2010). These blocks range in size from cm to m scale.

Formations not included in the study area, but chronologically following the Rangeley’s
deposition, are the Perry Mountain, Smalls Falls and Madrid Formations. Also Silurian in age,
these formations originated from sediments deposited above the Rangeley formation in the
Kronos Ocean (Eusden, 2010). These formations are made of quartzites, rusty schists and calc-
silicate granofels; they primarily occur in thin, discontinuous bands.

Above these formations is the Devonian Littleton Formation. The Littleton formation is
derived from mud and sand sediments deposited in the deep Kronos Ocean approximately 410

Ma. Both have subsequently been metamorphosed during the Acadian Orogeny and now appear
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as schists (from the mud deposits) and quartzites (from the sand deposits). The metasedimentary
formations have undergone significant periods of deformation, resulting in a series of folds and
faults throughout the range.

The youngest and lowest topographic unit in this study area is the Paleozoic Bretton
Woods Granite, approximately 360 million years old. The age corresponds to two other low-
elevation granites in the area: The Peabody River and Bickford Granites. They are approximately
40 million years younger than the peak of deformation and metamorphism associated with the
onset of the Acadian orogeny.

These igneous intrusions originated from the release of the tectonic stress on the
Presidential Range, which caused the range to collapse. As this occurred, the base of the crust
rose and was heated by the mantle. The base of the crust then began to melt and new magma
rose into the crust, creating these granitic intrusions (Eusden, 2010). Because the Bretton Woods
granite and corresponding granites were formed at the end of the orogeny they were not subject

to the extreme metamorphism and deformation of the Littleton and Rangeley Formations.

1.4 Regional Thermochronology and Paleozoic to Mesozoic Exhumation
Periods of long erosion and exhumation ensued from the Pangea rifting. While some
of the unroofing can be attributed to Mesozoic rifting, other forcings were acting upon the
Appalachinan Range causing it to decrease in elevation and shape the modern topography.
Calculated exhumation rates detail the unroofing history and can potentially explain the driving
erosional forces.
Based on “°Ar/ *Ar mineral ages by the Auto Road using the relief method, Eusden and
Lux (1994) calculated an exhumation rate of 0.04 mm/yr in the Middle Pennsylvanian through
Early Permian. This slow initial exhumation was associated with the Acadian orogeny and
stopped approximately 305 Ma. Eusden and Lux (1994) concluded that this initial exhumation
did not create the present topography of the Mt. Washington massif, and thus a renewed period of

exhumation occurred sometime after 274 Ma.
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Exhumation resumed in the Jurassic period since when Doherty and Lyons (1980) have
calculated an average erosion rate .031 mm/yr. This was calculated with a geothermal gradient
of 25 to 30 °C. Therefore, the depth of emplacement ranged from 5.3 to 7.6 km in the Middle
Jurassic to 3.0 to 3.6 km in the Middle Cretaceous. Ten Jurassic and Cretaceous plutons were
analyzed using apatite fission tracks and zircon fission tracks of the White Mountain Plutonic-
Volcanic Series. Site locations are scattered throughout New Hampshire and a few are in the
border of Vermont. With the “*Ar/ **Ar ages a preliminary exhumation reconstruction can begin
to constrain the average cooling history from the Late Paleozoic into the Mesozoic.

Doherty and Lyons (1980) acknowledged that .031 mm/yr was a calculated average and
periods of faster or slower exhumation were likely to have occurred throughout this time. Roden-
Tice et. al (2009) collected new AFT ages and reexamined Doherty and Lyons’ data to conclude
that later in the Mesozoic, after the initial Jurassic exhumation renewal, there was a period of
faster unroofing with rates ranging from 0.055 to 0.118 mm/yr in the Early Cretaceous. Rates
returned to the relative slower rate of 0.01 to 0.04 mm/yr in the Late Cretaceous. Doherty and
Lyons’s (1980) erosion rate is comparable to that documented by Roden-Tice et. al (2009), who
calculated an average erosion rate of 0.03 to 0.04 mm/yr from 100 to 60 Ma.

From the late Jurassic to the Early Cretaceous, exhumation rates stopped acting
uniformly throughout northern New England as postorogenic extension was initiated (Figure
1.3). Cretaceous extension can result in both for the region’s unroofing during this time and the
reactivation of faults that led to localized differential unroofing.

West and Roden-Tice (2003) obtained AFT ages for opposite sides of the Norumbega
Fault Zone in southern Maine. Their analysis indicated differential erosion rates on either side of
the fault. AFT ages on the western side of the fault ranged from 113 to 89 Ma, while ages of the
eastern side ranged from 159 to 140 Ma. This discontinuity was explained by the reactivation of
the Norumbega Fault in the Late Cretaceous less than 80 Ma and was localized to the northern
Casco Bay region of Maine.

AFT ages along other northern New England faults document localized reactivation
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during the late Cretaceous. While there is no significant offset documented in AFT ages across
the Ammonoosuc fault in the Connecticut River valley, there was a significant AFT age offset in
northwestern New Hampshire between the Bill Little, Amonoosuc, and Northery Hill faults. This
is also indicative of Cretaceous normal displacement at times <80 Ma (Roden Tice et. al., 2009).

All known studies present a relatively similar picture of Mesozoic average exhumation
into Cretaceous differential unroofing and the reinstatement of uniform exhumation
approximately 60 Ma. This is further evidenced in data explicitly applicable to this study.

AFT ages along Mt. Washington’s Auto Road, on the eastern side of the mountain yield
an average erosion rate of 0.2 mm/yr between ~160 Ma and ~100 Ma. Between ~140 Ma and
~120 Ma there was a period of slower erosion, 0.01 mm/yr, bounded by 0.03 mm/yr from ~140
mm/yr from ~140 Ma to ~160 Ma and 0.04 mm/yr from ~100 Ma to ~120 Ma. These generalized
values, based solely on the AFT age from summit to base, are comparable to the average erosion
rate, 0.04 mm/yr from 304 Ma to 274 Ma determined by Eusden and Lux’s (1994) “°Ar/ ¥ Ar
ages. It is also comparable to Doherty and Lyons’ (1980) erosion rate of 0.03-0.04 mm/yr since
the Jurassic (Roden-Tice et. al, 2011).

There is a large discrepancy, however, in the calculated geothermal gradient. Where
Doherty and Lyons based their study on a geothermal gradient of 25 to 30°C, Roden-Tice et.
al (2011) found an average geothermal gradient of ~ 40 °C during the Mesozoic. The relief
method yielded a geothermal gradient of ~ 36 °C while the time-temperature history yielded a
geothermal gradient of ~ 43 °C. Roden-Tice et. al (2011) extrapolated the data to extend back
to ~ 300 Ma. These values are significantly higher than that of both Doherty and Lyons’ (1980)
study and Roden-Tice et.al’s (2009) calculation that also assumed a geothermal gradient of ~25 —
30 °C for the same time period.

From 120 Ma to 60 Ma erosion patterns changed relative to the modern topographic
profile. While samples from the summit of Mt. Washington and topographic middle of the
mountain travel through the PAZ relatively synchronously, indicating uniform exhumation, the

sample from the near Pinkham Notch diverges at approximately 120 Ma. The sample at the base
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moved through the PAZ faster, cooling at approximately 0.6 °C/my from 100 Ma to 60 Ma while
the summit and middle samples were cooled at 0.2 °C/my during this time.

Two theories exist to explain this period of differential exhumation. One attributes it to
differential erosion from a paleo-drainage system. The other theory suggests that faults were
reactivated in the region causing localized uplift. These two theories, however, are not mutually
exclusive and a combination of the two is possible, if not more likely.

As studies along faults both east and west of the Presidential Region have revealed late
Mesozoic fault reactivation a similar event is not unlikely, although it would require a fault to
exist that spatially separates Mt. Washington’s summit from base. This would allow the summit
to stay put throughout the period of differential exhumation, while the base rocks were tilted
upwards thus exhibiting higher exhumation rates.

AFT ages from this study add to the understanding of both regional and local Mesozoic
and Cenozoic topographic setting and development. With the addition of AFT ages varying in
elevation, previously limited to Roden-Tice et. al’s (2011) study, an even more comprehensive

chronology can be constructed.
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Methods

2.1 Field Sampling

Thirteen samples were collected from the summit of Mt. Washington at 2523.7 m to near
the base at 539.5 m. during one day of field work in mid-June, 2011. Samples were collected
approximately every 150 m. in vertical elevation along the Cog Railroad on the western ridge of
Mt. Washington (Figure 2.1). The sites were chosen from elevation change determined by Garmin
Etrek GPS unit. At each site, two sample bags were filled using both a 10 pound sledge hammer
and smaller rock hammer.

The thirteen sample sites crossed through two metamorphic rock formations and one
granitic intrusion. Samples CRO1 through CR 07 (starting at high elevation) are from the Littleton
Formation (Figure 2.2). Samples CR08 through CR11, intermediate elevations, are from the
Rangeley Formation (Figure 2.2). Samples CR12 and CR13, at low elevations, are from Bretton
Woods Granite (Figure 2.2). As mentioned previously, the rock formations are not integral for the
purpose of this study. It is more important to note that each of samples rock is likely to contain

enough apatite to perform this work.
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2.2 Crushing and Pulverizing

At least one hand sample from each site was archived prior to crushing. Remaining
sample was crushed with a Braun Chipmunk jaw crusher (Figure 2.5). To eliminate cross-sample
contamination the jaw crusher would be completely vacuumed, blown with compressed air
and swept. After the initial cleaning, a small fragment of the sample would be crushed before
another around of cleaning. If a sample is, then, contaminated with the previous run it would be
contaminated with itself, thus reducing the risk of error in later results. During both crushing and
pulverizing, an external vacuum was placed within the hood to remove airborne dust produced
by the working machines. The cleaning process was extensive and most essential here because of
the necessity to preserve the purity of all samples.

After the second round of cleaning, the remaining sample was crushed resulting in
approximately 1 cm diameter fragments. Samples too large to fit in the mouth of the crusher
were physically crushed first with a hammer before mechanically crushing them. If this was
done, the surface where the rock was crushed was also extensively cleaned with a vacuum. After a
sample was crushed, the resultant fragments were collected in 1L plastic containers. Each sample
yielded different quantities of crushed rocks, but 1L was chosen to pulverize, while the remaining
fragments were archived.

Using a 2hp belt drive Bico disc mill 1L of each sample was then pulverized with ceramic
plates. An identical pre-screening cleaning was conducted to reduce the risk of cross-sample
contamination. Once cleaned for a sample, the 1L of crushed rock was run twice through the
pulverizer. First, the ceramic discs were approximately 0.5 cm apart which resulted in a mix of
coarse sand size grains and powder. For the second run, the discs were approximately 1 mm apart

resulting in fine sand to silt size grains and powder.
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Figure 2.3: Chipmunk Crusher and Pulverizer

2.3 Sieving Samples

The pulverized samples were sieved using a fine cloth sieve. This removed the larger
grains, primarily micas that were not able to be pulverized into a fine grain with the Bico discs.
The same cloth sieve was used for all samples; between samples the cloth was washed with
hand soap and scrubbed with a brush. It was blown with compressed air to dry and remove any

remaining grains from a previous sample.

2.4 Rogers Table Separation
A Rogers Table was used to separate the pulverized and sieved material by specific gravity.
To prepare, the table was scrubbed with a plastic brush and rinsed thoroughly to ensure that all

residual grains were washed out. The table was cleaned before each sample was run. In addition,
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buckets where sediment was collected were washed and rinsed. Water pressure combined

with appropriate levels of shaking separated the minerals. When a sample was run, grains

with intermediate and heavy specific gravity were collected in the smaller collecting buckets
together while grains with light specific gravity were collected separately in the large bottom
bucket (Figure 2.6). After one run, the light grains were archived back in the 1L containers.
The intermediate and heavy grains were run again to separate out any residual light grains. The

remaining intermediate and heavy grains were dried in small aluminum trays.

Lighter material
washes to the side

darker) collects at
the bottom

Figure 2.4: Rogers Table Specific Gravity Separator; Sample CRO8 is being
run
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2.5 Magnetic Separation

After samples were dried, they were separated by magnetic susceptibility. A hand magnet
was used to initially separate all the extremely high-magnetic minerals. The high-magnetic
fractions were archived.

The samples were then run through a Frantz Isodynamic Magnetic Separator. The track
was set with a forward tilt of 15° and a side tilt of 25° (Figure 2.5). Before each sample was run,
the Frantz was disassembled and cleaned with compressed air and Kimwipes. The samples were
first run at 0.5 A. This removed the highly magnetic minerals, which were archived. They were
then re-run at 1.2 A. Apatite had a magnetic susceptibility of 1.3 A (Rosenblum, 2000); at 1.2 A
was preserved while slightly more magnetic minerals were removed (Figure 2.6). Quartz, among

others, remained after this step. All magnetic fractions were archived.

Steps 2.6 to 2.10 took place at SUNY Plattsburgh

2.6 Heavy Liquid Separation

LST (containing lithium heteropolytungstates) can be used for heavy liquid separation
with a recommended density of 2.85 g/mL at 25°C was used for heavy liquid separation the initial
separation (Figure 2.7). Apatite and the remaining heavy separates were then separated using
Methylene Iodide (MI), which has a specific gravity of 3.32 g/mL. This second liquid is used to
separate the apatites from the zircons, as zircon has a specific gravity greater than the MI and
apatite less. Remaining grains were cleaned with 100, 300 mesh sieves (.152 mm and .044 mm

respectively).

2.7 Grain Mount and Polishing

Grains were mounted on petrographic slides in epoxy; each sample was measured to be a
1 cm by 1.5 cm size rectangle. Using 400 grit paper, the surfaces of the grains were cut to expose
the apatites before being briefly polished with 600 grit paper. 9 micron and 1 micron diamond

paste was, sequentially, used to polish the mounts. Polishing was finalized with 0.3 micron AL,O,
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powder twice for 3+ minutes until smooth.

2.8 Etching Tracks
Mounted slides were submerged in 5M HNO, for 20 seconds at 21°C. This revealed

spontaneous fission tracks in the apatite grains.

2.9 External Detector Attachment
The mica detector was cut with an Exacto-Knife to fit over the epoxy mount; the mica was
cut to be slightly smaller in size than the 1 cm x 1.5 cm rectangle mount. The samples and the

detectors were taped together and tightly bound using the dull end of the Exacto-Knife.

2.10 Packaging Samples

The thirteen samples, with attached mica detectors, were stacked and bound with tape.
Additionally, CN1 dosimeter glasses with attached mica detectors were placed at the top and
the bottom of the stack in order to later monitor neutron flux during irradiation. Samples CRO01
to CRO8 were in a package with CN1 L dosimeter. Samples CR09 to CR13 were in a separate
package with CN1 N dosimeter. Together, the stack was packaged in a polyTRIGA tube and sent

to Oregon State University.

2.11 Irradiation and U** Track Etching

The samples were irradiated at the Oregon State University TRIGA reactor using a
nominal flux of 8.0 x 10" n/cm? This induced U** fission tracks in the samples; only the tracks in
the mica replicas were etched after this point such that U*®tracks are only visible on the apatite

samples and U** tracks are only visible on the mica replicas.

2.13 Zeta Calculation

In order to quantify potential error, tracks on known samples were counted. The samples
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used were Durango apatite from Durango, Mexico. Tracks on twenty grains were counted for
Durango A and Durango B over a given area for each grain. Tracks were counted on the replica
of each grain over the same area. Brandon age calculation computer program generated ages

for each grain and averaged them. These ages were compared to the known age of the sample to
define personal error. As this was done for both Durango A and Durango B, the two error scores
were averaged to attain one standard zeta score to be used for all calculations of Mt. Washington

samples.

2.14 Fluence Calculation

In order to later accurately calculate AFT ages, the fluence was determined for each
package containing Mt. Washington samples. Approximately 1000 tracks were counted for each
mica glass (four in total at the top and bottom of each package). The exact number counted
was divided by the total area tracks were counted within to reach 1000, giving a total density of
tracks within the glass. This is proportional to the flux of particles intersecting the mica glass.
Fluence for the individual samples was determined by interpolating between the two measured

dosimeters.

2.15 Track Counting and Calculation

For each sample, tracks on approximately 20 grains were counted with an Olympus
BMAX 60 microscope at x 1600. For each grain, tracks were counted within in a certain area
representing the spontaneous fission. The same grain on the mica replica, representing the
induced tracks, was found and tracks were counted within the same area.

These values, along with the area counted, were entered into the Brandon age calculation
program. This program, using the counted track values, the decomposition half-life of U**®*and
relative abundances of U** to U**® generated ages for each grain. The program also takes into
account the previously determined personal zeta score (which is constant for all samples) and

fluence (which differs for each sample). The average for all of the grains was used for the final
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measured age, indicated by the program as the central age. Based on the zeta score, an error

histogram was also generated.

2.16 Track Measurement

Track lengths were measured for samples CR0O1 (summit) and CR13 (base). 77 tracks were
measured for CR0O1 and 57 tracks were measured for CR13. Data was then input into a386 Zenith
PC to generate track length frequency histograms. These histograms were used to model the time

temperature path of the sample through the PAZ using Cal Comp Model 31120 program.

2.17 Microprobe Composition Analysis

Slides were prepared for Samples CR13, CR12, CR10, CR08, CR06 and CRO1. These
samples represent all formations being studied. Once mounted in epoxy, the slides were polished
first with 400 and 600 grit papers. Slides were then polished with 60/90 grit silicon carbine and
500/600 grit silicon carbide. The polishing was finalized with Alumina G. Slides were finally
carbon coated. F and P were calibrated using an apatite standard while Na and Cl were calibrated
with a tungtapite standard. Samples CRO1, CR08, CR12 and CR13 were scanned with a MAC
4008 electron microprobe at UMaine Orono to determine the weight percent of F, Cl and Ce.
For CRO1, five grains were analyzed with ten points run for each grain. For CRO08, three grains
were analyzed with seven points run for each grain. For CR13, five grains were analyzed with ten

points run for each grain.
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Results

3.1 Microprobe

Grains from samples CR01, CR08, CR12 and CR13 were analyzed for F, Cl and Ce
content. Grains C 01 is Littleton Formation. Grains CR08 is Rangeley Formation and CR12 and
CR13 are Bretton Woods Granite. The five grains analyzed for CRO1 yielded an average F weight
percent of 3.41, Cl weight percent of .029 and Ce weight percent of 0.03 (Figure 3.1). The three
grains analyzed for CRO8 yielded an average F weight percent of 4.14, Cl weight perfect of 0.00
and Ce weight percent of .12 (Figure 3.2). The five grains analyzed for CR12 yielded an average
F weight percent of 3.42, Cl weight percent of 0.03 and Ce weight percent of 0.08 (Figure 3.3).
Only one grain was analyzed for CR13 and had a Fl weight percent of 3.96, Cl weight percent of
0.00 and Ce weight percent of 0.05 (Figure 3.4). Given that these are all fluoroapatites, the closing

temperature of apatite does not need to be adjusted to account for excess Cl content.

3.2 Zeta Score

Standard deviations of age are based on the zeta score determined off a measured variance
from a known standard (Durango apatite of Durango, Mexico). The zeta score was determined on
samples 2A, 6A, 7A, 11A and 13A. The mean zeta was determined to be 101.6 +/- 7.18. This is an
average of the error calculations from two Durango samples. All other samples are calculated with

a zeta score of 98.4 + 1.7 from Roden-Tice.

3.3 Fluence

For Package PL061, the measured fluence for the top and bottom mica glasses, acting as
fluence dosimeters for the package, were 3.8403E+06 at the top (CN1 N) and 4.1310E+06 at the
bottom (CN1 O). Fluence values for the samples within this package were interpolated (Table 3.5)
accordingly. This package included samples CR09 to CR13.

For Package PL060, the measured fluence for the top mica glass was 3.7431E+06. The
fluence for the bottom mica glass was 4.3383E+06. Fluence values were interpolated in this

package for samples CRO1 to CR 08 (Table 3.6). These values are similar to those determined by
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Roden-Tice, therefore can confindently be used to compared ages between Anderson and Roden-

Tice.

3.4 Ages

Thirteen samples from the Cog Railroad, Mt. Washington yielded ages ranging from 148.0
+/- 15 Ma to 89.2 +/- 10 Ma, therefore ranging from late Jurassic to Late Cretaceous. The samples
yielded an average exhumation rate of .0215 mm/yr during this period (Table 3.7).

Near the summit, elevations 1914.14 m (CR-01) and 1886.71 m (CR-02) yielded ages,
respectively, 180.0 +/- 15 Ma and 147.3 +/- 25 Ma. The latter age was confirmed by Roden-Tice’s
determined age of 147.2 +/- 15 Ma at the same elevation.

Between 1743.5 m elevation and 1089.7 m elevation, ages show small variations and range
between 110.1 +/- 13 Ma and 126.6 +/- 13 Ma. The previously established trend of increasing age
with elevation is similarly neglected during this period (Figure 3.1). Ages for elevations 1743.5
m (CR03), 1624.6 m (CR04), 1482.2 m (CR05), 1392.0 m (CR06), 1325.9 m (CR07), 1190.6 m
(CR08) and 1089.7 m (CRO09) are, respectively, 114.5 +/- 17 Ma, 114.4 +/- 12 Ma, 119.3 +/- 13
Ma, 125.8 +/- 22 Ma, 117.7 +/- 22 Ma, 118.4 +/- 12 Ma and 110.1 +/- 13 Ma. CR06 and CRO7 ages

were confirmed by Roden-Tice. The Roden-Tice ages were 126.6 +/-15 Ma for CR06 and 114.4

+/- 16 Ma.
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Figure 3.3: AFT Ages with exhumation rates separated by elevation
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Bottom samples are similarly all within error of each other. Elevation 930.6 m (CR10)
yielded an age of 102.9 +/- 11 Ma. Elevation 842.8 (CR11) yielded an age of 96.4 +/- 9 Ma. This
sample had a confirmed age of 96.4 +/- 9 Ma, calculated by Roden-Tice. The lowest elevation
samples, Bretton Woods Granite, had ages 86.4 +/- 8 Ma (at elevation 647.1; CR 12) and 88.7
+/- 16 Ma (at elevation 539.5 m; CR13). Roden-Tice calculated an age of 89.2 +/-10 Ma for this

sample.

3.5 Exhumation Rate

The samples yield an average exhumation rate of .0234 mm/yr during this period.
Exhumation, however, does not appear to be constant throughout. There is no obvious separation
of distinct exhumation rates, but there is one clear trend from 110 Ma to 125 Ma, where all AFT
are nearly uniform (Figure 3.2). Samples CR03 to CR09 are represented in this period, ranging in
elevation from 1743.5 m to 1089.7 m. The exhumation rate of these samples jumps to .03924 mm/
yr. Keeping consistent with this separation, the remaining low elevation samples, CR10 to CR13
yield an exhumation rate 0f.0350 mm/yr. The high elevation samples, CR01 and CR02 yield an
exhumation rate of .0342 mm/yr. These upper two samples, however, are extremely close both in
elevation and age that this upper exhumation rate is relatively insignificant.

If the exhumation separations presented by Roden-Tice et. al (2011) are followed, groups
are based on similarities in elevation more so than ages. Doing this, Samples CR01 to CR04 would
yield an exhumation rate of .0285 mm/yr between elevations 1914.14 m and 1624.58 m (Figure
3.3). Samples CRO5 to CR09 would yield an exhumation rate of .0427 mm/yr between elevations
1482.24 m and 1089.66 m. Finally, samples CR10 to CR13 would again be grouped together

yielding that exhumation rate of .0342 mm/yr between elevations 930.55 m and 539.50 m.

3.6 AFT Ages of Separate Rock Units

The Littleton Formation encompasses samples CR01 to CR07 from elevations 1914.14 m

to 1325.88 m. Littleton Formation ages range from 148.0 +/- 15 Ma to 114.4 +/-16 Ma (Figure

44

3.4). Rangeley Formation encompasses samples from CR08 to CR11 from elevations 1190.55 m
to 842.77 m. These ages range from 118.4 +/- 12 Ma 96.4 +/- 9 Ma. Bretton Woods Granite is
represented in samples CR12 and CR13 from elevations 647.09 m to 539.50 m. Bretton Woods
Granite ages range from 89.2 +/- 10 Ma to 86.4 +/- 8 Ma. Evaluating the differences in slopes
between rock type does not yield any significant trends so it can be assumed that lithology does

not play a role in differences of exhumation rate throughout the study period.

3.7 Track Length Modeling
Track lengths were measured for samples CR1 at elevation 1914.1 m and CR13 at 539.5 m.
For CR1, 77 tracks were measured and yielded a mean track length of 12.3 +/-1.8 pm.
Lengths ranged from approximately 6 pm to 17 um. For CR13, 57 tracks were measured and
yielded a mean track length of 13.1+/- 1.2 pm. Lengths ranged from 9 pm to 16 pm. CR1 had a
relatively normal distribution around the mean track length (Figure 3.5), while CR13 was slightly

skewed to the left (Figure 3.6).
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4.1 AFT Ages
AFT ages from the Cog Railroad display a significant period of rapid exhumation that
correlates chronologically with differential exhumation also evidenced in the Auto Road time-
temperature history lasting from approximately 125 Ma to 60 Ma. This period of geologic time
is well documented in the sedimentary record from Georges Bank off of the North Atlantic
continental margin. As these sediments are derived from mountainous interior of New England
there should be a temporal correlation between rapid sedimuent influx offshore and rapid
exhumation on land. AFT ages from this study also align with a local and regional tilt when
compared with AFT ages throughout New England and northern New York. These models
typically invoke fault reactivation and/or paleo-drainage systems both of which contribute to the
D ) ) measured accelerated and differential exhumation.
1SCUSS101n
4.2 Rapid Exhumation
Contrary to the separation of exhumation rates from the Auto Road proposed by Roden-
Tice et. al (2012) (Figure 4.1), comparing the Cog Railroad ages suggests that - while times
of different exhumation are evident - grouping data by AFT age rather than elevation is more
significant. This teases out the trend of rapid exhumation from approximately 125 Ma to 110 Ma.
Samples between 1743.5 m and 1089.7 m show a period of rapid exhumation documented with
ages ranging from only (not respectively) 126. 6 +/- 15 Ma to 110.2+/- 13 Ma.
A similar trend it evident in Auto Road samples, with ages between elevations 1762 m and
1173 m ranging from 143.8 +/-19 Ma to 123.5 +/- 14 Ma (Figure 4.2). Although there is a gap of
approximately 10 my, consistent with the general offset between sample sets, rapid exhumation
evidenced from both Cog Railroad and Auto Road coincide with magmatic events.This period
lies within the Cretaceous Peri-Atlantic Alkaline Pulse (PAAP) (Matton and Jebrak, 2009). PAAP
describes a surge of alkaline activity during the Cretaceous, specifically from 125 Ma to 80 Ma
(Figure 4.3) that was caused by local shallow asthenospheric upwelling that reactivated zones of

crustal weakness initially formed during Atlantic rift-drift tectonism (Matton and Jebrak, 2009).
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2011)

This further aligns with the formation of the Monteregian Hills alkaline province
(MHAP) in Quebec, Canada to the northwest of Mt. Washington. It consists of nine alkaline
intrusions approximately 124 my old. While the original explanation for the hills was the passage
of North America over the Great Meteor Hot Spot, this theory has been dismissed because of
inconsistencies in the their age relative to the Hot Spot’s path.

McHone (1996) first rejected the hot spot theory and introduced an alternative one
involving alkaline basalts from the mantle occurring in concert with tectonic reactivation of
lithospheric structures. Roulleau et. al (2010) concluded that the hills formed during continental
rifting associated with upper mantle source upwelling.

The MHAP is the northwestern bound to the New England-Quebec Igneous Province

(NEQ), a series that extends into southern New England (Figure 4.4) composed of Cretaceous

50

$19s

eJep yjoq ur uonewnyxa pider fenyusjod jo porrad ayeorpur sadors (sa8y peoy oy ‘A sa8y peoifrey 30D :7'H 2Indry

[ ady

DOET

b

rhaty |

=l d

(2 rh]

Ele il brm {mi)

i
)
£

b
Tl

LT

E0QET

DERTs

.

i) |

BDIDSET

51

o0 D=0



Age ( yaars x 10" )

o

Bl

g [0 ]

110

120

140

150

1680

170

180

180

200

210

220

HUMBER OF PERI-ATLANTIC
ALKALINE OCCURENCES

L |
0 2 4 8 8 10 12 141

] L
6 18

ATLANTIC MAJOR TECTOMIC EVENTS

Major plate reorganisation
= Rapid change in spreading drections in (e Ceniral,
Baudh and Equadcdial regicns of lhe Allandic Deean™ ™"

- &hift in the pole of rotaton during the opening of the
Atlankc™ ™™

= Final separafion of Alnca and Soudh Amenca™ ™

« Bpening of the Equaborial Alantc"

]- Major plate rearganisation + opening of thie Souh AHantic

- RiIQE rearganization in the Central ABamtic’

= Peak in sealloor spreading rates in the Canlral Alantic”

- Rapid changes in plabe matan in the Central and Souh
Atamic™"

Steady-state spreading in the Central Aantc

B

Svailoor spreading begins in the Gentral Abkintic

= CAMP avent: eaddy phases of confinendal breaksup™

Figure 4.3: Timing of PAAP and tectonic activity synchronous with rapid exhumation (Matton and
Jébrak, 2007)

52

gabbro-syenite alkali plutons and dikes (McHone and Butler, 1984). As with MHARP, the source

of the NEQ is asthenospheric upwelling that caused zones of crustal weakness to be reactivated

(Faure et al, 1996).

Local evidence of this reactivation has been recently documented by the presence of a

dike in Huntington Ravine (Kindley, 2011; Gardner, 2010). This dike, the Escape Hatch dike, with

an E-W orientation, is an alkali dolerite, similar to the composition of features in the Cretaceous

NEQ (Figure 4.5). Kindley (2011) asserts, then, that this dike is related to the N-S extensional

stress field throughout New England and into Quebec. Faure et. al (1996) links E-W striking dike

intrusions to the rifting event approximately 125 mya that marks the final stages of the breakup of

Pangea and accelerated plate motion (Figure 4.6). Along with the upwelling, the NEQ-aged dikes

could have introduced increased heat just west of the present day summit, causing the cluster of

Cog Railroad ages not found in the Auto Road data set.

This is all synchronous with the rapid period of exhumation evidenced in AFT ages along

the Cog Railroad. Upwelling from these magmatic events, therefore, is likely to have triggered the

onset of increased rates of exhumation.
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4.3 Differential Exhumation The onset of differential exhumation roughly coincides with the phase of rapid

4.3a Evidence in Track Length Measurement exhumation for middle-elevation Cog Railroad samples between approximately 100 and 125 Ma.

Track length measurements for the summit and base samples yielded nearly identical As middle elevation samples were passing quickly through the 100°C isotherm, they continued to

frequency distributions to the Auto Road measurements (Figure 4.7), allowing the use of the exhume through the PAZ with relative speed.

time-temperature path for the Auto Road samples to be applied to the Cog Railroad samples. Roden-Tice et. al (2012) suggest that this differential erosion is a result solely of a paleo-

The model suggests that the base and summit samples underwent uniform exhumation between drainage system that cut down topography east of the present day summit. The uniformity of

approximately 160 and 130 Ma of 1.5 - 2.0 °C/my (Figure 4.8). At 130 Ma the summit samples, in track lengths between Cog Railroad and Auto Road would suggest that a paleo-drainage system

the case of the Auto Road at elevation 1762 m, was essentially at a standstill, while base same at likewise existed to the west of the present day summit somewhere in the vicinity of Crawford

elevation 510 m experienced exhumation of 0.6 °C/my. At 60 Ma, the base and summit resumed a Notch. This suggets that the initiation of Pinkham and Crawford Notches, and perhaps others in

uniform exhumation of 0.6 °C/my with the current topographic relief in place. the White Mountains, such as Evans and Franconia Notches, began along N-S trending paleo-

river systems in response to magmatic uplift associated with the NEQ Cretaceous magmatic
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Figure 4.8: Time-Temperature Path of Auto Road Samples through PAZ (Roden-Tice et. al,

2012)
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4.3b Sedimentation Record

It would be expected that a large influx of clastic, as opposed to marine-influenced
limestone, would be present to account for unroofing of Mt. Washington during the same time
period of rapid exhumation. There is unlikely to be too long of a response time between rapid
exhumation and sediment inflow to Georges Bank and it would certainly have within the 10-20
my uncertainty of the AFT ages reported here and by Roden-Tice et al. (2012).

Marine core logs reveal an inflow of terrestrial-derived sediment that could be in response
to rapid mountain incision. The stratigraphic column from the USGS Wells Cost No. G-2 from
Georges Bank oft of North Atlantic (Figure 4.9) continental margin shows an influx of clastic
sediment during the Aptian and Albian, between approximately 125 Ma and 100 Ma (Figure
4.10).

This period is marked by a mudstone unit commencing right after the Barremian - Aptian
(130 Ma) border and lasting just past the Aptian- Albian border (112 Ma). The mudstone is
primarily silty with interbeds of sandstone. After this is a thin layer of very coarse, rounded sand
and medium to fine grained sandstone. Stratigraphy above and below these clastic are biogenic
units of limestone, reflecting a quiet water, equatorial setting without significant clastic influx.
Carbonate unites define most of the rest of the Cost No. G-2 stratigraphic column which extends
from the Late Triassic to the Tertiary (Figure 4.10).

The mudstone and sandstone layers that are interpreted here to be synchronous with
the rapid and differential exhumation seen in the Mt. Washington region are relatively atypical.
These sediments can be attributed to this exhumation as sediment from Mt. Washington would
have entered the Gulf of Maine to Georges Bank through the local Cretaceous river systems. The
stratigraphic record also reveals a decrease in organic carbon during this period that would be
related to marine-origin sediments, possibly confirming the mountainous source of sediments
then.

Cost No. G-1 Well similarly reveals an influx of clastic material and decrease in organic

carbon content during the Albian and Aptian (Figure 4.11). This well further shows sandstone
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layers extending to Santonian, approximately 80 Ma, corresponding further with the period
of differential exhumation that lasted from approximately 120 Ma to 60 Ma. It is described as
unconsolidated coarse to very coarse grained sanstone. Surrounding this layer on both sides
are beds of gumbo-like shale, which is along with the limestone some of the most commonly
occuring sediments found throughout the core log. The unconsolidated sandstone, on the

other hand, is more anomalous requiring an external event separate from the regular cycles of
sedimentation.

This explanation could be the increased inflow of sediment from rapid exhumation on Mt

Washington. Like with Cost G-2, the response time is likely to be relatively sudden, therefore an

offset of rapid exhumation on Mt. Washington and sediment appearing in the Georges Bank core
would not be vastly significant.

4.4 Age Gradation

4.4a Local Tilt

Cog Railroad samples from the western slope are all within error of the Auto Road
samples on the eastern side of the mountain. Cog Railroad ages are, however, consistently
younger at comparable elevations; similarly, at comparable ages, Cog Railroad samples are higher
in elevation. While ages are within error, this undeviating relationship is indicative of a westward
surficial tilt during the period of cooling of no more than 5° W (Figure 4.12).
AFT ages from Mt. Washington align with a general trend of AFT ages from Roden-
Tice et. al (2009). These samples were taken along roads and riverbeds, and their elevations are
likely relatively low-lying and vertical relief is therefore negligible. Given that, the westward tilt
evidenced on Mt. Washington can be extended locally through the Amonoosuc Fault on the

New Hampshire/Vermont border (Figure 4.13) . The region of lower-lying elevation surrounding

the Mt. Washington massif is characterized by younger ages, approximately 80 to 90 Ma. Ages
generally increase to both the east (southeast) and west (northwest).
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4.4bRegion Tilt Trend Westward

Adding in data from Roden-Tice and Tice (2005), this tilt extends further westward into
the Adirondacks (Figure 4.14). Excluding age discrepancies on either side of Adirondack faults,
AFT ages increase westward. Again assuming that samples were taken at low-lying elevations
(presumably along riverbeds or roadways), westward-most ages past the Adirondacks correlate
with high-elevation Mt. Washington samples with ages approximately 120 Ma and above. Middle
elevation Mt. Washington Samples at approximately 100 to 120 Ma fall east of the oldest AFT ages
right in and just east of the Adirondacks. Youngest and lowest-elevation Mt. Washington AFT

ages correspond with nearby AFT ages of less than 100 Ma in neighboring Vermont.

4.4c Region Tilt Trend Southward

This data could further fit into a regional W-E age gradation proposed by Roden-Tice
and Wintsch (2002) based on AFT and ZFT ages of southern New England, primarily in the
Connecticut River Valley. In Massachusetts, AFT ages rise to the east from 106 to 146 Ma and
in Connecticut from 113 to 164 Ma (Roden-Tice and Wintsch, 2002). The Bronson Hill Terrane
lies just west of the Central Maine Terrane, in which Mt. Washington lies, and has elevations
significantly lower (Figure 4.15).

The west- to-east gradient in the Early Cretaceous was approximately a 40 my difference.
The gradient measured from the Cog Railroad to the Auto Road on Mt. Washington is 20 my at
most. Roden-Tice and Wintsch (2002) proposed that a rotation to account for the lack of such
tilt now was Early Cretaceous or younger in age. With the noted decrease in age gradient from
west to east between the studies, it appears that the corrective rotation was occurring in the Early

Cretaceous into the Late Cretaceous.

4.5 Faulting and Pale-drainage Systems
Roden-Tice and Wintsch (2002) attributed the initial gradation to a faulting event that

occurred between 120 Ma and 60 Ma and up-threw the Bronson Hill Terrane rocks along the
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Eastern Border Fault. The Bronson Hill Faulting event was followed by the reactivation of normal
faulting in the Norumbega Fault Zone east of Mt. Washington (West and Roden-Tice, 2003).
Kindley (2011) asserted that the Norumbega Fault reactivation initiated the Pinkham Notch
drainage, east of Mt. Washington and accounted for in the Auto Road data.

On the eastern side of Mt. Washington, this paleo-drainage system that downcut into
the mountain eroded away the eastern limb as Pinkham “Mountain” became Pinkham Notch
(Figure 4.16). As the same trend of differential exhumation, rapid exhumation and age gradation
is apparently evident on the western side of the mountain, it is possible that a Great Gulf drainage
system was acting to remove sediment on the west. Kindley (2011) suggested that the paleo-
drainage system was in fact fault driven and that faults on either side of Mt. Washington would
have created a graben-like structure in which the down-cutting of reactivated faults would have
driven the onset of such paleo-drainage system.

As it is now evident that there was fault reactivation to the west of Mt. Washington with
the Bronson Hill event, it is likely that a paleo-drainage system was, in fact, initiated to explain

the period of differential exhumation on the western slope of the mountain.
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Conclusion

This project added thirteen AFT ages to a local data set on Mt. Washington. It further
contributed to a greater regional data set of AFT ages throughout New England and upstate New
York. Ages ranged from 148.0 +/- 15 Ma at 1914.1 m to 89.2 +/- 10 Ma at 539.5 m. Ages revealed
a west-down tilt when compared to ages on the eastern Auto Road that fits into a greater regional
west-down tilt when compared to ages from Roden-Tice et. al (2009) throughout New Hampshire
and Roden-Tice and Tice (2005) into the Adirondacks.

Mt. Washington Cog Railroad ages themselves revealed a period of rapid exhumation
from approximately 125 to 80 Ma that is synchronous with magmatic events. These events include
the Peri-Atlantic Alkaline Pulse, formation of the Monteregian Hills and New England-Quebec
Igneous Province and the intrusion of alkalic dikes proximal to Mt. Washington documented
by Kindley (2011) and Gardner (2010). Local asthenospheric upwelling is thought to have
reactivated zones of crustal weakness and, along with the onset of paleo-drainage systems,
contributed to this period of rapid exhumation.

While Mt. Washington provided the ideal location for this study given the topographic
variation, other mountains in the Presidential Range of New Hampshire provide significant
enough topographic relief to collect AFT ages by change in elevation. This would provide further
insight to the local extent of trends on Mt. Washington.

With the archived samples from both the Auto Road and Cog Railroad, zircon fission
track ages could be analyzed. Zircon has a closure temperature of 200°C as composed to apatite
at 100°C. This would extend the cooling history further back in the Mesozoic. This would add

turther texture to the Mesozoic cooling history of the Presidential Range region.
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Appendix A: AFT Counting Data and Grain Sheets

Figure A.1: CR2 Data Sheet 1
Figure A.2: CR2 Data Sheet 2
Figure A.3: CR2 Grain Sheet 1
Figure A.4: CR2 Grain Sheet 1
Figure A.5: CR6 Data Sheet 1
Figure A.6: CR6 Data Sheet 2
Figure A.7: CR2 Grain Sheet 1
Figure A.8: CR2 Grain Sheet 2
Figure A.9: CR7 Data Sheet 1
Figure A.10: CR7 Data Sheet 2

Figure A.11: CR7 Grain Sheet 1
Figure A.12: CR2 Grain Sheet 2
Figure A.13: CR11 Data Sheet 1
Figure A.14: CR11 Data Sheet 2
Figure A.15: CR2 Grain Sheet 1
Figure A.16: CR2 Grain Sheet 2
Figure A.17: CR13 Data Sheet 1
Figure A.18: CR13 Data Sheet 2
Figure A.19: CR13 Grain Sheet 1

Figure A.20: CR13 Grain Sheet 2
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r of graing = 20

ssss= [F N AGES ORDERED WITH IMCREASTIMNG AGE
Grain Rhos L AhoT

e, (ema=d)

6 1.25e«06 45
16 1.7LE=04 ar
10 1.11e«06 40
17 1.11E+06 44

9 E.2ZE~DE B8O

1 1.02E+D6 13
12 1.4Ze+D6 il
15 1.25E+06 27

7L INE+D6 50

B 1.32E+06 18,

5 L. J8E+H)G 7

4 1. 55E«06 ¥
20 2.62E+06 51
18 1. 39€«06 45
13 2. 54E+0% b
14 1.98E«{d 50
19 1.92e«% L)

2 1.4FE«Db 46
11 Z.50E+D& 6

y Z2.2ZE+DB [ 40

POOL 1.G1E+0GE  945)
05% €I BRACKETS FOR

Figure A.1: CR2 Data Sheet 1

& (Ma)
==90% CI--
JE.6 LT0.F
76.1 179.T7
7.6 182.6
B0.7 1BS.T
9.9 181.1
B4.5 216.2
B6.4 25,1
E2.9 237.4
Q6.8 7.9
92.3 223.3
2.9 238.0
96,8 233.4

104.6 225.9
102.7 231.8
11%. 5 226.6
108.5 238.0
119.0 232.B
114.6 263.9
132.1 272.6
171.6 305.1

: 7.2
Ggrain {Ma}
e 1A
1?2?; B4.% 216.2
174.3 114.6 2631.9
192, 12,6 305.1
151, 96,8 233.4
146, 9.9 I28.0
116, J8.6 170.7
142.% 0&.8 I07.9
144, 5 92,31 X213
134.9 99.9 181.1
121.4 M6 1B2.6
190.0 132.1 Z7i.6
141.13 Bh.4  205.1
180.8 113.5 2M6.&
161.3 10H.5 Z3R.0
141.6 BZ.%2 237.4
117.% M.l 1To.T
123.4 BD.T 185.F
155 6 M02.7 233.E
166 119.0 232.8
154,73 M04.6 225.%
P{xD) Sum age (Ma)
IEEJ :Er --95% £T--
0 1166 TB.E 170.7
96,9 117.1 &F.7F 155.3
58.9 118.1 90.5 154.1
00,7 119.3 931.6 152.0
G7.1 124.0 99.9 154.0
9.4 125.4 101.6 154.5
SE.5 1I7.6 10+.3 156.0
9.2 128.5 105.5 156.6
99.4 130.1 107.3 157.6
a%.& 131.2 108.6 158.4
99.7 132.3 1049.8 159.3
5.7 1311.5% 111.1 1&0.3
93,7 13%.1 112.8 161.E
85,7 136.5 114.2 163.0
09,5 138.4 116.1 165%.0
45,4 139.8 117.5 16&6.3
99,0 141.8 119.4 168.3
68,7 143.2 LI0.8 169.8
95,5 145,77 123.1 172.5
G3.1 147.2 1244 174.2
93.13 124.4 174.2
-22.B +26.9



CRIA-BA

CENTRAL A&GE {Ma): AGE DISPERSION = 0,00 147.3 Li4.5% 174.¢
Q8% €1 ARACKETS FO#E MEAN AGE (Ma): -22.8 +26.9
CHIA? AGE (number & rcentage of grains: 20, 100%) 147.2 124.4 174.2
O5% C1 BRACKETS FOR E:If-i.‘ AE Cead): -27.8 426.9

MEAN URANIUN CONCENTRATION +/= I SL (ppm): 21.5 1.6

] Te e Program v. 4.7 (Brandon 4/11,/97)e= EEEE

DATE/TIME: 01-19-2012/10:40;: 30 FILEMAME: C:)\FTDATA\CREZA-BA. TXT

Cr=2& Littleton schisht G190" st washington PLOGO-4 B andersom 1,19/12

mernel factor = 6 (Ratio of kermel window size to standard error
¢r of grains =

PEAKS IN PROBARILITY DISTRIBUTION

The modes in the distribotion are found by irdpecting the derivarives

af the Earmhﬂi density as a functionm of Z.

Probabi 'itr I!‘l:-tr bution uses grain-only standard ErFOrs.

Toral rab;.h'i'li[r mass integrates to W (= mmber of grains).

Probaly l-it;u:lennt it given as grains per delta =01,

AT 50 Ma, Tta Z-E.'I 15 equivalent to a time interval of § m.y.

Total range for grain ages =  116.94 to  192.90 mMa
First Search: peaks with rero first derivatives.

AGE PROBARILTY DEMSITY AT FEAK EST. W
{Mea) {arains /0Z=0.1) (grains)

second search: find minima in the second derivative of the caussian
probabi ity density function.

AGE Fﬂm%[LT‘:‘ DEI."EET],:?T FEAK ':ES'I'! hﬂ}
grains . grains

15:?3& 4,049 20,13
i ;“1;]}?| Program v. 4.7 (Brandon 4/11/97)
DATE/TIME: 01-19-2012,/10:40:30 FILERAME: C:%WFTOATANWCRZA=HA, THT
Cr=24& Liteleton schisht 6190 Mt washingtom PLOGD-4 B Anderson 1519712
kernel factor = .6 (Ratio of kernel miow 51Ze o standard error
wusher of graing = 20 Barwidth {2 vnits) = .1 .
Histogram shown by asterisks and probabd ity disvriburion by circles.

meiurr IJEH‘!-;T'I' tmmi PER I:IELT.:. I=0,1)

'
]
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Figure A.2: CR2 Data Sheet 2
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CREE-BA

=Zetarge Program v, 4.7 (Brandon -lfll."'i'?‘ =
Lreadbim DATE/TIME: O1-17-2012/16:33:01 FILENANE: C:\FTDATA\CRGS-BA.T
iomen Nom . - s 4 e cr-Bb  Littleton Schist 4567° st washimgton PLOG0-13 B An-:llr:-nn 1717512
: - ! m i kT .I*J:I.'l.l:f'li. 5 = " v 1 1oh
?m—. F i A/ sNEW PARAMETERS==TFETA SETHID<z
T EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cmti): 4, 190€+06
¢ ozhen. il RELATIVE ERROR (%): 2.29
113 X ¥ GoEROE 15 X ¥ I TIrY EFFECTIVE URANIUM CONTENT OF MOKITOR ([ : 39.20
G E [ IFTA FACTOR AND STANDARD ERROR (yr 2h: 101. 60 7.20
maomt, T L] . P THEER mew, | HE 5.0 SIZE OF COUNTER SQUARE (cmii): 3.600£-0F
5T — 1 Oy sssses GRATN AGFS TH ORTGIMAL ORDER ------ .
Cakc. 1) 5.4 Sale, Ll ] Grain CLT (Hs} Rhal (N1} Sguares Us/=ls arain {Ha}
' . | . {cmA=2) { =21 A!t ==Y5% CI-=
Aciuad T Armmal |2, 30 &2 [ 1 1. A5E+DG 47 S +06 Bl a0 23 5 132.5% By 1¥7.2
T T = e Fd 1. 11E+0E 28 1 BFE+DE 47 70 17 5 125.9% 75,9 2040
rrall P + € : 1% e T 3 1.44E+06 26)  1.89€+06 14 50 15 6 161.0 52.9 274.2
T 4 1.11E4+086 40 2 .0DE+06 72 100 19 4 117.4 7.6 174 B
5 1. 50E+06 26 2.31E+08 L' 48 22 7o137.2 BED.4 22B.B
& 1.67E+DE 10 2. 2BE+06 41 50 £1 § 1544 93.0 2%1.3
) 7 2. 14E+D6 7 3.6TE+05 1312 100 4 6 123.1 91.5 1l64.3
D % ¥ T In ¥ ¥ T & 1. B9E+06 14 1. 22E+06 58 50 Lo B 123.% TB.G6 191.5%
: § Dbl g pmees o om o @ 1 e M
i Lo s ] A [ “dLE# «f JE - - -
awer. LD T O L . = . 2ol 11 1.776+06 [ B2) 3.17€ 114} 100 0 6 114.9 82.8 157.7
Cale, '.-"5_? T Cale  120.% -I 12 2. 01E+06 58) 3.B5E+06 11 B0 EL: 7o110.4 TH.E 152.%
=1 . - 1 - 13 1. B7E+DE 47 . EBREs(G T2 70 27 & 137.7 93.7 200.9
Al ? Acinal - 14 1. 10E+06 Wy 2. 3:1:+ﬂ-£- 50 L] 22 B 1248 TI.E 202.2
-+ n FEL r-ugru w. 4.7 {arandon 4711,/97)
| o Jloa : D el | 1T DATE . 01-17-2012/16: 1303 FILEWAME: €:\FTOATA\CRGR-BA. TXT
= Lr= Littleton Schist 4567 Mt washington PLOGD-13 B anderscn LAL7SLE
Musher of graing = 14
=====- GRAIM AGES ORDERED WITH IMCREASING AGE ------
Grain Rhes (M5} RHhol (Wil Grain age (Ma) PLEED S a'irrg'-}
no. cmh=2] {ema-27) ==45K CI== = Cl==
13 X b |= EE) X ¥ | 3 1.LLE+D6 &4 2 .59E4Db 56 . 7 14E.% 100,00 9l.0 53.7 148.3
B ERDE= : _:L 12 2 01E+06 T8} 3.BSE+DG 111 110.4 7R.8 152.9 49.8 103.8 8.5 116.1
e, | v F T L T o B - L 11 L.72E+06 62} 3.1TE+08 { 114 114.9 E2.8 A5T7.7 TFO.T 10B.0 B4.4 13B.1
- . 1 - #f " 4 1.11e+0& 40 2.00E+D6 JE) 1174 FY.p Q746 B4.4 10%.9 A7.4 11R.0
" T T & : Cae. 1154 [ A 1 L.456+06 ¢ 47) 2.50E«06 { B1Y 122.5 @&3.6 177.72 89.5 112.7 90.5 139.0
. 7 2.Ue+06 ¢ T7) I.6TE4D6 { 1323 123.1 91.5 164.31 92.5 114.7 93.9 14D.0
Acraal ﬂ Acmad "',: e 8 1.50F:08 14) 31.2XE+06 fEy 123.9 THE.6 191.5 96.0 115.5% 95,1 1&0.4
- "'k N - 2 2 L.11e+06 28} 1.B7E+06 47) 125.9 75.% 204.0 97.& 116.2 G95.9 14D.B
i -3 L L & o1 il 14  1.39E+06 Wy 2.31E+D6 0y 126.8 77.8 2.2 98.8 115.9 96,8 141.2
5 L.50€+06 16} Z.31E+06 137.2 80.4 :28.8 99.0 118.0 57.9 142.1
- 13 L.E7E«06 ¢ 47) 2.BEE«OG [ T2Y 137.7 93.7 3000 98.8 119.7 99.7 141.6
& L.G6TE+D6 ¢ 30% 2.28E+06 [ 415 154.2 43.0 251.3 97.7 1P1.% 101.7 145.3
31,4406 26} L.B9E+0E 34) 161.0 92.9 274.7 96,7 12,8 102.6 146.%
" 10 F.2PE+D6 48} 2.T7IE406 59) 1F1.0 114.% 2536 BE.® 12%.7 105.3 1500
B} x T 1 L] ¥ h | {_
- 3 = PooL 1.62e<06( S77) 2.7T2E+06{ 967 BE.® 12%.7 105.3 150.0
P - LA RED " Eesw, Zapam) D ElE S5% I BRACKETS FOR POOLED AGE {Ma): =34 243
= i o,
Cake. jiiele EREE ! Cafe, 119" o CENTRAL AGE {Mal): AGE DISPERSION = 0.00 125.8 105.3 150.1
17 2 E B . 95% T BRACKETS FOR MEAM AGE (Ma =i0.4 +24.3
i . : = Actaal 157 =3
Actmal e —— L ; €HIAZ AGE (nusbar & percentage of grains: 14, 100%) 125.7 105.3 150.0
] [ [ T =11 |"3'"| | T i pewLy i 95% CT BRACKETS FOR cru-'-i* AGE (Ma]): -2, 4 +24.3
: - MEAN URANIUM COMCENTRATION +/- 2 SE (ppmld:  25.4
] Tt & Program ¥. 4.7 {Brandan PR T T T —
. DATE/TIME: 01-17-2002/16:53:03 FILEMAME: ©:%FTDATA\CREB-BA.TXT
: cr-fb Littleton Schist 4567° mt washingoon PLOGO-13 & Anderson 117712
1] X T =0 X T ' Kerne]l faceor = 6 (Ratio of kermel ndow size to dtandard arrar)
- =
Sicas, §3 % 24 ] . o, A5 ol jem Fage 1
Cae” 11708 - z Cake,  [700% :ﬁi"
B =I5 *'U'u N EnED Akl “11'-_'1' i ] =
2t gyt ; ] ke Bkl
3+ | 5 ] B B . .
e 1D e et = Figure A.5: CR6 Data Sheet 1

Figure A.4: CR2 Grain Sheet 1
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CREB-BA
Humber of grains = 14
PEAXS IN PROBABTLITY DISTRIBUTION .
The modes in the distribution are found by inspecting the derivatives
of the ilrnb.l.h‘l'l{t density as a Functien of Z.
Probability distribution uses grain-only standard errors.
Total ability mass integrates to M {= number of grains).
Frobabi 11ty :ImIEE is given as grains per delta Z=0,1.
AF 50 ma, delta .1 1% sguivalent to a time interval of 5 m.y.

Total range for grain ages = 91.63 to  171.19 M
First search: peaks with rero first derivatives.

AGE PRORARILTY DENSITY AT PEAK  EST. N
(Ma} {grains,0Z=0.1}) farains)

Second search: find minima in the second derivative of the Gaussian
prebabd 11ty density funcrion.

AGE FH.D-I.I.EILT';' DENSITY .;T PLAN {E!-Ti H}
;E-” grains/Oo=0, 1 grains

9,58 ﬂ,j.;g 0.92
1x0.3%2 1.118 16,38
172,45 0.97 5.14

ZotaAge Program v, 4.7 (erandon 4/11/97)s=mcsscsamsanmnnmn

i:.l.TEE';Tn-E: 01-17-2012,/16:33:03 FILENAME: C:'\FTDATA\CREB-BA.TXT
cr-Bb  Littleton Schist #367" Mt washington PLOG0-13 B Anderscn 1717712
gernel factor = .6 (Ratis of kernel window size to standard error)

Mustier of grains = 14 garwidth (Z units) = .1
Wistogran shown by asterisks and probability distribution by circles,

pm:{unr u:na;ﬁ {m.tug FER ueu.:. F=0.1)

o L]
AGE  COUNTI.cwiavanelesrsacass lecannsaanlssanns S [R—— . —_—
55.5 - D o
61,3 - D :o
67.8 - 0 o
T4.8B = 0 o
B2.7 - 0O
1.1 = 1 :-I-'llnill‘li‘l‘i
100.8 - 0 o
111.3 - PR L LI L LD L Ll
172.9 = .E_ LR L L ii-i-i-l-l-i-l-illnm--nifiini-n-l-lt-l-il-llliriiliifti-l-i-l-ll-
]!i_'lr - F :i-l-lt-i-ii RS a
140.8 = ) jeeEessssLs o
1655.4 - ¥ :iilnrliliiiuri!*ilil
182.6 - 0 : o
01.5- 0: o
232.3 - 0w
il

rage 7

Figure A.6: CR6 Data Sheet 2
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Figure A.8: CR2 Grain Sheet 2

aAgeE Frog
DATESTIME: QR-17-2002/06: 32 30

A (Bramnden 4/11°97)
FILEMAME : C:“"FTDATANCRTA=RA. TET

Cr-7Ta Littleton Schist 4350° Mt washingron PLOGO-14 B anderson 1717712

=»HEW PARAMETERS--ZETA METH3D<«

EFFECTIVE TRACK DENSITY FOR FLUENCE MOMITOR (tracks/cma2):
RELATIVE EREDR
EFFECTIVE URANIUM CONTENMT OF MOWITOR
ZETA FACTOR AND STANDARD ERROR [yr
SIZE OF COUNTER SQUARE {cmtd
mmmm=- GRATH AGES TH ORTGTHAL ORDER ======

Grain Rhos (N5} Rl

L [cmA-2) (cmA-2)
1 9.8IE+D5 2. J1E+06
& T.S0E+DS 2. SHE+OE
3 1.39E+4 3. 06E+06
4  1.43E+Db 1. 1TE+DG
5 1.19E«D4 1. 6TE+DE
& 1.39E+D6 1. FLE+DE
T T.ATE.DS 1. I4E+D6
8  2.61E«D6 5 OBE+DE
9 1.91Esh 3. 246406

W 1.91E+06 3. 24E+Db
11  1.67E«0d 2 A9E 406
12 1.57E+06 2 ALE+D6
13 B.3IE«D5 1, 3E«{M
14 1, 11E+046 1. 6TE+P6
15 1. ME+D6 2. 15Eed
16 1.0BE«06 1. 8GE+04%
17 9.8BBE+D5 1. 45e«06
18 1.02E+06 1.67E+
19 L.69E+06 A 6TE«DE
20 1. 16E+(6 1. 94€ 406

= Fil L} o
OATE/TIME T OL-17-201% /16 82:30 F

g

Boeass

ke

Laid ki 01 o T :m Iul.-l-ELu-ﬁu
o T Pl il (0 A it 0 ™ P T il P
-1

FHH*FUDM!‘J“IHWEWHEWH

TERERELT Do

4, 23TE+06

H .38

: 39.40

: 101,60 r.20
: 3.6006-07

Grain w [Ma)

.H!l' -:g‘ﬂ 1--
51.49 46.4 171.0
63.0 39.2 097.2
97.5  49.0 182.6
96.2 62.8 143.8
151.8 491.8 rak.8
169.8 B9.7 315.0
125.2  bfdod 2331
109.1 B2.0 145.2
125.6  79.0 19%5.5
125.6 79.0 195.%
148.7 85.9 M0O.5
135.1 87,5 I17.4
128.0 &6F.2 234.9
142.0 FE.4 2I56.0
167.6 112.9 246.9
1.0 81.2 186.1
l44.8 B9.4 230.3
13p.6  55.7 287 4
Tr.6 6.7 104.7
136.9 T4.1 2117

18
ram v. 4.7 (Brandon ..Irl‘ﬂ?]—-l-liﬂ-l-l-ulll
TLESAME ; C%WFTOATAYCATA-BA. TET

dd
Cr=Fa Littleton Schist 4350° Mt washington PLOGO-14 B Anderson 1717712

Number of grains = 20

=emmsmss GEAIN AGES ORDERED WITH IMCREASING AGE

Grain  RhoS (N5} Ehol

ne. (emA-F {cmA-2}
£ 7.50E+D 271 2. 56E+06
19 1.690+06 Gl) 4.6TE+D6
1 9.9Fc«05% 1% 1E+06&
4 1.430+06 16) 3.17E+06
1 1.39e+06 15) I.06E=08
8 2.61E+DG 94 5. 08E+06
16 1.08e+D6 19) 1.EGE«06
7 T.BTE«0S 17 1. 34E+06
10 1.91e«06 11y 3. MEL06
9 1.91E+06 a3} 3. 14E+06
20  1.1GEw+] 25) 1.94E«Qh
11 8. 33+ 18} 1.30€+06
18 1.0ZE+06 11} L.67E+06
12 1.5TEsiéh 34) 2.41E+06
14 1,1L1E+06 200 L.GTE+QG
17 9.88E«05 33) 1.45E+06
11 1.67E+06 30} 2.30E+06
§ 1.19Eede 0} 1.67E+08
1% 1.70E=06 49) 2.15e+06
6 1.3%E«{6 20) 1.T4E+0G
PoOL 1. 3BE«06( 639) 2.57E«O06( 11

9

¥

Figure A.9: CR7 Data Sheet 1
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g

) Sum lp; {Ill.u.:;

0 B30 9.2 97,2
L1000 72,3 54,5 95,5
B0 T4 570 97,1
L8 M0 62,0 100.6
A0 B80S 6306 101.7
7.1 #9.4 F2.7 110.0
9.7 9.9 7Th.1 1131.5%
2.2 4.7 TF.Y 114.9
0.6 96,6 7T9.6 117.7%
0.5 O8.6 £1.5 119.2r
2.8 100.0 2.9 LID.6
5.4 101.0 E3I.8 121.6
9.9 100.6 B4.4 17:.7
5.7 1036 B6.3 L24.4
.9 204.8 B7.4 Li5.6
£.% 1066 BO.1 M27.6
9.8 108.3 0.7 129.4
7.2 110,00 92.2 M31.7
E.T 113.0 %4.9 134.5
7.3 114.F 96.0 135.9
7.3 114.F 96.0 135.9

-18.2 X186
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CENTRAL AGE (Ma):
95K CI BRACKETS FOR MEAN AGE (Mal: -2,

CHIAZ AGE (nusber & percentage of graims: 20, 104%)
955 T BRACKETS FOR CHIA? AGE (Ma): -18.2

CRTA-HA

AGE DISPFERSION = 0.16 117.7 7.3 14
+

4
114.2 95.0 13
2

MEAN URANIUM CONCEMTRATION +/- F SE (ppm): 231.8

DATE/TIME: 01-17-2012/16:

1.5
Zetadge Program w. 4.7 (Brandon 40105970
E.z::m FILEWAME: Ct\FTOATA\CRTA-BA, TXT

Cr=7a_ Littleton Schist 4350° Mt washingrom PLOED-14 B anderson L/A7/12
permel factor = (& Jg;hq of kernel window size to standard errar)
wumbar of grafng =

FEAKS IN

TILITY DISTRIBUTION

The modes im the distribution are found by inspecting the derivatives
of the ?rﬂuhlril'itf density as & function of Z.
ity distrib

Frobabi

Total l;ll"ﬂhlhﬂil:!l' mass integrates to W (=
Frobabi ity dens

utien uses grain-only standard érrors.
r of grains).
is given as grains per delta Fs=0.1.

AE 50 ma, delta Fed.l is squivalent to a time interval of 5 m.y.

Total range for grain agex = 61.%2 to A70.34 Ma
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Figure A.10: CR7 Data Sheet 2
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CR=11Aa
CENTRAL AGE (Mal: AGE DISPERSION = O.09 96.4 B7.9 105.8
5% CI BRACKLTS FOR MEAM AGE (Ma]: =8.5 #9.3
cHIAZ AGE (nusher & percent of graims: 20, 100%) 9&.4 BT.O MOS.T
G95% CI BRACKETS FOR CMEIA? ﬁal-l:lll:l: ' -B§.5 +9.3

MEAW URANIUM COMCENTRATION +/= 2 SE (ppml}: 19.5 1.5

B Fetadge Program v. 4.7  (Brandon 411797
DATE/TIME: 01-03-2012/18:08:07 FILEMAME: C:)\FTDATAWLE-11A.TKT
cR-11a Bangeley schist 2765" Mt washingten PLOGL-6 mri 173710
gernel fFactor = .6 (Ravio of kernel window size to standard error)
nusber of grains =

PEAKS IN PEDRABILITY DISTRIAUTION )

Thie modes in the distribution are found by inspecting the derivatives
of the probability density as a function of Z.

Probabi lity distribution uses grain-only standard errors.

Total Er&h.lh11it¥l Eass integrates to B {= nusber of graims),
probability density i: given as grains per delta 7=0.1.

At 50 Ma, delea z.ﬁ,] is eguivalent to a time fnterval of § my.

Total range for grain ages =
First Search: peaks with zrera first derivatives,
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EST, M
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AGE PROBABILTY DENSITY AT PEAK
{hea) {grains DF=0.1)

second search: Find minima in the second derivative of the Gaussian
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Kernel factor = .6 vig of kernel window size to standard error)
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Histogras shown by asterisks and probability distribution by eircles,
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Figure A.14: CR11 Data Sheet 2
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CR1TA-
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CHEAZ WGE (nunber & percemtage of grains: 19, 95%%) BE6.4 Ti.) 101.9
95% CI BRACKETS FOR CMIAZ AGE (ma): =13.1 +15.4

MEAN LIRAMIUM CONCENTRATION /- 7 SE [ppal): 13,49 2.1
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Eernel factor = L6 Z-EMHD of kermel window size to standard errord
Number of grains =
T Rl Tol R STY CETHITION 1 4y ¢ e duriat
i fnt istri an are fo nspecting € rivatives
of the ?rﬂblhﬂit density as a funcrien of z.“
Probabilicy distribution uses grain-only standard errors.
Tatal Eruhal:'l'lit mass integrates to N (= ausber of grains).
Frobab l1tseden1 E iz given a8 grains per delta Z<0,1.
AL 50 Ma, Tea F=i),

1 is equivalent te a time interval of 5 m.y.
49.17 to 130,25 mMa
First Search: peaks with rero First derivatives.

AGE PROBARILTY DENSITY AT PEAK E5T. M
(Ma) (grains /DF=0.1) {grainz)

Second search: fimd sinima in the second derivative of the caussian
probabl T1ey density function,

Tetal range for grain ages =

AGE PROBABILTY DEMSITY AT PEAK EST, M
{Ma) {graing /DZ=0.11 {grains)
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7068 2.527 12.27
100, 66 2. 548 13.83
12724 1.60% 7.7
L Program v. 4.7 (Brandon 4711797
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kerpel factor = .6 (Rario of kernel window s1zé to standard BFEar)
wusher of grains = Hlnr‘-'dthng mits) = .1 .
Histogram shown by asterisks and probability distribution by circles.
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