### Bates College SCARAB

Standard Theses

Student Scholarship

Spring 5-2012

# CRETACEOUS UNROOFING HISTORY FROM APATITE FISSION-TRACK AGES, COG RAILROAD, MT. WASHINGTON, NEW HAMPSHIRE

Brigit Anderson Bates College, banders2@bates.edu

Follow this and additional works at: http://scarab.bates.edu/geology\_theses

#### **Recommended** Citation

Anderson, Brigit, "CRETACEOUS UNROOFING HISTORY FROM APATITE FISSION-TRACK AGES, COG RAILROAD, MT. WASHINGTON, NEW HAMPSHIRE" (2012). *Standard Theses.* 3. http://scarab.bates.edu/geology\_theses/3

This Open Access is brought to you for free and open access by the Student Scholarship at SCARAB. It has been accepted for inclusion in Standard Theses by an authorized administrator of SCARAB. For more information, please contact <a href="https://www.bates.edu">https://www.bates.edu</a>.

# CRETACEOUS UNROOFING HISTORY FROM APATITE FISSION-TRACK AGES, COG RAILROAD, MT. WASHINGTON, NEW HAMPSHIRE

Presented to

the Faculty of the Department of Geology

Bates College

In partial fulfillment of the requirements for the Degree of Bachelor Arts

> By Brigit Anderson

Lewiston, ME April 6, 2012

# Table of Contents

|          | Table of Figures                                                     |
|----------|----------------------------------------------------------------------|
|          | Table of Tables                                                      |
|          | Abstract                                                             |
|          | Acknowledgments8                                                     |
| Introduc | ction                                                                |
|          | 1.1 Purpose                                                          |
|          | 1.2 Apatite Fission Track Dating11                                   |
|          | 1.3 Geologic Setting                                                 |
|          | 1.3.a Regional Geologic Setting12                                    |
|          | 1. 3. b Local Geologic Setting16                                     |
|          | 1.4 Regional Thermochronology and Paleozoic to Mesozoic Exhumation17 |
| Methods  |                                                                      |
|          | 2.1 Field Sampling                                                   |
|          | 2.2 Crushing and Pulverizing                                         |
|          | 2.3 Sieving Samples                                                  |
|          | 2.4 Rogers Table Separation                                          |
|          | 2.5 Magnetic Separation                                              |
|          | 2.6 Heavy Liquid Separation                                          |
|          | 2.7 Grain Mount and Polishing                                        |
|          | 2.9 External Detector Attachment                                     |
|          | 2.10 Packaging Samples                                               |
|          | 2.11 Irradiation and U <sup>235</sup> Track Etching                  |
|          | 2.13 Zeta Calculation                                                |
|          | 2.14 Fluence Calculation                                             |
|          | 2.15 Track Counting and Calculation                                  |

|          | 2.16 Track Measurement                    |   |
|----------|-------------------------------------------|---|
|          | 2.17 Microprobe Composition Analysis      |   |
| Results. |                                           | 5 |
|          | 3.1 Microprobe                            |   |
|          | 3.2 Zeta Score                            |   |
|          | 3.3 Fluence                               |   |
|          | 3.4 Ages                                  | I |
|          | 3.5 Exhumation Rate                       | : |
|          | 3.6 AFT Ages of Separate Rock Units       | : |
|          | 3.7 Track Length Modeling                 |   |
| Discussi | on                                        | 3 |
|          | 4.1 AFT Ages                              | 1 |
|          | 4.2 Rapid Exhumation                      | 1 |
|          | 4.3 Differential Exhumation               | , |
|          | 4.3a Evidence in Track Length Measurement |   |
|          | 4.3b Sedimentation Record58               |   |
|          | 4.4 Age Gradation                         |   |
|          | 4.4a Local Tilt                           |   |
|          | 4.4bRegion Tilt Trend Westward65          |   |
|          | 4.4c Region Tilt Trend Southward65        |   |
|          | 4.5 Faulting and Pale-drainage Systems    |   |
|          | Conclusion                                | , |
|          | Appendix                                  | 1 |
|          | Referen`ces                               |   |

# **Table of Figures**

| Figure 1.1: Apatite Fission Track development over time.       11                     |
|---------------------------------------------------------------------------------------|
| Figure 1.2: Comparison of full tracks and partially annealed tracks after time in the |
| PAZ (Geotrack, 1987) 12                                                               |
| Figure 1.3: New Hampshire terranes (Eusden et. al, 1996) 14                           |
| Figure 1.4: Sequential schematic of tectonics (Eusden, 2010)17                        |
| Figure 1.5: Mesozoic Rifting (Schlische et. al, 2004) 19                              |
| Figure 2.1: Sample Locations (modified from Eusden, 2010) 24                          |
| Figure 2.2: Photo Locations 25                                                        |
| Figure 2.3: Chipmunk Crusher and Pulverizer    27                                     |
| Figure 2.4: Rogers Table Specific Gravity Separator                                   |
| Figure 2.7: Frantz Isodynamic Magnetic Separator (Robinson, 1997) 30                  |
| Figure 2.6: Table of Mineral Susceptibility (adapted from Rosenblum, 1953) 31         |
| Figure 2.7: Heavy Liquid Density Comparison                                           |
| Figure 3.1: AFT Ages v. Elevation (Cog Railroad v. Auto Road) 41                      |
| Figure 3.4: AFT Ages by lithography46                                                 |
| Figure 3.5: CR1 Track length frequency distribution 47                                |
| Figure 3.6: CR13 Track length frequency distribution 47                               |
| Figure 4.1: Separations of Exhumations Rates (Roden-Tice et. al, 2011) 50             |
| Figure 4.3: Timing of PAAP (Matton and Jébrak, 2007) 52                               |
| Figure 4.5: Huntington Ravine Dikes geochemical classifcation against those put forth |
| by McHone and Butler (1984) (Gardner, 2010) 53                                        |
| Figure 4.4: Map of Mesozoic Igneous intrustions through New England and Quebec        |
| (McHone and Butler, 1984) 54                                                          |
| Figure 4.6: Timing of North Atlantic Tectonism and New England Igneous Provinces      |
| (McHone and Butler, 1984) 55                                                          |

Figure 4.8: Time-Temperature Path of A et. al, 2012) .....
Figure 4.9: Location Map of COST G W
Figure 4.10: Cost G-2 Well Stratigraphi
Figure 4.11: Cost G-1 Well Stratigraphi
Figure 4.12: Western Tilt On Mt. Washi
Figure 4.13: Local Age Gradation (mod Figure 4.15: BHA Age Gradation (Rode Figure 4.16: Profile of Topographic Evo

| h | Histograms |  |  |  |  |  |  |  |  |  |  |  |  | 5 | 6 |
|---|------------|--|--|--|--|--|--|--|--|--|--|--|--|---|---|
|   | 0 0        |  |  |  |  |  |  |  |  |  |  |  |  |   | - |

| h of Auto Road Samples through PAZ (Roden-Tice |
|------------------------------------------------|
|                                                |
| ГG Wells Relative to Mt. Washington 59         |
| raphic Column (USGS, 1980) 60                  |
| raphic Column (USGS, 1980) 61                  |
| Washington 63                                  |
| (modified from Roden-Tice et. al, 2009) 64     |
| (Roden-Tice and Wintsch, 2002) 67              |
| c Evolution (Roden-Tice et. al, 2012) 68       |

# Table of Tables

| Table 2.1: Sample Locations   2  | 23 |
|----------------------------------|----|
| Table 3.1: CR01 Microprobe Data  | 38 |
| Table 3.2: CR08 Microprobe Data  | 38 |
| Table 3.3: CR12 Microprobe Data  | 39 |
| Table 3.4: CR13 Microprobe Data  | 39 |
| Table 3.5: Cog Railroad AFT Ages | 40 |

#### Abstract

The unroofing rate of Mt. Washington, NH is being calculated using apatite fission-track ages (AFT) of thirteen samples along the Cog Railroad on Mt. Washington's western slope using the relief method. Samples were collected approximately every 500 vertical feet from the summit (6280') to the base (1770') of Mt. Washington. The AFT ages determined thus far are: 148.0  $\pm$  15 Ma at 1914 m, 147.2  $\pm$  15 Ma at 1886.7 m, 114.5 +/- 18 Ma at 1743.5 m, 114.4 +/- 12 Ma at 1624.6 m, 119.3 +/- 13 Ma at 1482.2 m, 126.6 +/- 14 Ma at 1392.0 m, 114.4 +/- 16 Ma at 1325.9 m, 118.4 +/- 12 Ma at 1190.6 m, 110.1 +/-13 Ma at 1089.7 m, 102.9  $\pm$  11 at 930.6 m, 96.4 +/- 9 Ma at 842.8 m, 86.4 +/- 8 Ma at 647.1 m and 89.2  $\pm$  10 at 539.5 m. These ages are analogous to ages determined along Mt. Washington's Auto Road at similar elevations. These values yield an exhumation rate of 0.022 mm/yr between approximately 150 Ma and 80 Ma, which is comparable to the exhumation rate of 0.027 mm/yr calculated for the eastern slope of Mt. Washington along the Auto Road (Roden-Tice et. al., 2011) during this time. Trends in exhumation correlate with with late Cretaceous regional magmatic events associated with local asthenospheric upwelling that reactivated zones of crustal weakness.

### Acknowledgments

First of all, I need to thank the Bates Faculty Development Fund and the Bates Student Research Fund for providing the (as is implied by their names) funding for this project. I would also like to thank Mary Roden-Tice for not only teaching me the sometimes tedious ways of fission track counting, but also for, along with her husband Steve, housing and feeding me during my two trips to SUNY Plattsburgh. Thanks to Marty Yates for always making free time for me and walking me through the electron microprobe up at UMO. Above all, I would like to thank Dyk Eusden for generally being a motivating and influential advisor, but perhaps more importantly for being wonderfully understanding throughout the past few years. Also thanks to the entire NPR crew for keeping me wildly entertained during a year a much driving.

# Introduction

#### 1.1 Purpose

The purpose of this study is to obtain cooling ages from samples along the western edge of Mt. Washington, New Hampshire using apatite fission-track (AFT) dating. The results from the age dating can be used to constrain the unroofing history of Mt. Washington through the Mesozoic and Cenozoic. This study completes an AFT project for Mt. Washington and contributes to the understanding of Mesozoic and Cenozoic low-temperature cooling in the Northern Appalachians. It also illuminates the North Atlantic margin's cooling history and path to the current topographic setting.

This study is based on data from 13 samples along the Cog Railroad on the western slope of Mt. Washington; seven are from the Littleton Formation, five from the Rangeley Formation and two from the Bretton Woods Granite. The summit sample is at 1914 m elevation and the base sample is at 540 m in elevation, thus the study covers a 1374 m change in elevation.

Given this elevation change, the relief method is employed to determine the exhumation rate. Mt. Washington is among the few sites in the Northern Appalachian range that provide enough topographic variation that allow for the comparison of age v. elevation that is used to interpret exhumation rates.

#### **1.2 Apatite Fission Track Dating**

Apatite Fission-Track (AFT) dating is used to determine the low-temperature history of a sample. Apatite is a commonly occurring mineral that has significant amounts of Uranium. When <sup>238</sup>U spontaneously decays in apatite minerals, it creates a trail of damage, or fission-track, in the crystal lattice (Figure 1.1) that anneal at or above apatite's closure temperature, approximately 100°C (Roden-Tice and Wintsch, 2002). If the apatite is reintroduced to these high temperatures, the AFT clock essentially resets itself and, therefore, starts above the 100 °C isotherm. Because the spontaneous decay half-life for <sup>238</sup>U is a known constant, the total number of fission tracks relative to initial abundance is proportional to the cooling age, or time at which the sample passed through the 100°C isotherm.

Between the temperatures of 60°C and 100°C, the partial annealing zone (PAZ) (Roden-Tice and Wintsch, 2002), the tracks will shorten in length based on the duration of time spent at a certain temperature within this range (Figure 1.2). A frequency distribution of track lengths informs the low temperature-time path of the sample through the PAZ. This time-temperature path is constrained by the AFT age, thus a comprehensive reconstruction of the low-temperature history can be created.



Figure 1.1: Apatite Fission Track development over time. Over times, tracks develop as <sup>238</sup>U decays over time. When tracks get exposed to temperatures above 100 °C, tracks anneal; between temperatures 60 °C and 100 °C tracks partially anneal. (d'Alessio et. al, 2003)

Apatite is a commonly occurring mineral that can be produced under various conditions. It is frequently found in the metamorphic formations and igneous intrusions throughout New England. The general equation for apatite is  $Ca_{\epsilon}(PO_{4})_{2}(F,Cl,OH)$ ; the variations in F, Cl and OH concentrations have a significant impact on the minerals' exact closure temperature. Fission tracks in Cl-rich apatites (chloroapatite) anneal at higher temperatures than F-rich apatites (fluoroapatite) (Warnock, et. al, 1996).



#### **1.3 Geologic Setting**

#### 1.3.a Regional Geologic Setting

The Presidential Range sits in the Central Maine Terrane (CMT) which stretches from Maine to Connecticut and is bounded to the northwest by the Bronson Hill Anticlinorium (BHA) and to the southeast by the Campbell Hill-Nonesuch River Fault (Figure 1.3). BHA is composed of two Ordovician volcanic sequences with Silurian and Devonian marine sediments overlying the volcanics (Eusden et al., 1996, Bennett et al., 2006).

The southern bound is the Massabesic Gneiss Complex; the eastern bound is comprised of Ordovician belts of metavolcanic and metasedimentary units that were deposited on the Laurentia-Gondwarna boundary (West et. al, 2007). From west to east the subregions of the CMT are the Bronson Hill Anticlinorium, Kearsage Central Maine Synclonorium (KCMS),

Central New Hampshire Anticlinorium (CNHA) and the Lebanon Antiformal Syncliorium (LAS) (Eusden, et.al., 1996).

The CMT and neighboring terranes are naturally linked to a series of orogenies eventually forming Pangea. In the middle Silurian, the Iapetus Ocean began to close after a series of mountain-building events during the Taconic Orogeny (Figure 1.4). Land masses included in the Taconic Orogeny were Gander, Avalon and Laurentia. The closing of the Iapetus Ocean accounts for the sedimentation of marine turbidites that now partially make up the CMT. In the early Silurian, the Salinic orogeny began as back-arc basins from the Ordovician subducted beneath Laurentia.

In the early Devonian, the now Laurentia/Gander landmass created in the first stages of The central Appalachians were deformed further in the late Mississippian when

the Salinic Orogeny collided with Avalon (Figure 1.4). This was the beginning of the Acadian Orogeny and the final closing of the Iapetus Ocean basin. During this time, ocean crust was subducting beneath the Laurentia/Gander landmass resulting in a long period of Presidential Range deformation through 355 Ma (Hibbard et. al, 2007, Van Staal et. al, 2009). Gondwanaland collided with Laurentia, closing the pre-existing Rheic Ocean. This end of this orogeny, the Alleghenian Orogeny, was the final stage in the creation of the supercontinent Pangea, which lasted for approximately 75 my. Pangea eventually broke up during a series of rifting events starting 210 Ma (Figure 1.5). During the period of intraplate rifting, deformation and normal faulting occurred within plates (Faure et al., 2006), including reactivation of previously existing thrust faults originated during the initial mountain building events (McHone and Butler, 1984).

Some of these reactivated faults are particularly relevant to the Mt. Washington setting. The Presidential Range is in a region bounded between the Norumbega Fault to the southeast and the Amonoosuc Fault to the west (Figure 1.3). The Norumbega Fault extends from northeast southwest coastal Maine. It is a system of orogen-parallel faults and shear zones 400 km in length and up to 40 km in width activated in the middle Devonian during the Acadian Orogeny. and

13







Figure 1.4: Sequential schematic of Early Ordovician through Early Devonian orogenies, sedimentation and volcanism oriented west-to east (Eusden, 2010)

oriented perpendicular to orogenic stress in a Ne-SW direction (Ludman and West, 1999). The Amonoosuc Fault lies on the boundary of New Hampshire and Vermont and extends from northern New Hampshire into southern Connecticut. Its origins and activity are similar to that of the Norumbega Fault.

While these faults were principally initiated by orogenic means, forcings from the asthenosphere outside normal collisional tectonism dictated fault behavior. Reactivation of the Norumbega and Amonoosuc Faults, and postorogenic extension, have affiliated the reactivation of these faults, along with other zones of crustal weakness, with some regional igneous provinces formed from localized asthenospheric upwelling (Faure et al., 1996). These events are similarly connected to the intrusion of primarily mafic dikes throughout the region, which loaded flood basalts into the rift basins of prior faulting (McHone, 2000).

#### 1. 3. b Local Geologic Setting

The metamorphic formations that are included in this study are the Rangeley and Littleton Formations. The Rangeley Formation is Silurian in age, identified from shelly fauna in the formation (Moench and Zartman, 1976). Its origin is in the deep marine sediments of the Kronos Ocean. It is a gray gneiss that is subdivided based on compositional variations. The Rangeley Formation incorporates different units, including calc-silicate granofels, rusty schist and amphiboles (Eusden, 2010). These blocks range in size from cm to m scale.

Formations not included in the study area, but chronologically following the Rangeley's deposition, are the Perry Mountain, Smalls Falls and Madrid Formations. Also Silurian in age, these formations originated from sediments deposited above the Rangeley formation in the Kronos Ocean (Eusden, 2010). These formations are made of quartzites, rusty schists and calc-silicate granofels; they primarily occur in thin, discontinuous bands.

Above these formations is the Devonian Littleton Formation. The Littleton formation is derived from mud and sand sediments deposited in the deep Kronos Ocean approximately 410 Ma. Both have subsequently been metamorphosed during the Acadian Orogeny and now appear as schists (from the mud deposits) and quartzites (from the sand deposits). The metasedimentary formations have undergone significant periods of deformation, resulting in a series of folds and faults throughout the range.

The youngest and lowest topographic unit in this study area is the Paleozoic Bretton Woods Granite, approximately 360 million years old. The age corresponds to two other lowelevation granites in the area: The Peabody River and Bickford Granites. They are approximately 40 million years younger than the peak of deformation and metamorphism associated with the onset of the Acadian orogeny.

These igneous intrusions originated from the release of the tectonic stress on the Presidential Range, which caused the range to collapse. As this occurred, the base of the crust rose and was heated by the mantle. The base of the crust then began to melt and new magma rose into the crust, creating these granitic intrusions (Eusden, 2010). Because the Bretton Woods granite and corresponding granites were formed at the end of the orogeny they were not subject to the extreme metamorphism and deformation of the Littleton and Rangeley Formations.

#### 1.4 Regional Thermochronology and Paleozoic to Mesozoic Exhumation

Periods of long erosion and exhumation ensued from the Pangea rifting. While some of the unroofing can be attributed to Mesozoic rifting, other forcings were acting upon the Appalachinan Range causing it to decrease in elevation and shape the modern topography. Calculated exhumation rates detail the unroofing history and can potentially explain the driving erosional forces.

Based on <sup>40</sup>Ar/ <sup>39</sup>Ar mineral ages by the Auto Road using the relief method, Eusden and Lux (1994) calculated an exhumation rate of 0.04 mm/yr in the Middle Pennsylvanian through Early Permian. This slow initial exhumation was associated with the Acadian orogeny and stopped approximately 305 Ma. Eusden and Lux (1994) concluded that this initial exhumation did not create the present topography of the Mt. Washington massif, and thus a renewed period of exhumation occurred sometime after 274 Ma.

Exhumation resumed in the Jurassic period since when Doherty and Lyons (1980) have calculated an average erosion rate .031 mm/yr. This was calculated with a geothermal gradient of 25 to 30 °C. Therefore, the depth of emplacement ranged from 5.3 to 7.6 km in the Middle Jurassic to 3.0 to 3.6 km in the Middle Cretaceous. Ten Jurassic and Cretaceous plutons were analyzed using apatite fission tracks and zircon fission tracks of the White Mountain Plutonic-Volcanic Series. Site locations are scattered throughout New Hampshire and a few are in the border of Vermont. With the <sup>40</sup>Ar/ <sup>39</sup>Ar ages a preliminary exhumation reconstruction can begin to constrain the average cooling history from the Late Paleozoic into the Mesozoic.

Doherty and Lyons (1980) acknowledged that .031 mm/yr was a calculated average and periods of faster or slower exhumation were likely to have occurred throughout this time. Roden-Tice et. al (2009) collected new AFT ages and reexamined Doherty and Lyons' data to conclude that later in the Mesozoic, after the initial Jurassic exhumation renewal, there was a period of faster unroofing with rates ranging from 0.055 to 0.118 mm/yr in the Early Cretaceous. Rates returned to the relative slower rate of 0.01 to 0.04 mm/yr in the Late Cretaceous. Doherty and Lyons's (1980) erosion rate is comparable to that documented by Roden-Tice et. al (2009), who calculated an average erosion rate of 0.03 to 0.04 mm/yr from 100 to 60 Ma.

From the late Jurassic to the Early Cretaceous, exhumation rates stopped acting uniformly throughout northern New England as postorogenic extension was initiated (Figure 1.3). Cretaceous extension can result in both for the region's unroofing during this time and the reactivation of faults that led to localized differential unroofing.

West and Roden-Tice (2003) obtained AFT ages for opposite sides of the Norumbega Fault Zone in southern Maine. Their analysis indicated differential erosion rates on either side of the fault. AFT ages on the western side of the fault ranged from 113 to 89 Ma, while ages of the eastern side ranged from 159 to 140 Ma. This discontinuity was explained by the reactivation of the Norumbega Fault in the Late Cretaceous less than 80 Ma and was localized to the northern Casco Bay region of Maine.

AFT ages along other northern New England faults document localized reactivation



Figure 1.5: Mesozoic Rifting and corresponding faults and rift basins (Schlische et. al, 2004)

during the late Cretaceous. While there is no significant offset documented in AFT ages across the Ammonoosuc fault in the Connecticut River valley, there was a significant AFT age offset in northwestern New Hampshire between the Bill Little, Amonoosuc, and Northery Hill faults. This is also indicative of Cretaceous normal displacement at times <80 Ma (Roden Tice et. al., 2009).

All known studies present a relatively similar picture of Mesozoic average exhumation into Cretaceous differential unroofing and the reinstatement of uniform exhumation approximately 60 Ma. This is further evidenced in data explicitly applicable to this study.

AFT ages along Mt. Washington's Auto Road, on the eastern side of the mountain yield an average erosion rate of 0.2 mm/yr between ~160 Ma and ~100 Ma. Between ~140 Ma and ~120 Ma there was a period of slower erosion, 0.01 mm/yr, bounded by 0.03 mm/yr from ~140 mm/yr from ~140 Ma to ~160 Ma and 0.04 mm/yr from ~100 Ma to ~120 Ma. These generalized values, based solely on the AFT age from summit to base, are comparable to the average erosion rate, 0.04 mm/yr from 304 Ma to 274 Ma determined by Eusden and Lux's (1994) <sup>40</sup>Ar/ <sup>39</sup>Ar ages. It is also comparable to Doherty and Lyons' (1980) erosion rate of 0.03-0.04 mm/yr since the Jurassic (Roden-Tice et. al, 2011).

There is a large discrepancy, however, in the calculated geothermal gradient. Where Doherty and Lyons based their study on a geothermal gradient of 25 to 30°C, Roden-Tice et. al (2011) found an average geothermal gradient of ~ 40 °C during the Mesozoic. The relief method yielded a geothermal gradient of ~ 36 °C while the time-temperature history yielded a geothermal gradient of ~ 43 °C. Roden-Tice et. al (2011) extrapolated the data to extend back to ~ 300 Ma. These values are significantly higher than that of both Doherty and Lyons' (1980) study and Roden-Tice et.al's (2009) calculation that also assumed a geothermal gradient of ~25 – 30 °C for the same time period.

From 120 Ma to 60 Ma erosion patterns changed relative to the modern topographic profile. While samples from the summit of Mt. Washington and topographic middle of the mountain travel through the PAZ relatively synchronously, indicating uniform exhumation, the sample from the near Pinkham Notch diverges at approximately 120 Ma. The sample at the base

moved through the PAZ faster, cooling at approximately 0.6 °C/my from 100 Ma to 60 Ma while the summit and middle samples were cooled at 0.2 °C/my during this time.

Two theories exist to explain this period of differential exhumation. One attributes it to differential erosion from a paleo-drainage system. The other theory suggests that faults were reactivated in the region causing localized uplift. These two theories, however, are not mutually exclusive and a combination of the two is possible, if not more likely.

As studies along faults both east and west of the Presidential Region have revealed late Mesozoic fault reactivation a similar event is not unlikely, although it would require a fault to exist that spatially separates Mt. Washington's summit from base. This would allow the summit to stay put throughout the period of differential exhumation, while the base rocks were tilted upwards thus exhibiting higher exhumation rates.

AFT ages from this study add to the understanding of both regional and local Mesozoic and Cenozoic topographic setting and development. With the addition of AFT ages varying in elevation, previously limited to Roden-Tice et. al's (2011) study, an even more comprehensive chronology can be constructed.

## 2.1 Field Sampling

Thirteen samples were collected from the summit of Mt. Washington at 2523.7 m to near the base at 539.5 m. during one day of field work in mid-June, 2011. Samples were collected approximately every 150 m. in vertical elevation along the Cog Railroad on the western ridge of Mt. Washington (Figure 2.1). The sites were chosen from elevation change determined by Garmin Etrek GPS unit. At each site, two sample bags were filled using both a 10 pound sledge hammer and smaller rock hammer.

The thirteen sample sites crossed through two metamorphic rock formations and one granitic intrusion. Samples CR01 through CR 07 (starting at high elevation) are from the Littleton Formation (Figure 2.2). Samples CR08 through CR11, intermediate elevations, are from the Rangeley Formation (Figure 2.2). Samples CR12 and CR13, at low elevations, are from Bretton Woods Granite (Figure 2.2). As mentioned previously, the rock formations are not integral for the purpose of this study. It is more important to note that each of samples rock is likely to contain enough apatite to perform this work.

| Sample # | Elevation (m) | Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Distance from<br>Last Sample | Waypoint # | Error (m) |
|----------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------|-----------|
| CR01     | 1914.14       | Littleton Schist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 001        | ±4.6      |
| CR02     | 1886.71       | Littleton Schist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 90                           | 002        | ±7.3      |
| CR03     | 1743.46       | Littleton Schist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 470                          | 003        | ±4.9      |
| CR04     | 1624.58       | Littleton Schist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 390                          | 004        | ±3.1      |
| CR05     | 1482.24       | Littleton Schist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 467                          | 005        | ±3.4      |
| CR06     | 1392.02       | Littleton Schist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 296                          | 006        | ±2.7      |
| CR07     | 1325.88       | Littleton Schist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 217                          | 007        | ±3.7      |
| CR08     | 1190.55       | Rangely Schist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 444                          | 008        | ±4.0      |
| CR09     | 1089.66       | Rangely Schist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 331                          | 009        | =3.4      |
| CR10     | 930.55        | Rangely Schist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 522                          | 010        | ±6.7      |
| CR11     | 842.77        | Rangely Schist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 288                          | 011        | ±9.1      |
| CR12     | 647.09        | Bretton Woods<br>Granite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 642                          | 012        | ±6.4      |
| CR13     | 539.50        | Bretton Woods<br>Granite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 353                          | 013        | ±7.3      |
|          |               | and the second se |                              |            |           |

 Table 2.1: Sample Locations

# Methods







CR01: Littleton,1914.1 m

CR02: Littleton, 1886.7





CR04: Littleton, 1624.6 m

CR05: Littleton, 1482.2 m





CR07: Littleton, 1325.9 m

CR08: Rangeley, 1190.6 m



Figure 2.2: Photo Locations



CR03: Littleton,1743.5 m





CR06: Littleton, 1392.0 m



CR09: Rangeley, 930.6 m



CR13: Bretton Woods, 539.5 m

#### 2.2 Crushing and Pulverizing

At least one hand sample from each site was archived prior to crushing. Remaining sample was crushed with a Braun Chipmunk jaw crusher (Figure 2.5). To eliminate cross-sample contamination the jaw crusher would be completely vacuumed, blown with compressed air and swept. After the initial cleaning, a small fragment of the sample would be crushed before another around of cleaning. If a sample is, then, contaminated with the previous run it would be contaminated with itself, thus reducing the risk of error in later results. During both crushing and pulverizing, an external vacuum was placed within the hood to remove airborne dust produced by the working machines. The cleaning process was extensive and most essential here because of the necessity to preserve the purity of all samples.

After the second round of cleaning, the remaining sample was crushed resulting in approximately 1 cm diameter fragments. Samples too large to fit in the mouth of the crusher were physically crushed first with a hammer before mechanically crushing them. If this was done, the surface where the rock was crushed was also extensively cleaned with a vacuum. After a sample was crushed, the resultant fragments were collected in 1L plastic containers. Each sample yielded different quantities of crushed rocks, but 1L was chosen to pulverize, while the remaining fragments were archived.

Using a 2hp belt drive Bico disc mill 1L of each sample was then pulverized with ceramic plates. An identical pre-screening cleaning was conducted to reduce the risk of cross-sample contamination. Once cleaned for a sample, the 1L of crushed rock was run twice through the pulverizer. First, the ceramic discs were approximately 0.5 cm apart which resulted in a mix of coarse sand size grains and powder. For the second run, the discs were approximately 1 mm apart resulting in fine sand to silt size grains and powder.



Figure 2.3: Chipmunk Crusher and Pulverizer

#### 2.3 Sieving Samples

The pulverized samples were sieved using a fine cloth sieve. This removed the larger grains, primarily micas that were not able to be pulverized into a fine grain with the Bico discs. The same cloth sieve was used for all samples; between samples the cloth was washed with hand soap and scrubbed with a brush. It was blown with compressed air to dry and remove any remaining grains from a previous sample.

#### 2.4 Rogers Table Separation

A Rogers Table was used to separate the pulverized and sieved material by specific gravity. To prepare, the table was scrubbed with a plastic brush and rinsed thoroughly to ensure that all residual grains were washed out. The table was cleaned before each sample was run. In addition,

buckets where sediment was collected were washed and rinsed. Water pressure combined with appropriate levels of shaking separated the minerals. When a sample was run, grains with intermediate and heavy specific gravity were collected in the smaller collecting buckets together while grains with light specific gravity were collected separately in the large bottom bucket (Figure 2.6). After one run, the light grains were archived back in the 1L containers. The intermediate and heavy grains were run again to separate out any residual light grains. The remaining intermediate and heavy grains were dried in small aluminum trays.



Figure 2.4: Rogers Table Specific Gravity Separator; Sample CR08 is being run

#### **2.5 Magnetic Separation**

After samples were dried, they were separated by magnetic susceptibility. A hand magnet was used to initially separate all the extremely high-magnetic minerals. The high-magnetic fractions were archived.

The samples were then run through a Frantz Isodynamic Magnetic Separator. The track was set with a forward tilt of 15° and a side tilt of 25° (Figure 2.5). Before each sample was run, the Frantz was disassembled and cleaned with compressed air and Kimwipes. The samples were first run at 0.5 Å. This removed the highly magnetic minerals, which were archived. They were then re-run at 1.2 Å. Apatite had a magnetic susceptibility of 1.3 Å (Rosenblum, 2000); at 1.2 Å was preserved while slightly more magnetic minerals were removed (Figure 2.6). Quartz, among others, remained after this step. All magnetic fractions were archived.

Steps 2.6 to 2.10 took place at SUNY Plattsburgh

#### 2.6 Heavy Liquid Separation

LST (containing lithium heteropolytungstates) can be used for heavy liquid separation with a recommended density of 2.85 g/mL at 25°C was used for heavy liquid separation the initial separation (Figure 2.7). Apatite and the remaining heavy separates were then separated using Methylene Iodide (MI), which has a specific gravity of 3.32 g/mL. This second liquid is used to separate the apatites from the zircons, as zircon has a specific gravity greater than the MI and apatite less. Remaining grains were cleaned with 100, 300 mesh sieves (.152 mm and .044 mm respectively).

#### 2.7 Grain Mount and Polishing

Grains were mounted on petrographic slides in epoxy; each sample was measured to be a 1 cm by 1.5 cm size rectangle. Using 400 grit paper, the surfaces of the grains were cut to expose the apatites before being briefly polished with 600 grit paper. 9 micron and 1 micron diamond paste was, sequentially, used to polish the mounts. Polishing was finalized with 0.3 micron Al<sub>g</sub>O<sub>3</sub>





| omps.i0 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,                 | 4 3     | 5      | 6   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|--------|-----|
| Mognetite -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |        |     |
| Pyrrhotite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |        |     |
| Ilmenite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.1111            |         |        |     |
| Gornet -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | 1.1.1.1 | 100    | 111 |
| Chromite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                  | 11111   |        |     |
| Columbite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a desta de la compañía de | -                  |         |        |     |
| Chlorite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1110               |         |        |     |
| Biotite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | Carrier | Color: |     |
| Perovakite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Contraction of the | -       |        |     |
| Euxenite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01111              | _       | 1946   |     |
| Hornblende                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | _       | -110   |     |
| Pyroxene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hype                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rathene            |         | 1.00   |     |
| Xenotime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                  |         |        | 111 |
| Allonite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CIN-HI             | -       |        |     |
| Tourmaline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | sidek-b | (Dark  | 1   |
| Epidote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | -       | 100    |     |
| Gannite (spinei)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | -       | -      |     |
| Monazite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                  |         |        |     |
| Sphene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 1.117   | 1007   |     |
| Rutile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                  | ock-b   | epen.  | 111 |
| Thorite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                  | 111111  |        | 111 |
| Muscovite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1. Junito                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | -       | 101110 | 1   |
| Hematite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |        | -   |
| Bornite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |        | 1   |
| Tetrahedrite-tenn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | antite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                  |         |        |     |
| Uraninite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14 Anto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |         |        | 1   |
| Zircon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | Mole    | con i  | Op  |
| Cossiterite .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 191125  |        |     |
| Pyrochiore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |        |     |
| Microlite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |        |     |
| Covellite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |        |     |
| Feldspors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |        |     |
| Kyanite and sillim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | anite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |        |     |
| Staurolite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |        |     |
| Cholcocite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |        |     |
| Thorianite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |         |        |     |
| Sphalerite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                  | Marma   | 174    |     |
| Enoraite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |        |     |
| Arsenopyrite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |        |     |
| Galena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |        |     |
| Cholcopyrite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |        |     |
| Pyrite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |        |     |
| Scheelite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |        |     |
| Barite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |        |     |
| Quartz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |        |     |
| Apotite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |        |     |
| Fluorite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |        |     |
| Topoz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |        |     |
| Molybdenite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |        |     |
| The state of the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |        |     |

Figure 2.6: Table of Mineral Susceptibility (adapted from Rosenblum, 1953)



Figure 2.7: Heavy Liquid Density Comparison



powder twice for 3+ minutes until smooth.

#### 2.8 Etching Tracks

Mounted slides were submerged in 5M HNO<sub>2</sub> for 20 seconds at 21°C. This revealed spontaneous fission tracks in the apatite grains.

### 2.9 External Detector Attachment

The mica detector was cut with an Exacto-Knife to fit over the epoxy mount; the mica was cut to be slightly smaller in size than the 1 cm x 1.5 cm rectangle mount. The samples and the detectors were taped together and tightly bound using the dull end of the Exacto-Knife.

#### 2.10 Packaging Samples

The thirteen samples, with attached mica detectors, were stacked and bound with tape. Additionally, CN1 dosimeter glasses with attached mica detectors were placed at the top and the bottom of the stack in order to later monitor neutron flux during irradiation. Samples CR01 to CR08 were in a package with CN1 L dosimeter. Samples CR09 to CR13 were in a separate package with CN1 N dosimeter. Together, the stack was packaged in a polyTRIGA tube and sent to Oregon State University.

## 2.11 Irradiation and U<sup>235</sup> Track Etching

The samples were irradiated at the Oregon State University TRIGA reactor using a nominal flux of 8.0 x  $10^{15}$  n/cm<sup>2</sup>. This induced U<sup>235</sup> fission tracks in the samples; only the tracks in the mica replicas were etched after this point such that U<sup>238</sup> tracks are only visible on the apatite samples and U<sup>235</sup> tracks are only visible on the mica replicas.

#### 2.13 Zeta Calculation

In order to quantify potential error, tracks on known samples were counted. The samples

used were Durango apatite from Durango, Mexico. Tracks on twenty grains were counted for Durango A and Durango B over a given area for each grain. Tracks were counted on the replica of each grain over the same area. Brandon age calculation computer program generated ages for each grain and averaged them. These ages were compared to the known age of the sample to define personal error. As this was done for both Durango A and Durango B, the two error scores were averaged to attain one standard zeta score to be used for all calculations of Mt. Washington samples.

#### 2.14 Fluence Calculation

In order to later accurately calculate AFT ages, the fluence was determined for each package containing Mt. Washington samples. Approximately 1000 tracks were counted for each mica glass (four in total at the top and bottom of each package). The exact number counted was divided by the total area tracks were counted within to reach 1000, giving a total density of tracks within the glass. This is proportional to the flux of particles intersecting the mica glass. Fluence for the individual samples was determined by interpolating between the two measured dosimeters.

#### 2.15 Track Counting and Calculation

For each sample, tracks on approximately 20 grains were counted with an Olympus BMAX 60 microscope at x 1600. For each grain, tracks were counted within in a certain area representing the spontaneous fission. The same grain on the mica replica, representing the induced tracks, was found and tracks were counted within the same area.

These values, along with the area counted, were entered into the Brandon age calculation program. This program, using the counted track values, the decomposition half-life of U<sup>238</sup> and relative abundances of U<sup>235</sup> to U<sup>238</sup> generated ages for each grain. The program also takes into account the previously determined personal zeta score (which is constant for all samples) and fluence (which differs for each sample). The average for all of the grains was used for the final

measured age, indicated by the program as the central age. Based on the zeta score, an error histogram was also generated.

#### 2.16 Track Measurement

Track lengths were measured for samples CR01 (summit) and CR13 (base). 77 tracks were measured for CR01 and 57 tracks were measured for CR13. Data was then input into a386 Zenith PC to generate track length frequency histograms. These histograms were used to model the time temperature path of the sample through the PAZ using Cal Comp Model 31120 program.

#### 2.17 Microprobe Composition Analysis

Slides were prepared for Samples CR13, CR12, CR10, CR08, CR06 and CR01. These samples represent all formations being studied. Once mounted in epoxy, the slides were polished first with 400 and 600 grit papers. Slides were then polished with 60/90 grit silicon carbine and 500/600 grit silicon carbide. The polishing was finalized with Alumina G. Slides were finally carbon coated. F and P were calibrated using an apatite standard while Na and Cl were calibrated with a tungtapite standard. Samples CR01, CR08, CR12 and CR13 were scanned with a MAC 400S electron microprobe at UMaine Orono to determine the weight percent of F, Cl and Ce. For CR01, five grains were analyzed with ten points run for each grain. For CR08, three grains were analyzed with seven points run for each grain. For CR13, five grains were analyzed with ten points run for each grain.

#### 3.1 Microprobe

Grains from samples CR01, CR08, CR12 and CR13 were analyzed for F, Cl and Ce content. Grains C 01 is Littleton Formation. Grains CR08 is Rangeley Formation and CR12 and CR13 are Bretton Woods Granite. The five grains analyzed for CR01 yielded an average F weight percent of 3.41, Cl weight percent of .029 and Ce weight percent of 0.03 (Figure 3.1). The three grains analyzed for CR08 yielded an average F weight percent of 4.14, Cl weight perfect of 0.00 and Ce weight percent of .12 (Figure 3.2). The five grains analyzed for CR12 yielded an average F weight percent of 3.42, Cl weight percent of 0.03 and Ce weight percent of 0.08 (Figure 3.3). Only one grain was analyzed for CR13 and had a Fl weight percent of 3.96, Cl weight percent of 0.00 (Figure 3.4). Given that these are all fluoroapatites, the closing temperature of apatite does not need to be adjusted to account for excess Cl content.

#### 3.2 Zeta Score

Standard deviations of age are based on the zeta score determined off a measured variance from a known standard (Durango apatite of Durango, Mexico). The zeta score was determined on samples 2A, 6A, 7A, 11A and 13A. The mean zeta was determined to be  $101.6 \pm 7.18$ . This is an average of the error calculations from two Durango samples. All other samples are calculated with a zeta score of  $98.4 \pm 1.7$  from Roden-Tice.

#### 3.3 Fluence

For Package PL061, the measured fluence for the top and bottom mica glasses, acting as fluence dosimeters for the package, were 3.8403E+06 at the top (CN1 N) and 4.1310E+06 at the bottom (CN1 O). Fluence values for the samples within this package were interpolated (Table 3.5) accordingly. This package included samples CR09 to CR13. For Package PL060, the measured fluence for the top mica glass was 3.7431E+06. The fluence for the bottom mica glass was 4.3383E+06. Fluence values were interpolated in this package for samples CR01 to CR 08 (Table 3.6). These values are similar to those determined by

# Results

| Grain # | Ħ        |           | H2O   | Na2O | ()a() | 0°W  | He() | C#2O3 | SO2  | P2O5  | Total  | O=P, $CI$ | Total  |
|---------|----------|-----------|-------|------|-------|------|------|-------|------|-------|--------|-----------|--------|
| 1.00    | 4.65     | 0.00      | -0.52 | 0.12 | 54.68 | 0.30 | 0.03 | 20.0  | 1    | 42.17 | 102.03 | 1.96      | 100.07 |
|         |          |           |       |      |       |      |      |       | 0.01 |       |        |           |        |
| 2.00    | 3.68     | 0.01<br>1 | -0.04 | 0.14 | 53.82 | 0.38 | 0.07 | 0.25  | 0.01 | 42.41 | 100.76 | 1.55      | 99.21  |
| 3.00    | 3.89     | 0.00      | -0.14 | 0.16 | 54.18 | 0.38 | 0.05 | 0.05  | 0.00 | 42.26 | 100.97 | 1.64      | £5.66  |
| Total   | 4.<br>14 | 0.00      | -0.26 | 0.14 | 54.28 | 0.35 | 0.05 | 0.12  | 0.00 | 42.27 | 101.35 | 1.74      | 99.60  |
|         |          | •         |       |      |       |      |      |       |      |       |        |           |        |

| _ L          |   |
|--------------|---|
|              |   |
| <u> </u>     |   |
| ד ו          |   |
| -            |   |
| ו פ          |   |
|              |   |
| $\mathbf{v}$ |   |
| >            |   |
| <b>.</b>     |   |
| •            |   |
|              |   |
| 1            |   |
|              |   |
| Ξ.           |   |
| $\supset$    |   |
| $\mathbf{n}$ |   |
|              |   |
| >            |   |
| 5            |   |
|              |   |
| S.           |   |
|              |   |
| <u>.</u>     |   |
| 2            |   |
| 5            |   |
|              |   |
| ÷.           |   |
| _            |   |
| Γ.           |   |
| D            |   |
| •            |   |
| -            |   |
| )            |   |
| د            | L |
| _            |   |

Table 3.2: CR08 Microprobe Data

38

| Grain ≉    | <del>.</del> | Ċ          | H2O     | Na20   | 040    | Mn()   | FeO    | $C_{203}$ | 802<br>2  | P2O5    | Total    | 0=F,   | 'Lotal  |
|------------|--------------|------------|---------|--------|--------|--------|--------|-----------|-----------|---------|----------|--------|---------|
|            |              |            |         |        |        |        |        |           |           |         |          | Ċ      |         |
| _          | 0.86%        | 1500       | -0,201  | 0,000  | 51.633 | 0.377  | 1800   | 610.0     | -0,015    | 12,032  | 965 IQI  | 1.687  | [19]66  |
| ••         | 3.244        | 0,05]      | 89710   | 0,1    | 51414  | 0,418  | 0110   | 0,029     | ējiitē    | 17.74   | 100.691  | 1,371  | \$9.333 |
| 3          | 31187        | 0,036      | 6810    | 0.114  | STRANS | 0,438  | 0.134  | 0,032     | -0,012    | 11.764  | 100.361  | MS1    | [[n'86  |
| ÷          | 3173         | 0,024      | 011.0   | 0.133  | 51.134 | 6440   | 0137   | 62029     | -0,013    | htv'll  | 100.364  | 3421   | 55N'85  |
| J.         | 3437         | 0,022      | 0,116.8 | 0,017  | 21383  | 0,286  | 0,039  | 0,047     | 0,003     | H.M63   | 100.373  | 1433   | 55M%S   |
| Total      | 3,4064       | 0,0204     | 0,0833  | 0.1164 | 513V33 | 0,4028 | 0.11V3 | 6,03      | -O,IIIIIX | EL ALIS | 100.3776 | 1.4404 | 991374  |
| Table 3.1: | CR01 Mid     | croprobe I | )ata    |        |        |        |        |           |           |         |          |        |         |

| Т       | 078                                   | Na2O                                       | (aO                                                                               | MaO                                                                                                        | FeO                                                                                                                                                                                                                                                                                                                                                                                                              | 0:203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P2O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l'otal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0=E, CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------|---------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ξ       | 0.11                                  | 0.07                                       | 10.72                                                                             | 2010                                                                                                       | 0.01                                                                                                                                                                                                                                                                                                                                                                                                             | 9110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N'II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 101.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ā                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| )<br>II | 0.19                                  | 0.06                                       | $15.5^{\pm}$                                                                      | 0.10                                                                                                       | 0.11                                                                                                                                                                                                                                                                                                                                                                                                             | 0.114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | W.H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NIL2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ā                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0       | 0.34                                  | 0.112                                      | 21.95                                                                             | 0.116                                                                                                      | 0.H3                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H.H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SK10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Тж<br>Зе                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ā                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| :::     | 0.21                                  | 0116                                       | 91.VF                                                                             | 0110                                                                                                       | 200                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                       |                                            |                                                                                   |                                                                                                            | 10.00                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AL AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90<br>90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0       | 0.26                                  | 2010                                       | A ITVE                                                                            | 2010<br>2                                                                                                  | 0.111                                                                                                                                                                                                                                                                                                                                                                                                            | 2110<br>2112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATA<br>ATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ι, μ<br>Έ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40 40<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| • •     | 0.26                                  | 5110<br>2110                               | 98°aa<br>VII'ya<br>VII'ya                                                         | 5110<br>5110                                                                                               | 0113                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1216<br>123<br>124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 Q &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S . 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.11 0.11<br>0.11 0.12<br>0 0.19<br>0 0.21 | . H2O Na2O<br>0111 0.11: 0110<br>0111 0.119 0.116<br>0 0.31 0.112<br>0 0.21 0.116 | . H2O Na2O CaO<br>0111 0.11: 0107 75.73<br>0111 0.19 0.16 75.31<br>0 0.34 0.112 75.13<br>0 0.21 0.16 75.16 | H20         Na20         CaO         MaO           0411         0.111         0.017         #55.73         0.017           0411         0.142         0.017         #55.73         0.017           0411         0.142         0.016         #55.73         0.017           0411         0.142         0.016         #55.13         0.016           0411         0.131         0.012         #55.13         0.016 | H20         Na20         CaO         MaO         FeO           0411         0.11         0.117         55.73         0.117         0.111           0411         0.12         0.167         55.73         0.117         0.111           0411         0.19         0.116         55.73         0.117         0.111           0411         0.19         0.116         55.73         0.117         0.111           04         0.142         55.13         0.116         0.118           04         0.21         0.116         55.14         0.117         0.118 | H20         Na20         CaO         MaO         FeO         Cr203           011         0.11         0.11         75.73         0.115         0.11         0.16           011         0.14         0.16         75.73         0.115         0.11         0.116           011         0.14         0.16         75.73         0.117         0.111         0.112           0         0.34         0.12         75.13         0.16         0.113         0.17           0         0.34         0.12         75.15         0.116         0.113         0.17 | H20         Na20         CaO         MaO         FeO         Cr203         SO2           0411         0.11         0.07         56.73         0.013         0.011         0.06         0.02           0411         0.14         0.07         56.73         0.013         0.011         0.012         0.012           0411         0.14         0.016         56.83         0.017         0.011         0.012         0           0411         0.12         56.13         0.016         0.016         0.013         0.011         0.011           05         0.31         0.016         56.13         0.016         0.017         0.013         0.011 | H20         Na20         CaO         MaO         FeO         Cr203         SO2         P205         7           0.01         0.11         0.017         55.73         0.017         0.016         0.012         11.7           0.01         0.12         55.73         0.017         0.011         0.016         0.012         11.7           0.01         0.14         55.81         0.017         0.011         0.012         0.011         0.012           0         0.34         0.012         55.12         0.016         0.013         0.011         11.011           0         0.34         0.012         55.12         0.016         0.013         0.011         11.011 | H20         Na20         CaO         MnO         FeO         Cr203         SO2         P205         Total           0.011         0.112         0.017         55.73         0.017         0.016         0.012         11.31         1           0.011         0.14         0.016         55.73         0.017         0.011         0.012         11.31         1           0.011         0.14         0.016         55.43         0.017         0.013         0         11.33         10           0         0.34         0.012         55.43         0.016         0.013         0         0.011         1.033         10           0         0.34         0.012         55.43         0.016         0.013         0         0.011         11.03         10           0         0.34         0.012         55.43         0.016         0.013         0.011         11.03         10 | H20         Na20         CaO         MnO         FeO         Cr203         SO2         P205         Total         O=F, Cl           0.01         0.11         0.07         55.73         0.07         0.01         0.08         0.02         11.01         101.7           0.011         0.14         0.17         0.01         0.01         0.01         11.01         101.7         101.7           0         0.34         0.02         55.43         0.04         0.013         0         11.03         101.83         101.83           0         0.34         0.02         55.43         0.04         0.013         0         0.011         11.03         101.83 | H20         Na20         CaO         MAO         FeO         Cr203         SO2         P205         Total         O=F, Cl         Total           0411         0.112         0.017         0.017         0.016         0.012         11.01         101.7         1.4           0411         0.14         0.16         3.01         0.012         11.01         101.7         1.4           0411         0.14         0.017         0.011         0.012         11.01         101.7         1.4           0411         0.112         55.17         0.016         0.013         0         11.01         101.81         1.6           05         0.34         0.012         55.17         0.016         0.013         0         0.011         11.01         101.81         1.6 |

Table 3.3: CR12 Microprobe Data

| Grain F | -⊤.    | □     | H2()   | NažO   | CaO    | MaO   | FeO    | Cc2O3  | 502                 | P2O5    | Total    | 0=F, CI | Tota |
|---------|--------|-------|--------|--------|--------|-------|--------|--------|---------------------|---------|----------|---------|------|
| _       | 3.64   | 0.035 | -0.039 | 0.002  | 24.622 | 0.556 | 101.0  | 62010  | 900.0               | 41.881  | 100.877  | 1.544   |      |
| 1.2     | 8.70)  | 800.0 | -0.055 | 5,6070 | 24.286 | 0.258 | 0.077  | 0.025  | 0.012               | 40.985  | 100.73   | 1.50    |      |
| ير:     | 2000   | 0.035 | 0.146  | 580.0  | 24,732 | 0.28  | 0.042  | 0.021  | (101 <sup>°</sup> ) | 42.024  | 100.658  | 1.392   |      |
| ÷       | 2383   | 0,002 | 620.0  | 0,072  | 54.766 | 0.224 | -0.004 | -0.029 | 0,002               | 42,133  | 100.78   | 1.485   |      |
| in      | 2.981  | 0.032 | 0.294  | 0.106  | 54.641 | 0.277 | 0.021  | £100-  | 0                   | 42.189  | 100.584  | 1.267   |      |
| Total   | 3.4252 | 10000 | 0.077  | 0,092  | 24.676 | 0.275 | 0.044  | 0.0082 | 0.0041              | 42.0424 | 100.7178 | 1.49%   | 5    |

Roden-Tice, therefore can confindently be used to compared ages between Anderson and Roden-Tice.

#### 3.4 Ages

Thirteen samples from the Cog Railroad, Mt. Washington yielded ages ranging from 148.0 +/- 15 Ma to 89.2 +/- 10 Ma, therefore ranging from late Jurassic to Late Cretaceous. The samples yielded an average exhumation rate of .0215 mm/yr during this period (Table 3.7).

Near the summit, elevations 1914.14 m (CR-01) and 1886.71 m (CR-02) yielded ages, respectively, 180.0 +/- 15 Ma and 147.3 +/- 25 Ma. The latter age was confirmed by Roden-Tice's determined age of 147.2 +/- 15 Ma at the same elevation.

Between 1743.5 m elevation and 1089.7 m elevation, ages show small variations and range between 110.1 +/- 13 Ma and 126.6 +/- 13 Ma. The previously established trend of increasing age with elevation is similarly neglected during this period (Figure 3.1). Ages for elevations 1743.5 m (CR03), 1624.6 m (CR04), 1482.2 m (CR05), 1392.0 m (CR06), 1325.9 m (CR07), 1190.6 m (CR08) and 1089.7 m (CR09) are, respectively, 114.5 +/- 17 Ma, 114.4 +/- 12 Ma, 119.3 +/- 13 Ma, 125.8 +/- 22 Ma, 117.7 +/- 22 Ma, 118.4 +/- 12 Ma and 110.1 +/- 13 Ma. CR06 and CR07 ages were confirmed by Roden-Tice. The Roden-Tice ages were 126.6 +/-15 Ma for CR06 and 114.4 +/- 16 Ma.

| Saiupte | Henation (m) | MRT Age (Ma) | hrror | hrror | BPA Age (Ma: | brror | brror  |
|---------|--------------|--------------|-------|-------|--------------|-------|--------|
|         |              |              | +     |       |              | +     |        |
| CROI    | .911.114     | . 18.0       | 15.5  | 14.5  |              |       |        |
| CR02    | .885.712     | . 17.2       | 15.7  | 14.2  | . 17.3       | 25.9  | 32.5   |
| CRUS    | .743.455     | . 11.5       | 19.0  | 15.3  |              |       |        |
| CRUH    | .611.581     | .11.4        | 13.1  | 11.5  |              |       |        |
| CROS    | .182.212     | . 195        | 13.5  | 12.2  |              |       |        |
| CRuo    | .392.022     | .15.5        | 15.5  | 13.9  | .15.9        | 34.3  | 2011   |
| CR07    | .315.880     | . 11.4       | 15.5  | 17.9  | . 17.7       | 34.0  | - R0.5 |
| CRus    | .199519      | . 18.4       | 13.2  | 11.9  |              |       |        |
| CR09    | .089.550     | . 1.01       | 15.6  | 12.1  |              |       |        |
| CRIO    | NAU551       | .02.9        | 11.5  | 10.5  |              |       |        |
| CRIT    | \$12.772     | \$5.5        | 5.3   | 8.5   | 95.5         | - 93  | \$.5   |
| CR12    | 617,040      | \$5.5        | 8.0   | 7.3   |              |       |        |
| CRUA    | 339,395      | \$2.2        | E.G.  | 1.0.0 | 89.7         | 17.6  | 14.7   |













Figure 3.3: AFT Ages with exhumation rates separated by elevation

Bottom samples are similarly all within error of each other. Elevation 930.6 m (CR10) yielded an age of 102.9 +/- 11 Ma. Elevation 842.8 (CR11) yielded an age of 96.4 +/- 9 Ma. This sample had a confirmed age of 96.4 +/- 9 Ma, calculated by Roden-Tice. The lowest elevation samples, Bretton Woods Granite, had ages 86.4 +/- 8 Ma (at elevation 647.1; CR 12) and 88.7 +/- 16 Ma (at elevation 539.5 m; CR13). Roden-Tice calculated an age of 89.2 +/-10 Ma for this sample.

#### **3.5 Exhumation Rate**

The samples yield an average exhumation rate of .0234 mm/yr during this period. Exhumation, however, does not appear to be constant throughout. There is no obvious separation of distinct exhumation rates, but there is one clear trend from 110 Ma to 125 Ma, where all AFT are nearly uniform (Figure 3.2). Samples CR03 to CR09 are represented in this period, ranging in elevation from 1743.5 m to 1089.7 m. The exhumation rate of these samples jumps to .03924 mm/ yr. Keeping consistent with this separation, the remaining low elevation samples, CR10 to CR13 yield an exhumation rate of .0350 mm/yr. The high elevation samples, CR01 and CR02 yield an exhumation rate of .0342 mm/yr. These upper two samples, however, are extremely close both in elevation and age that this upper exhumation rate is relatively insignificant.

If the exhumation separations presented by Roden-Tice et. al (2011) are followed, groups are based on similarities in elevation more so than ages. Doing this, Samples CR01 to CR04 would yield an exhumation rate of .0285 mm/yr between elevations 1914.14 m and 1624.58 m (Figure 3.3). Samples CR05 to CR09 would yield an exhumation rate of .0427 mm/yr between elevations 1482.24 m and 1089.66 m. Finally, samples CR10 to CR13 would again be grouped together yielding that exhumation rate of .0342 mm/yr between elevations 930.55 m and 539.50 m.

#### 3.6 AFT Ages of Separate Rock Units

The Littleton Formation encompasses samples CR01 to CR07 from elevations 1914.14 m to 1325.88 m. Littleton Formation ages range from 148.0 +/- 15 Ma to 114.4 +/-16 Ma (Figure

3.4). Rangeley Formation encompasses samples from CR08 to CR11 from elevations 1190.55 m to 842.77 m. These ages range from 118.4 +/- 12 Ma 96.4 +/- 9 Ma. Bretton Woods Granite is represented in samples CR12 and CR13 from elevations 647.09 m to 539.50 m. Bretton Woods Granite ages range from 89.2 +/- 10 Ma to 86.4 +/- 8 Ma. Evaluating the differences in slopes between rock type does not yield any significant trends so it can be assumed that lithology does not play a role in differences of exhumation rate throughout the study period.

#### **3.7 Track Length Modeling**

Track lengths were measured for samples CR1 at elevation 1914.1 m and CR13 at 539.5 m. For CR1, 77 tracks were measured and yielded a mean track length of 12.3 +/-1.8 μm. Lengths ranged from approximately 6 μm to 17 μm. For CR13, 57 tracks were measured and yielded a mean track length of 13.1+/- 1.2 μm. Lengths ranged from 9 μm to 16 μm. CR1 had a relatively normal distribution around the mean track length (Figure 3.5), while CR13 was slightly skewed to the left (Figure 3.6).



Figure 3.6: CR13 Track length frequency distribution

### 4.1 AFT Ages

AFT ages from the Cog Railroad display a significant period of rapid exhumation that correlates chronologically with differential exhumation also evidenced in the Auto Road timetemperature history lasting from approximately 125 Ma to 60 Ma. This period of geologic time is well documented in the sedimentary record from Georges Bank off of the North Atlantic continental margin. As these sediments are derived from mountainous interior of New England there should be a temporal correlation between rapid sedimuent influx offshore and rapid exhumation on land. AFT ages from this study also align with a local and regional tilt when compared with AFT ages throughout New England and northern New York. These models typically invoke fault reactivation and/or paleo-drainage systems both of which contribute to the measured accelerated and differential exhumation.

#### 4.2 Rapid Exhumation

Contrary to the separation of exhumation rates from the Auto Road proposed by Roden-Tice et. al (2012) (Figure 4.1), comparing the Cog Railroad ages suggests that - while times of different exhumation are evident - grouping data by AFT age rather than elevation is more significant. This teases out the trend of rapid exhumation from approximately 125 Ma to 110 Ma. Samples between 1743.5 m and 1089.7 m show a period of rapid exhumation documented with ages ranging from only (not respectively) 126. 6 +/- 15 Ma to 110.2+/- 13 Ma. A similar trend it evident in Auto Road samples, with ages between elevations 1762 m and 1173 m ranging from 143.8 +/-19 Ma to 123.5 +/- 14 Ma (Figure 4.2). Although there is a gap of approximately 10 my, consistent with the general offset between sample sets, rapid exhumation evidenced from both Cog Railroad and Auto Road coincide with magmatic events. This period lies within the Cretaceous Peri-Atlantic Alkaline Pulse (PAAP) (Matton and Jebrak, 2009). PAAP describes a surge of alkaline activity during the Cretaceous, specifically from 125 Ma to 80 Ma (Figure 4.3) that was caused by local shallow asthenospheric upwelling that reactivated zones of

crustal weakness initially formed during Atlantic rift-drift tectonism (Matton and Jebrak, 2009).

# Discussion



Figure 4.1: Separations of Exhumations Rates fro mAuto Road AFT Ages (Roden-Tice et. al,. 2011)

This further aligns with the formation of the Monteregian Hills alkaline province (MHAP) in Quebec, Canada to the northwest of Mt. Washington. It consists of nine alkaline intrusions approximately 124 my old. While the original explanation for the hills was the passage of North America over the Great Meteor Hot Spot, this theory has been dismissed because of inconsistencies in the their age relative to the Hot Spot's path.

McHone (1996) first rejected the hot spot theory and introduced an alternative one involving alkaline basalts from the mantle occurring in concert with tectonic reactivation of lithospheric structures. Roulleau et. al (2010) concluded that the hills formed during continental rifting associated with upper mantle source upwelling.

The MHAP is the northwestern bound to the New England-Quebec Igneous Province (NEQ), a series that extends into southern New England (Figure 4.4) composed of Cretaceous



Figure 4.2: Cog Railroad Ages v. Auto Road Ages; slopes indicate period of potential rapid exhumation in both data sets







gabbro-syenite alkali plutons and dikes (McHone and Butler, 1984). As with MHAP, the source of the NEQ is asthenospheric upwelling that caused zones of crustal weakness to be reactivated (Faure et al, 1996).

Local evidence of this reactivation has been recently documented by the presence of a dike in Huntington Ravine (Kindley, 2011; Gardner, 2010). This dike, the Escape Hatch dike, with an E-W orientation, is an alkali dolerite, similar to the composition of features in the Cretaceous NEQ (Figure 4.5). Kindley (2011) asserts, then, that this dike is related to the N-S extensional stress field throughout New England and into Quebec. Faure et. al (1996) links E-W striking dike intrusions to the rifting event approximately 125 mya that marks the final stages of the breakup of Pangea and accelerated plate motion (Figure 4.6). Along with the upwelling, the NEQ-aged dikes could have introduced increased heat just west of the present day summit, causing the cluster of Cog Railroad ages not found in the Auto Road data set. This is all synchronous with the rapid period of exhumation evidenced in AFT ages along the Cog Railroad. Upwelling from these magmatic events, therefore, is likely to have triggered the



onset of increased rates of exhumation.

Figure 4.5: Huntington Ravine Dikes geochemical classification against those put forth by McHone and Butler (1984) (Gardner, 2010)



Figure 4.4: Map of Mesozoic Igneous intrustions through New England and Quebec (McHone and Butler, 1984)



Figure 4.6: Timing of North Atlantic Tectonism and New England Igneous Provinces (McHone and Butler, 1984)

```
North Atlantic tectonic events
```

```
Separation of Greenland from Norway
Opening of Labrador Sea
Cessation of major fracturing along New England
      Seamount chain
Age of ocean crust at eastern end of New England
      Seamount chain
Separation of Newfoundland from Iteland
 Separation of Newfoundland from Iberia
  eginning of rifting between Newfoundland
      and Iberta
Steady-state spreading of central
North Atlantic south of Newfoundland
Eastward ridge jump
 Separation of eastern North America from
      northwestern Africa
Beginning of rifting in eastern North America
Pre-rifting uplift
```

#### **4.3 Differential Exhumation**

#### 4.3a Evidence in Track Length Measurement

Track length measurements for the summit and base samples yielded nearly identical frequency distributions to the Auto Road measurements (Figure 4.7), allowing the use of the time-temperature path for the Auto Road samples to be applied to the Cog Railroad samples. The model suggests that the base and summit samples underwent uniform exhumation between approximately 160 and 130 Ma of 1.5 – 2.0 °C/my (Figure 4.8). At 130 Ma the summit samples, in the case of the Auto Road at elevation 1762 m, was essentially at a standstill, while base same at elevation 510 m experienced exhumation of 0.6 °C/my. At 60 Ma, the base and summit resumed a uniform exhumation of 0.6 °C/my with the current topographic relief in place.



Figure 4.7: Frequency Track Length Histograms; Top figure is from Auto Road (Roden-Tice et. al, 2011) and bottom two graphs are from Cog Railroad

The onset of differential exhumation roughly coincides with the phase of rapid exhumation for middle-elevation Cog Railroad samples between approximately 100 and 125 Ma. As middle elevation samples were passing quickly through the 100°C isotherm, they continued to exhume through the PAZ with relative speed.

Roden-Tice et. al (2012) suggest that this differential erosion is a result solely of a paleodrainage system that cut down topography east of the present day summit. The uniformity of track lengths between Cog Railroad and Auto Road would suggest that a paleo-drainage system likewise existed to the west of the present day summit somewhere in the vicinity of Crawford Notch. This suggets that the initiation of Pinkham and Crawford Notches, and perhaps others in the White Mountains, such as Evans and Franconia Notches, began along N-S trending paleoriver systems in response to magmatic uplift associated with the NEQ Cretaceous magmatic events.



Figure 4.8: Time-Temperature Path of Auto Road Samples through PAZ (Roden-Tice et. al, 2012)

Time (Ma)

#### 4.3b Sedimentation Record

It would be expected that a large influx of clastic, as opposed to marine-influenced limestone, would be present to account for unroofing of Mt. Washington during the same time period of rapid exhumation. There is unlikely to be too long of a response time between rapid exhumation and sediment inflow to Georges Bank and it would certainly have within the 10-20 my uncertainty of the AFT ages reported here and by Roden-Tice et al. (2012).

Marine core logs reveal an inflow of terrestrial-derived sediment that could be in response to rapid mountain incision. The stratigraphic column from the USGS Wells Cost No. G-2 from Georges Bank off of North Atlantic (Figure 4.9) continental margin shows an influx of clastic sediment during the Aptian and Albian, between approximately 125 Ma and 100 Ma (Figure 4.10).

This period is marked by a mudstone unit commencing right after the Barremian - Aptian (130 Ma) border and lasting just past the Aptian- Albian border (112 Ma). The mudstone is primarily silty with interbeds of sandstone. After this is a thin layer of very coarse, rounded sand and medium to fine grained sandstone. Stratigraphy above and below these clastic are biogenic units of limestone, reflecting a quiet water, equatorial setting without significant clastic influx. Carbonate unites define most of the rest of the Cost No. G-2 stratigraphic column which extends from the Late Triassic to the Tertiary (Figure 4.10).

The mudstone and sandstone layers that are interpreted here to be synchronous with the rapid and differential exhumation seen in the Mt. Washington region are relatively atypical. These sediments can be attributed to this exhumation as sediment from Mt. Washington would have entered the Gulf of Maine to Georges Bank through the local Cretaceous river systems. The stratigraphic record also reveals a decrease in organic carbon during this period that would be related to marine-origin sediments, possibly confirming the mountainous source of sediments then.

Cost No. G-1 Well similarly reveals an influx of clastic material and decrease in organic carbon content during the Albian and Aptian (Figure 4.11). This well further shows sandstone



Figure 4.9: Location Map of COST G Wells Relative to Mt. Washington

|           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CEZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ENO-  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ERA                                               | COLORANT COLORANT |
|-----------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------|
|           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ETACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ERTI- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PERIOD                                            | TIMINE            |
|           | E                                                     | ARLY C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RETA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CEOUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CFCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \+<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HICTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPOCH                                             |                   |
|           | BERRIASIAN                                            | VALANGINIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BARREMIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - APTIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ALBIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CENOMANIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CONIACIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SANTONIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AGE                                               |                   |
|           |                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A STATE                                           |                   |
| -         | ÷                                                     | vs;ic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · :: ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Exnumati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N IN M M M                                        |                   |
| ~         | ~                                                     | -warner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NOTENTIAL<br>INTERVIAL<br>INTERVIAL               |                   |
|           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>a</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ume                                               |                   |
| an:       | Link of the                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EIE CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.15.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 臣                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NO9                                               |                   |
| 出て        | No.                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | All and a second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (thereas)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1990 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COMPLETIONAL<br>MOSTINITY<br>Based                |                   |
| 語で        | incarcing participation on onesess on between         | Lardy, way many it waiter information is strapping and<br>becauting upon to have pay for such available<br>information space to have been provided on<br>the entropy of the strapping of the strapping of the<br>space pay that, and pays in the strapping pays<br>into the strapping of the strapping pays in the<br>space pay that, and pays in the strapping pays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | And a constraint strainer, and a constraint with the second strainers and strainers  | Manager and the second of the  | Table and many model are fully from a new model of the state of the st | And a second and second and further and and and a second  | Control of Matterson And Andrewson Andrew | the set are set the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The converting of the photostal and the photosta |       | and the second s | DESCRIPTION                                       |                   |
| -000 -000 | A Restantial grant of parts on concerns and testadout | And we preserve a service seturated a schemptor and<br>schempting upda beilge for and and and and<br>schempting upda beilge for and and and and<br>schempting upda beilge schempting updated and<br>schempting update and and and and and and<br>update and and and and and and and and and<br>and and and and and and and and and and<br>and and and and and and and and and and<br>and and and and and and and and and and<br>and and and and and and and and and and<br>and and and and and and and and and and<br>and and and and and and and and and and<br>and and and and and and and and and and<br>and and and and and and and and and and<br>and and and and and and and and and and<br>and and and and and and and and and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | And a state of the | Manarowi was do bastiros analy a series of the series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Table ary many model are faithfully waters in the<br>many many many means and the faithfully water in the<br>many many many many distribution and a summery - 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | And a second and some one information and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Control of the state of th | the second secon | Hado unservised uses to phonesis, model up<br>monte phones of phonesis, model up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 139 | and have an up many at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |                   |
| -000      | A A A A A A A A A A A A A A A A A A A                 | Lardy, any many is contact submaried to extension and<br>sub-particle stars in the party first stars, and a stars and<br>sub-particle stars space in decaying the stars and stars and<br>sub-particle stars and stars and stars and stars and stars<br>space stars that, and party are distribute space areas and<br>stars.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Additional strength and a state protocol participation of the state of | Manifold and the function of the second seco | Table and many stands and table and a stand a stand at a stand | AND A RELEVANCE OF AND AND A RELEVANCE AND AND A RELEVANCE AND | Control of the second sec | No. of the second secon | THEO constrained make it phoneses, studied up<br>booker phoneses and one is phoneses, studied up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 100 | and have a first and and a set of the set of |                                                   |                   |
| - 000 H   | The second are called the                             | Table way states it waters administed in schempting and<br>schempting ways in place part and schempting waters<br>and waters and an analysis and approximate and<br>schempting waters and place part and place in<br>the schempting waters and place place in the schempting<br>schempting waters and place place place in the schempting<br>schempting waters and place place place place in the schempting<br>schempting waters and place place place place place place place<br>schempting waters and place place place place place place place place<br>schempting waters and place place place place place place place place place place<br>schempting waters and place p | Additional survey and preserve  | August was and a bactional are services and the service of th      | The second secon | AND A RELEVANT OF ANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aldering of effectives of end of the en | Not the second s | The intervented more in phone and in the order of the second seco | -138  | BL BW W W W W W W W W W W W W W W W W W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DESCRIPTION NOT NOT NOT NOT NOT NOT NOT NOT NOT N |                   |

Figure 4.11: Cost G-1 Well Stratigraphic Column from Cretaceous to Tertiary (USGS, 1980)





layers extending to Santonian, approximately 80 Ma, corresponding further with the period of differential exhumation that lasted from approximately 120 Ma to 60 Ma. It is described as unconsolidated coarse to very coarse grained sanstone. Surrounding this layer on both sides are beds of gumbo-like shale, which is along with the limestone some of the most commonly occuring sediments found throughout the core log. The unconsolidated sandstone, on the other hand, is more anomalous requiring an external event separate from the regular cycles of sedimentation.

This explanation could be the increased inflow of sediment from rapid exhumation on Mt. Washington. Like with Cost G-2, the response time is likely to be relatively sudden, therefore an offset of rapid exhumation on Mt. Washington and sediment appearing in the Georges Bank core would not be vastly significant.

#### 4.4 Age Gradation

#### 4.4a Local Tilt

Cog Railroad samples from the western slope are all within error of the Auto Road samples on the eastern side of the mountain. Cog Railroad ages are, however, consistently younger at comparable elevations; similarly, at comparable ages, Cog Railroad samples are higher in elevation. While ages are within error, this undeviating relationship is indicative of a westward surficial tilt during the period of cooling of no more than 5° W (Figure 4.12).

AFT ages from Mt. Washington align with a general trend of AFT ages from Roden-Tice et. al (2009). These samples were taken along roads and riverbeds, and their elevations are likely relatively low-lying and vertical relief is therefore negligible. Given that, the westward tilt evidenced on Mt. Washington can be extended locally through the Amonoosuc Fault on the New Hampshire/Vermont border (Figure 4.13) . The region of lower-lying elevation surrounding the Mt. Washington massif is characterized by younger ages, approximately 80 to 90 Ma. Ages generally increase to both the east (southeast) and west (northwest).





Figure 4.13: Local Age Gradation of AFT Ages across New Hampshire and proposed western tilt and regional arc (modified from Roden-Tice et. al, 2009)

#### 4.4bRegion Tilt Trend Westward

Adding in data from Roden-Tice and Tice (2005), this tilt extends further westward into the Adirondacks (Figure 4.14). Excluding age discrepancies on either side of Adirondack faults, AFT ages increase westward. Again assuming that samples were taken at low-lying elevations (presumably along riverbeds or roadways), westward-most ages past the Adirondacks correlate with high-elevation Mt. Washington samples with ages approximately 120 Ma and above. Middle elevation Mt. Washington Samples at approximately 100 to 120 Ma fall east of the oldest AFT ages right in and just east of the Adirondacks. Youngest and lowest-elevation Mt. Washington AFT ages correspond with nearby AFT ages of less than 100 Ma in neighboring Vermont.

#### 4.4c Region Tilt Trend Southward

This data could further fit into a regional W-E age gradation proposed by Roden-Tice and Wintsch (2002) based on AFT and ZFT ages of southern New England, primarily in the Connecticut River Valley. In Massachusetts, AFT ages rise to the east from 106 to 146 Ma and in Connecticut from 113 to 164 Ma (Roden-Tice and Wintsch, 2002). The Bronson Hill Terrane lies just west of the Central Maine Terrane, in which Mt. Washington lies, and has elevations significantly lower (Figure 4.15).

The west- to-east gradient in the Early Cretaceous was approximately a 40 my difference. The gradient measured from the Cog Railroad to the Auto Road on Mt. Washington is 20 my at most. Roden-Tice and Wintsch (2002) proposed that a rotation to account for the lack of such tilt now was Early Cretaceous or younger in age. With the noted decrease in age gradient from west to east between the studies, it appears that the corrective rotation was occurring in the Early Cretaceous into the Late Cretaceous.

#### 4.5 Faulting and Pale-drainage Systems

Roden-Tice and Wintsch (2002) attributed the initial gradation to a faulting event that occurred between 120 Ma and 60 Ma and up-threw the Bronson Hill Terrane rocks along the

65



Figure 4.14: Regional Westward Tilt from AFT Ages of Cog Railroad and AFT Ages of the Adirondacks; offset from Ammonoosuc Fault is estimated (modified from Roden-Tice and Tice, 2005)



Eastern Border Fault. The Bronson Hill Faulting event was followed by the reactivation of normal faulting in the Norumbega Fault Zone east of Mt. Washington (West and Roden-Tice, 2003). Kindley (2011) asserted that the Norumbega Fault reactivation initiated the Pinkham Notch drainage, east of Mt. Washington and accounted for in the Auto Road data.

On the eastern side of Mt. Washington, this paleo-drainage system that downcut into the mountain eroded away the eastern limb as Pinkham "Mountain" became Pinkham Notch (Figure 4.16). As the same trend of differential exhumation, rapid exhumation and age gradation is apparently evident on the western side of the mountain, it is possible that a Great Gulf drainage system was acting to remove sediment on the west. Kindley (2011) suggested that the paleodrainage system was in fact fault driven and that faults on either side of Mt. Washington would have created a graben-like structure in which the down-cutting of reactivated faults would have driven the onset of such paleo-drainage system.

As it is now evident that there was fault reactivation to the west of Mt. Washington with the Bronson Hill event, it is likely that a paleo-drainage system was, in fact, initiated to explain the period of differential exhumation on the western slope of the mountain.



Figure 4.16: Profile of Topographic Evolution (Roden-Tice et. al, 2012)

#### Conclusion

This project added thirteen AFT ages to a local data set on Mt. Washington. It further contributed to a greater regional data set of AFT ages throughout New England and upstate New York. Ages ranged from 148.0 +/- 15 Ma at 1914.1 m to 89.2 +/- 10 Ma at 539.5 m. Ages revealed a west-down tilt when compared to ages on the eastern Auto Road that fits into a greater regional west-down tilt when compared to ages from Roden-Tice et. al (2009) throughout New Hampshire and Roden-Tice and Tice (2005) into the Adirondacks.

Mt. Washington Cog Railroad ages themselves revealed a period of rapid exhumation from approximately 125 to 80 Ma that is synchronous with magmatic events. These events include the Peri-Atlantic Alkaline Pulse, formation of the Monteregian Hills and New England-Quebec Igneous Province and the intrusion of alkalic dikes proximal to Mt. Washington documented by Kindley (2011) and Gardner (2010). Local asthenospheric upwelling is thought to have reactivated zones of crustal weakness and, along with the onset of paleo-drainage systems, contributed to this period of rapid exhumation.

While Mt. Washington provided the ideal location for this study given the topographic variation, other mountains in the Presidential Range of New Hampshire provide significant enough topographic relief to collect AFT ages by change in elevation. This would provide further insight to the local extent of trends on Mt. Washington.

With the archived samples from both the Auto Road and Cog Railroad, zircon fission track ages could be analyzed. Zircon has a closure temperature of 200°C as composed to apatite at 100°C. This would extend the cooling history further back in the Mesozoic. This would add further texture to the Mesozoic cooling history of the Presidential Range region.

69

# Appendix A: AFT Counting Data and Grain Sheets

| Figure A.1: CR2 Data Sheet 1      |
|-----------------------------------|
| Figure A.2: CR2 Data Sheet 274    |
| Figure A.3: CR2 Grain Sheet 1     |
| Figure A.4: CR2 Grain Sheet 1     |
| Figure A.5: CR6 Data Sheet 177    |
| Figure A.6: CR6 Data Sheet 2.78   |
| Figure A.7: CR2 Grain Sheet 1     |
| Figure A.8: CR2 Grain Sheet 2     |
| Figure A.9: CR7 Data Sheet 1      |
| Figure A.10: CR7 Data Sheet 282   |
| Figure A.11: CR7 Grain Sheet 1    |
| Figure A.12: CR2 Grain Sheet 2.84 |
| Figure A.13: CR11 Data Sheet 185  |
| Figure A.14: CR11 Data Sheet 2    |
| Figure A.15: CR2 Grain Sheet 1.87 |
| Figure A.16: CR2 Grain Sheet 288  |
| Figure A.17: CR13 Data Sheet 189  |
| Figure A.18: CR13 Data Sheet 290  |
| Figure A.19: CR13 Grain Sheet 191 |
| Figure A.20: CR13 Grain Sheet 292 |

| CR2A-BA<br>ZetaAge Program v. 4.7 (Brandon 4/1<br>DATE/TIME: 01-19-2012/10:40:30 FILENAME: C:\FTDATA\CR2A<br>Cr-2A Littleton schisht 6190' Mt Washington PL060-4 B A                                           | 1/97)<br>-BA.TXT<br>nderson 1/19/12                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| >>NEW PARAMETERSZETA METHOD<<<br>EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^<br>RELATIVE ERROR (                                                                                                   | 2): 3.855E+06<br>%): 2.53                                                  |
| EFFECTIVE URANIUM CONTENT OF MONITOR (pp                                                                                                                                                                       | m): 39.20                                                                  |
| ZETA FACTOR AND STANDARD ERROR (yr cm^                                                                                                                                                                         | 2): 101.60 7.20                                                            |
| SIZE OF COUNTER SQUARE (cm^                                                                                                                                                                                    | 2): 3.600E-07                                                              |
| Grain Rhos (Ns) RhoI (Ni) Squares U+/-2s                                                                                                                                                                       | Grain Age (Ma)                                                             |
| no. (cm^-2) (cm^-2)                                                                                                                                                                                            | Age95% CI                                                                  |
| 1 1.02E+06 ( 33) 1.45E+06 ( 47) 90 15 4                                                                                                                                                                        | 136.3 84.5 216.2                                                           |
| 2 1.42E+06 ( 46) 1.57E+06 ( 51) 90 16 5                                                                                                                                                                        | 174.3 114.6 263.9                                                          |
| 3 2.22E+06 ( 40) 2.22E+06 ( 40) 50 23 7                                                                                                                                                                        | 192.9 121.6 305.1                                                          |
| 4 1.55E+06 ( 39) 1.98E+06 ( 50) 70 20 6                                                                                                                                                                        | 151.1 96.8 233.4                                                           |
| 5 1.28E+06 (37) 1.70E+06 (49) 80 17 5                                                                                                                                                                          | 146.4 92.9 228.0                                                           |
| 6 1.25E+06 (45) 2.08E+06 (75) 100 21 5                                                                                                                                                                         | 116.6 78.6 170.7                                                           |
| 7 1.39E+06 (50) 1.89E+06 (68) 100 19 5                                                                                                                                                                         | 142.5 96.8 207.9                                                           |
| 8 1.37E+06 (38) 1.77E+06 (51) 80 18 5                                                                                                                                                                          | 144.5 92.3 223.3                                                           |
| 9 2.22E+06 ( 80) 3.19E+06 ( 115) 100 32 6                                                                                                                                                                      | 134.9 99.9 181.1                                                           |
| 10 1.11E+06 ( 40) 1.78E+06 ( 64) 100 18 5                                                                                                                                                                      | 121.4 79.6 182.6                                                           |
| 11 2.50E+06 ( 63) 2.54E+06 ( 64) 70 26 7                                                                                                                                                                       | 190.0 132.1 272.6                                                          |
| 12 1.42E+06 ( 51) 1.94E+06 ( 70) 100 20 37<br>13 2.54E+06 ( 64) 3.06E+06 ( 77) 70 31 7<br>14 1.98E+06 ( 50) 2.38E+06 ( 60) 70 24 6<br>15 1.25E+06 ( 27) 1.71E+06 ( 37) 60 17 6                                 | 160.8 113.5 226.6<br>5 161.3 108.5 238.0<br>5 141.6 82.9 237.4             |
| 16 1.71E+06 ( 37) 2.82E+06 ( 61) 60 29 7                                                                                                                                                                       | 7 117.9 76.1 179.7                                                         |
| 17 1.11E+06 ( 40) 1.75E+06 ( 63) 100 18 5                                                                                                                                                                      | 5 123.4 80.7 185.7                                                         |
| 18 1.39E+06 ( 45) 1.73E+06 ( 56) 90 18 5                                                                                                                                                                       | 5 155.6 102.7 233.8                                                        |
| 19 1.05E+06 ( 45) 2.25E+06 ( 80) 100 23 5                                                                                                                                                                      | 5 166.8 119.0 232.8                                                        |
| 20 2.62E+06 ( 51) 3.29E+06 ( 64) 54 33 9                                                                                                                                                                       | ) 154.3 104.6 225.9                                                        |
|                                                                                                                                                                                                                | /11/97)                                                                    |
| Cr-2A Littleton schisht 6190' Mt Washington PL060-4 B A<br>Number of grains = 20<br>GRAIN AGES ORDERED WITH INCREASING AGE<br>GRAIN AGES ORDERED WITH INCREASING AGE                                           | P(X2) Sum age (Ma)                                                         |
| no. (cm^-2) (cm^-2) Age95% CI                                                                                                                                                                                  | (%) Age95% CI                                                              |
| 6 1.25E+06 ( 45) 2.08E+06 ( 75) 116.6 78.6 170.7                                                                                                                                                               | 100.0 116.6 78.6 170.7                                                     |
| 16 1.71E+06 ( 37) 2.82E+06 ( 61) 117.9 76.1 179.7                                                                                                                                                              | 96.9 117.1 87.7 155.3                                                      |
| 10 1.11E+06 ( 40) 1.78E+06 ( 64) 121.4 79.6 182.6                                                                                                                                                              | 98.9 118.1 90.5 154.1                                                      |
| 17 1.11E+06 ( 40) 1.75E+06 ( 63) 123.4 80.7 185.7                                                                                                                                                              | 99.7 119.3 93.6 152.0                                                      |
| 9 2.22E+06 ( 80) 3.19E+06 ( 115) 134.9 99.9 181.1                                                                                                                                                              | 97.1 124.0 99.9 154.0                                                      |
| 1 0.02E+06 ( 33) 1.45E+06 ( 47) 136.3 84.5 216.2                                                                                                                                                               | 98.4 125.4 101.6 154.5                                                     |
| 12 1.42E+06 ( 51) 1.94E+06 ( 70) 141.3 96.4 205.1                                                                                                                                                              | 98.5 127.6 104.3 156.0                                                     |
| 15 1.25E+06 ( 27) 1.71E+06 ( 37) 141.6 82.9 237.4                                                                                                                                                              | 99.2 128.5 105.5 156.6                                                     |
| 7 1.39E+06 ( 50) 1.89E+06 ( 68) 142.5 96.8 207.9                                                                                                                                                               | 99.4 130.1 107.3 157.6                                                     |
| 8 1.32E+06 ( 38) 1.77E+06 ( 51) 144.3 92.3 228.0<br>5 1.28E+06 ( 37) 1.70E+06 ( 49) 146.4 92.9 228.0<br>4 1.55E+06 ( 39) 1.98E+06 ( 50) 151.1 96.8 233.4<br>20 2.62E+06 ( 51) 3.29E+06 ( 64) 154.3 104.6 225.9 | 99.7 132.3 109.8 159.3<br>99.7 133.5 111.1 160.3<br>99.7 135.1 112.8 161.8 |
| 18 1.39E+06 ( 45) 1.73E+06 ( 56) 155.6 102.7 233.8                                                                                                                                                             | 99.7 136.5 114.2 163.0                                                     |
| 13 2.54E+06 ( 64) 3.06E+06 ( 77) 160.8 113.5 226.6                                                                                                                                                             | 99.5 138.4 116.1 165.0                                                     |
| 14 1.98E+06 ( 50) 2.38E+06 ( 60) 161.3 108.5 238.0                                                                                                                                                             | 99.4 139.8 117.5 166.3                                                     |
| 19 1.92E+06 ( 69) 2.22E+06 ( 80) 166.8 119.0 232.8                                                                                                                                                             | 99.0 141.8 119.4 168.3                                                     |
| 2 1.42E+06 ( 46) 1.57E+06 ( 51) 174.3 114.6 263.9                                                                                                                                                              | 98.7 143.2 120.8 169.8                                                     |
| 11 2.50E+06 ( 63) 2.54E+06 ( 64) 190.0 132.1 272.6                                                                                                                                                             | 95.5 145.7 123.1 172.5                                                     |
| 3 2.22E+06 ( 40) 2.22E+06 ( 40) 192.9 121.6 305.1                                                                                                                                                              | 93.3 147.2 124.4 174.2                                                     |
| POOL 1.61E+06( 945) 2.11E+06( 1242)                                                                                                                                                                            | 93.3 147.2 124.4 174.2                                                     |
| 95% CI BRACKETS FOR POOLED AGE (Ma):                                                                                                                                                                           | -22.8 +26.9                                                                |

Figure A.1: CR2 Data Sheet 1

Page 1

| - ACA-0 | ~ |
|---------|---|

| CENTRAL AGE (Ma): AGE DISPERSION = 0.00<br>95% CI BRACKETS FOR MEAN AGE (Ma):                                                                                                                                                                                                                                                                                          | 147.3 124.5 174.2<br>-22.8 +26.9                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| CHI^2 AGE (number & percentage of grains: 20, 100%<br>95% CI BRACKETS FOR CHI^2 AGE (Ma):                                                                                                                                                                                                                                                                              | ) 147.2 124.4 174.2<br>-22.8 +26.9                                                                                                               |
| MEAN URANIUM CONCENTRATION +/- 2 SE (ppm): 21.5<br>D====================================                                                                                                                                                                                                                                                                               | 1.6<br>n 4/11/97)<br>CR2A-BA.TXT<br>B Anderson 1/19/12<br>o standard error)<br>ng the derivatives<br>rrors.<br>grains).<br>0.1.<br>val of 5 m.y. |
| Total range for grain ages = 116.94 to 192.90 M                                                                                                                                                                                                                                                                                                                        | a                                                                                                                                                |
| First Search: peaks with zero first derivatives.                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  |
| AGE PROBABILTY DENSITY AT PEAK EST. N<br>(Ma) (grains/DZ=0.1) (grains                                                                                                                                                                                                                                                                                                  | >                                                                                                                                                |
| Second search: find minima in the second derivative<br>probability density function.                                                                                                                                                                                                                                                                                   | of the Gaussian                                                                                                                                  |
| AGE PROBABILTY DENSITY AT PEAK EST. N<br>(Ma) (grains/02=0.1) (grains<br>156.09 4.049 20.13<br>DATE/TIME: 01-19-2012/10:40:30 FILENAME: C:\FTDATA\<br>Cr-2A Littleton schisht 6190' Mt Washington PLO60-4<br>Kernel factor = .6 (Ratio of kernel window size t<br>Number of grains = 20 Barwidth (Z units) = .1<br>Histogram shown by asterisks and probability distri | )<br>n 4/11/97)<br>CR2A-BA.TXT<br>B Anderson 1/19/12<br>o standard error)<br>bution by circles.                                                  |
| PROBABILITY DENSITY (GRAINS PER DE                                                                                                                                                                                                                                                                                                                                     | LTA Z=0.1)                                                                                                                                       |
| 0       1       2       3         AGE       COUNT                                                                                                                                                                                                                                                                                                                      | •****o*****                                                                                                                                      |

Page 2

Figure A.2: CR2 Data Sheet 2

۰.

/

| Package No. 2000<br>Sample<br>• X= <u>132-10</u> Y_1<br>X= <u>132-11-3</u> Y_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>- ۹</u> Sample No. <u>۲۵ - ۲۵</u><br><u>REPI</u><br> | Analyst: <u>600</u> I<br>JCA<br>12.0-6 Y <u>5.5</u>                                                                                                                                                                                        | Date: 1/10/12 |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
| X Y<br>1.34.6 (6.1<br>1.0.1<br>1.0.1<br>1.0.1<br>3.4.7<br>3.4.7<br>1.0.1<br>5.%<br>3.4.7<br>1.0.1<br>5.%<br>3.4.7<br>1.0.1<br>5.%<br>3.4.7<br>1.0.1<br>5.%<br>3.4.7<br>1.0.1<br>5.%<br>3.4.7<br>1.0.1<br>5.%<br>3.4.7<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0.1<br>1.0 |                                                         | の         X         Y           mean         N5.3         (013)           Calc.         120.9         (013)           Actual         120.9         (013)           L15         120.9         (013)           Spot.         130         100 |               |  |
| X Y<br>139.00 60<br>1103<br>al<br>0 51 90 <sup>67</sup><br>at Tor Sq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                         | 7) X Y<br>meas. 135.5 3-1<br>Cale. 170.11<br>Actual 170.31 (1.9<br>5pat. Ind Tot Sq.                                                                                                                                                       |               |  |
| X Y<br>136.4 6.7<br>110.2<br>100.2<br>100.2<br>100.2<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7<br>100.7       |                                                         | x         Y           meas.         135.5         7.1           Calc.         120.4         1           Actual         120.4         .0.9           378         S.1         20           Spat.         Iad         Tot Sq.                 |               |  |
| X Y<br>13001 (0-14<br>116.2<br>116.2<br>116.2<br>0.50 70 <sup>20</sup><br>L Ind Tor Sq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         | 9) X Y<br>meas. 12,9,0 (1,1)<br>Cale. 120<br>Actual (0, 9)<br>2,0 115 100<br>Spet. Ind Tot Sq.                                                                                                                                             |               |  |
| X Y<br>131.07 6.0<br>110.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5<br>100.5      |                                                         | 10) X Y<br>mean 17,8 <sup>-1</sup> 7,7<br>Cale. 119.7<br>Actual 19.7<br>40 09 100<br>Spot. Ind Tot Sq.                                                                                                                                     |               |  |

|                                                              | X= 13-1-3 Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25 BOTTOM | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1)<br>meas.<br>Cale.<br><u>Actual</u><br><u>.33</u><br>Spat. | X Y<br>130-6 6.1<br>110-1<br>110-1<br>110-1<br>110-1<br>110-1<br>110-1<br>110-1<br>110-1<br>110-1<br>110-1<br>110-1<br>110-1<br>110-1<br>110-1<br>110-1<br>110-1<br>110-1<br>110-1<br>110-1<br>110-1<br>110-1<br>110-1<br>110-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10-1<br>10- |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ا)<br>actas.<br>Laic.<br>الدروعا<br>الال<br>Spat.            | X Y<br>135.0 60<br>1163<br>51 90 <sup>676</sup><br>101 Tor Sq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3)<br>meas.<br>Cale.<br>Actual<br>410<br>Spat.               | X Y<br>136.4 6.7<br>119.2<br>(19.2<br>(19.2<br>(19.2<br>19.8<br>5.0 <sup>20</sup><br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | The state of the s |
| 4)<br>mean<br>Caic.<br>Actual<br>Span                        | X Y<br>1360 001<br>1190 001<br>1190 001<br>1190 001<br>100 000<br>100 000<br>10000<br>100 000<br>100 0000<br>100 0000<br>100 0000<br>100 000<br>100 000<br>10                                                                                                                                                                                                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5)<br>Boas.<br>Je.<br>Actual<br>377<br>Spot.                 | X Y<br>131.07 6.0<br>110.5<br>49 20 <sup>ert</sup><br>Ind Tot Sq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Figure A.3: CR2 Grain Sheet 1

E

73

| Inanidiation Num. PL                                                                                                                                                                                    | 0-4 Sample No. CE | Analyst: 2,7 P                                                                                                                                                                                                                     | Date: 1/19/ 12 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| X     Y       mean     140.2     3.4       Calc     115.6       Actual     115.6 $GT^{-1}$ 6.4     3.6       GT^{-1}     6.4     3.6       Spet     Ind     Tot Sq.                                     |                   | 16) X Y<br>mean. 134.5 9.0<br>Calc. 121.)<br>Actual 120.7 5.9<br>37 01 00<br>Spot. Ind Tot So.                                                                                                                                     |                |
| 12)         X         Y           moser.         (3/0.4)         5.0           Calo.         119.0           Actual         1           Soat.         100           Soat.         100                   |                   | 17)         X         Y           mease         135.41         9.1           Cale         120.5           Actual                                                                                                                   |                |
| 13)         X         Y           noses,         3,4,2         2,7           Calc.         121.7           Actual                                                                                       |                   | 18)         X         Y           mcas.         1365         9.1           Calc.         119.4           Actual                                                                                                                    |                |
| X         Y           mean         133.7         2.7           Cale         122.60            Actual         122.60            50         60         >0 hrm           Spat.         Iad         Tor Sq. |                   | 19)         X         Y           mease         13.6.11         10.70           Cale.         119.5           Actual         119.5           0.9         2.0           Spat.         Iad                                           |                |
| 15) X Y<br>mean. 133,5 8.8<br>Cale. 127.0<br>Actual 127.6 7.00<br>27 37 100 <sup>677</sup><br>Spet. Lad Tor Sq.                                                                                         |                   | 20)         X         Y           mean         135.00         10.0           Cale         [20.3]           Actual         120.3         7.5           S)         (64)         SU 60.79           Spat.         Ind         Tot Sq. |                |

| Tradi | a him |  |
|-------|-------|--|

-

\_

. 150

| DATE         | /           | E · 0        | 1.11      | - 20        | Zet          | aAg        | e Pr<br>22.0 | ogr          | am v         | . 4.  |
|--------------|-------------|--------------|-----------|-------------|--------------|------------|--------------|--------------|--------------|-------|
| Cr-6b        |             | ittl         | etor      | n Sc        | his          | t 4        | 567          | Mt           | Was          | hing  |
| >>NEV        | N PA        | RAME         | TERS      | sz          | ETA          | ME         | тнос         | )<<          |              |       |
| EFFEC        | TIV         | ETR          | ACK       | DEN         | SIT          | YF         | ORF          | LUE          | NCE          | MONI  |
|              |             |              | E         | FFE         | сті          | VE         | URAN         | IUM          | CON          | TENT  |
|              |             |              |           | ZE          | TA           | FAC        | TOR          | AND          | STA          | NDAR  |
|              | G           | RAIN         | AGE       | s I         | N O          | RIG        | INA          | OR           | DER          |       |
| Grair        | 1           | Rho          | s_        | (N          | is)          |            | Rho          | I            | (N           | i) :  |
| no.<br>1     | 1           | .45E         | +06       | c           | 47)          | 2          | .50          | +06          | C            | 81)   |
| ž            | ī           | .11E         | +06       | ζ           | 28)          | 1          | .876         | +06          | ζ            | 472   |
| 3            | 1           | -44E         | +06       | 5           | 262          | 1          | . 891        | +06          | 5            | 342   |
| ŝ            | î           | . 50E        | +06       | 5           | 265          | ź          | .316         | +06          | 5            | 405   |
| 6            | 1           | .67E         | +06       | ς           | 30)          | 2          | .288         | +06          | ٤.           | 41)   |
| - 8          | 1           | .14E         | +06       | ۶.          | 33           | 3          | . 221        | +06          | 51           | 382   |
| 9            | î           | . 116        | +06       | ζ           | 24)          | ž          | . 598        | +06          | ζ            | 56)   |
| 10           | 2           | - 22E        | +06       | Ş           | 482          | 2          | .738         | +06          | ۶.           | 592   |
| 12           | ź           | .016         | +06       | 2           | 585          | ž          | .85          | +06          | ζî           | iii   |
| 13           | 1           | .87E         | +06       | ς           | 47)          | 2          | .868         | +06          | 5            | 72)   |
| 14           |             | . 398        | +06       | <u> </u>    | 30)<br>-Ze   | taÃ        | . 318        | 2+00<br>2roa | ran          | v. 4  |
| DATE         | TIM/        | E: 0         | 1-17      | 7-20        | 12/          | 16:        | 33:0         | )3 F         | ILEN         | AME : |
| Cr-6l        |             | ittl         | etor      | 1 50        | :h15         | t 4        | 567          | Mt           | Was          | hing  |
|              | G           | RAIN         | AG        | es o        | RDE          | RED        | WIT          | ні           | NCRE         | ASIN  |
| Grain        | R           | hos          | <u> </u>  | (NS)        | )            | Rh         | OI 21        | <u> </u>     | Ni)          | G     |
| 9            | 1.1         | 1E+0         | 6 (       | 24          | i) 2         | . 59       | E+0          | śc           | 56)          | - 91  |
| 12           | 2.0         | 1E+0         | 16 S      | 58          | 23           | .85        | E+06         | ۶S           | 111)         | 110   |
| 11           | 1.1         | 2E+0<br>1E+0 | 6 6       | 40          | 33           | .00        | E+06         | 22           |              | 117   |
| 1            | 1.4         | 5E+0         | šζ        | 47          | Śź           | . 50       | E+0          | 52           | 815          | 122   |
| 7            | 2.1         | 4E+0         | 65        | 77          | 23           | .67        | E+0          | ξŞ           | 1322         | 123   |
| ž            | 1.1         | 1E+0         | 62        | 28          | бĭ           | .87        | E+0          | 53           | 475          | 125   |
| 14           | 1.3         | 9E+0         | ιćς       | 30          | 22           | . 31       | E+0          | ξÇ           | 50)          | 126   |
| 13           | 1.8         | 7E+0         | 62        | 47          | 8 2          | .86        | E+0          | 55           | 725          | 137   |
| 6            | 1.6         | 7E+0         | 6ζ        | 30          | χž           | .28        | E+0          | şζ           | 41)          | 154   |
| 10           | 2.2         | 4E+0<br>2E+0 | 6 (       | 48          | 81           | . 89       | E+0          | 88           | 59)          | 161   |
|              |             |              | ~ `       |             |              |            |              |              |              |       |
| 900L         | 1.6         | 2E+0         | 6(<br>ETS | 577<br>EOR  | 7) Z         | .72<br>OLF | E+0          | 5(<br>SE (   | 967)<br>Mal: |       |
| 33.4 1       |             | NONCH        |           |             |              | -OCC       |              | 9E (         | ,-a.y.       |       |
| CENTI<br>95% | RAL<br>CT R | AGE          | (Ma)      | ):<br>FOR   |              | AN         | AGE          | DIS<br>(Ma   | PERS         | ION   |
|              |             |              |           |             |              |            |              |              |              |       |
| 95% (        | CI B        | IRACK        | ETS       | er o<br>FOR | k pe<br>t CH | ILV5       | AG           | e o<br>E (M  | rgr<br>a):   | ains  |
|              |             |              |           | UCE 1       |              |            |              |              |              | (     |
| 0            | UKA         | MION         | 1 00      | ACEN        | =Ze          | taA        | gei          | Prog         | ram          | v. 4  |
| DATE         | (TIM        | E: 0         | 1-1       | 7-20        | 12/          | 16:        | 33:0         | 03 F         | ILEN         | AME:  |
| Kern         | el f        | acto         | eco       | n 50<br>.6  | 5 (          | Rat        | 10           | ofk          | erne         | il wi |
|              |             |              |           |             |              |            |              |              |              |       |
|              |             |              |           |             |              |            |              |              |              |       |

Figure A.5: CR6 Data Sheet 1

Figure A.4: CR2 Grain Sheet 1

4.190E+06 2.29 39.20 101.60 7.20 3.600E-07 ITOR (tracks/cm^2): RELATIVE ERROR (%): T OF MONITOR (ppm): RD ERROR (yr cm^2): NTER SQUARE (cm^2): 

 IMTER SQUARE (cm/2):
 3.600E-07

 Squares
 U+/-2s
 Grain
 Age
 --95% CI- 

 9 90
 23
 5
 122.5
 83.6
 177.2

 9 70
 17
 5
 125.9
 75.9
 204.0

 9 50
 18
 6
 161.0
 92.9
 274.2

 9 100
 19
 4
 117.4
 77.6
 174.6

 9 48
 22
 7
 137.2
 80.4
 228.8

 9 50
 18
 6
 123.1
 91.5
 164.3

 9 50
 30
 8
 123.9
 78.6
 191.5

 9 60
 24
 7
 91.0
 53.7
 148.3

 9 60
 26
 7
 171.0
 114.5
 253.6

 9 100
 30
 6
 114.9
 82.8
 157.7

 9 80
 36
 7
 110.4
 78.8
 152.9

 9 70
 27
 6
 137.7
 93.2
 200.9

 9 60
 22
 6
 126.8
 77.8
 202.2

 4.7
 (Brandon 4/11/97 
 Ingron
 PL000-13 B
 Anderson
 1/1//12

 ING
 AGE
 ----- Grain age (Ma)
 Age
 --95% CI- 

 Age
 --95% CI- (%)
 Age
 --95% CI- 91.0
 53.7 148.3

 10.4
 78.8
 152.9
 49.8
 103.8
 78.5
 136.1

 14.9
 82.8
 157.7
 70.7
 108.0
 84.4
 138.0

 22.5
 83.6
 177.2
 89.5
 112.2
 90.5
 139.0

 23.1
 91.5
 164.3
 92.5
 114.7
 93.9
 140.0

 23.9
 78.6
 191.5
 96.0
 115.5
 95.1
 140.4

 25.9
 75.9
 204.0
 97.8
 116.2
 95.9
 140.8

 26.8
 77.8
 202.2
 98.8
 116.9
 96.8
 141.2

 37.2
 80.4
 228.8
 99.0
 118.0
 97.9
 142.1

 37.7
 93.2
 200.9
 98.8
 119.7
 99.7
 143.6 86.8 125.7 105.3 150.0 -20.4 +24.3 125.8 105.3 150.1 -20.4 +24.3 = 0.00 125.7 105.3 150.0 -20.4 +24.3 s: 14, 100%) m): 25.4 2.0 4.7 (Brandon 4/11/97)------: C:\FTDATA\CR6B-BA.TXT gton PL060-13 B Anderson 1/17/12 indow size to standard error)

age 1

| 0 1     | 1.  |               |               |
|---------|-----|---------------|---------------|
| raukage | No, | PLotat? = 12. | Sample No. C1 |

| CR6B-BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rackage No, PLotac - 1 Sample No. CV                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of grains = 14<br>PEAKS IN PROBABILITY DISTRIBUTION<br>The modes in the distribution are found by inspecting the derivatives<br>of the probability density as a function of Z.<br>Probability distribution uses grain-only standard errors.<br>Total probability mass integrates to N (= number of grains).<br>Probability density is given as grains per delta Z=0.1.<br>At 50 Ma, delta Z=0.1 is equivalent to a time interval of 5 m.y.                                 | Sample     Y     Y     Y     Y       • Х= 13 0.00     Y     У     Y     Y       Х= 13 0.00     Y     У     ВОТТОМ     Х       0     Х     Y     ГОГОГОТ     Х                                                                                                             |
| Total range for grain ages = 91.63 to 171.19 Ma                                                                                                                                                                                                                                                                                                                                                                                                                                   | Best 1295 2.0                                                                                                                                                                                                                                                             |
| First Search: peaks with zero first derivatives.                                                                                                                                                                                                                                                                                                                                                                                                                                  | CH. 20.4                                                                                                                                                                                                                                                                  |
| AGE PROBABILTY DENSITY AT PEAK EST. N<br>(Ma) (grains/DZ=0.1) (grains)                                                                                                                                                                                                                                                                                                                                                                                                            | Actes 120.2 1.2                                                                                                                                                                                                                                                           |
| Second search: find minima in the second derivative of the Gaussian<br>probability density function.                                                                                                                                                                                                                                                                                                                                                                              | 5pmt. Ind Tor Sq.                                                                                                                                                                                                                                                         |
| AGE PROBABILTY DENSITY AT PEAK EST. N<br>(Ma) (grains/D2=0.1) (grains)<br>79.58 0.176 0.92<br>120.32 3.118 16.38<br>172.45 0.979 5.14<br>DATE/TIME: 01-17-2012/16:33:03 FILENAME: C:\FTDATA\CR6B-BA.TXT<br>Cr-6b Littleton Schist 4567' Mt Washington PL060-13 B Anderson 1/17/12<br>Kernel factor = .6 (Ratio of kernel window size to standard error)<br>Number of grains = 14 Barwidth (z units) = .1<br>Histogram shown by asterisks and probability distribution by circles. | 3         X         Y           actas:         125.0         5.0           Jak:         121.9         1           Actaal         121.9         1           Zak:         121.9         1           Zak:         121.9         1           Spat.         Test Sq.         1 |
| PROBABILITY DENSITY (GRAINS PER DELTA Z=0.1)         0       1       2       3       4       5       6         AGE       COUNT                                                                                                                                                                                                                                                                                                                                                    | 3) X Y<br>mean. $125(4, 7.)$<br>Calc. $12(4).5$<br>Actual $4(2,0,3)$ $(2,0)$<br>24(2, 7.0) $(2,0)Actual 4(2,0,3) (2,0)24(2, 7.0)$ $(2,0)Spet. Ind Tet Sq.$                                                                                                                |
| 149.7 - 2 :**********************************                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4) <u>X Y</u><br>mean. <u>1727.7</u> <u>7.1</u><br>Cake. <u>12.1.4</u><br>Actual <u>12.1.1</u> <u>8.2</u><br><u>40. 7+2</u> <u>100</u><br>Spat. Ind Tet Sq.                                                                                                               |

| 5)     | x      | Y       |    | П            | TT | m  |
|--------|--------|---------|----|--------------|----|----|
| mean.  | 138.3  | 10.0    | H  | $\mathbb{R}$ | H  | HΠ |
| Ac.    | 12.1.4 |         | H  | H            | H. | HH |
| Actual | 121-0  | 9.5     | ŦŦ | Æ            | F  | HH |
| 20     | 40     | 43000   | Ħ  |              | H  | H  |
| Spot.  | Ind    | Tot Se. |    |              |    |    |

Figure A.7: CR2 Grain Sheet 1

Page 2

## Figure A.6: CR6 Data Sheet 2

Υ.

-

| £ | Analyst: | 0 |
|---|----------|---|
| - |          |   |

Date: 1 / 15 / 12

REPLICA

X= X=

| 6)     | x      | Y       |
|--------|--------|---------|
| meas.  | 1419   | 10.8    |
| Calc.  | 12.0   |         |
| Actual | 119.27 | 9.4     |
| 1.20   | 141    | 20104   |
| Spat.  | Ind    | Tot Sq. |
|        |        |         |
| η      | x      | Y       |
| meas.  | 1362   | 11.4/   |
| Calc.  | 23.1   | 1.2     |
| Actual | 122.2  | 10.7    |
| 77-    | 132    | 100     |
| Spet   | Ind    | Tot Sq. |
|        |        |         |
| 8)     | _ X    | Y       |
| meas.  | 137.3  | 11.7    |
| Calc.  | 122.00 |         |
|        | 100.1  | -       |

| Calc.  | 122,0 |         |
|--------|-------|---------|
| Actual | 122.1 | 11-D :  |
| 34     | 1581  | 50 %    |
| Spat.  | Ind   | Tot Sq. |
| n      |       | ~       |

| meas.  | 142,2 | . 135. 4 |
|--------|-------|----------|
| Calc.  | 117.7 |          |
| Actual | 112-0 | 12.3     |
| 24     | 156   | (C 17)   |
| Spar.  | Ind   | Tot Sq.  |
|        |       |          |

| 10)    | X     | Y       |
|--------|-------|---------|
| meas.  | 1430  | 13.3    |
| Cale.  | 116.9 |         |
| Actual | 16.3  | 11.9    |
| 148    | 59 1  | 60 00   |
| Spot.  | Idd   | Tot Sq. |
|        |       |         |

| H- |    | $\downarrow$ | + |    |   |          |   |
|----|----|--------------|---|----|---|----------|---|
| H  | Н  | +            | + | Н  | Н | $\vdash$ | ┝ |
|    |    | Ż            | Ē | 5  |   |          |   |
| H  | И  | 4            | ŧ | ŀ. | 4 |          | - |
|    | И  | İ            | 1 | Ľ. | t |          | E |
| +  | -1 | 7            | ┝ | -  | - | -        | - |
|    |    | t            | t |    |   |          |   |

3ř 2

|   | ÷ | - |   | -   |   | -        | H |   | F |
|---|---|---|---|-----|---|----------|---|---|---|
| ç |   |   |   |     |   | E        | Ē | 1 | t |
| 4 | Н | 1 | 2 | H   | 2 | k        | H | Н | ⊢ |
|   | 7 |   | 5 |     |   |          |   | 7 |   |
| + | Н |   | H | Н   | 4 | <u> </u> | Н | H | ┝ |
|   |   |   |   |     |   | 2        |   |   |   |
| _ |   |   |   | 1.1 |   |          |   |   |   |

|    |          |   |   |   | Γ         | Γ | Γ | Γ |
|----|----------|---|---|---|-----------|---|---|---|
|    |          |   | ï |   | $\square$ |   |   |   |
|    |          |   | 1 |   |           | N |   |   |
| 4  | 10       | 6 |   |   |           | 1 | - |   |
| 11 | 1        |   |   |   | 11        |   | _ |   |
| 1  | $\vdash$ | 4 | - | - |           | - | _ | - |
| +  |          | - | - | - | -         | - | _ |   |
|    | H        | - | - | - | -         | - | - | н |
| +  | -        | - | - |   | -         | - | - | н |

| Ŧ  | П  |   |   |   |   |   |          |
|----|----|---|---|---|---|---|----------|
| H- | ++ | H | _ | - | H | - | $\vdash$ |
| H  |    | H | - |   | H | H | Н        |
|    | 1  |   |   |   | 1 |   |          |
|    | 4  | H | - | z |   | - | Н        |
| H  |    | Н | 1 | H | Н | H | Н        |
|    |    |   |   |   |   |   |          |
| 1  |    |   |   |   |   |   |          |

| 1 |   |   | Γ | É | Г      |   | Г | Г | r |
|---|---|---|---|---|--------|---|---|---|---|
| 1 |   |   |   | 2 | h      |   |   |   | Ē |
| - | _ |   | 2 |   |        |   |   |   |   |
| + | 4 | H | - | - | L.     | 1 |   | - |   |
| + | + | Ċ | Н | - | H      | - | Þ | Н | b |
| t | 1 |   | 7 | 2 |        | 7 |   |   | ۴ |
| I |   |   |   |   | $\geq$ |   | 1 |   |   |
| 1 | 1 | _ |   |   |        |   |   |   |   |
| 1 |   |   |   |   |        |   |   |   |   |

| Irradiation                                                                                                                                                                                                                                       | 5 11 1                 |                                                          |                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------|-----------------|
| irandifien Num. 91.00                                                                                                                                                                                                                             | - 13 Sample No. CQ - 0 | Mo Analyst: 28 13                                        | Date: / / / 912 |
| X         Y           mease         1355         1555           Calc.         124.1         1           Actual         125.2         1556           (77)         114         100           Spar.         Ind         Tor Sp.                      |                        | 16) X Y<br>meas.<br>Calc.<br>Actual<br>Spot. Ind Tot Se. |                 |
| 12)         X         Y           mess.         137.0         15.0           Cale.         172.3           Actual         121.0         19.0           SSE         1.11         72.5 <sup>20</sup> Spet         I.01         Tot Sq.              |                        | 17) X Y<br>mear.<br>Cale.<br>Actual<br>Spet. Ind Tox Sq. |                 |
| X         Y           mcar.         127.3         12.2           Calc.         120.0         12.2           Actual         115.0         10.3           47+         72         30.70           Spet.         Lad         Tot Sq.                  |                        | 18) X Y<br>meas.<br>Calc.<br>Actual<br>Spot. Ind Tot Sq. |                 |
| 10         X         Y           next.         140.0         17.5           Cale.         119.3         19.5           Actual         118.3         100.5           2D         SO         (00 e^{-1})           Spat.         Ind         Tor Sq. |                        | 19) X Y<br>meas.<br>Cale.<br>Actual<br>Spet. Ind Tot Sq. |                 |
| 15) X Y<br>meas.<br>Calc.<br>Actual<br>Spot. Lad Tor Sq.                                                                                                                                                                                          |                        | 20) X Y<br>meas.<br>Cale.<br>Actual                      |                 |

CR7A-BA ZetaAge Program v. 4.7 (Brandon 4/11/97)-----

| DATE/TIME: 01-17-2012/16:32:30 FILENAME: C:\FTDATA\CR7A-BA.<br>Cr-7a Littleton Schist 4350' Mt Washington PL060-14 B Ande | TXT<br>erson 1/17/12                   |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| >>NEW PARAMETERSZETA METHOD<<<br>EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2):                               | 4.227E+06                              |
| RELATIVE ERROR (%):                                                                                                       | 2.38                                   |
| ZETA FACTOR AND STANDARD ERROR (vr cm/2):                                                                                 | 101.60 7.20                            |
| SIZE OF COUNTER SQUARE (cm^2):                                                                                            | 3.600E-07                              |
| GRAIN AGES IN ORIGINAL ORDER                                                                                              |                                        |
| no. (cmA-2) (cmA-2)                                                                                                       | Grain Age (Ma)                         |
| 1 9.92E+05 ( 15) 2.31E+06 ( 35) 42 21 7                                                                                   | 1.9 46.4 171.0                         |
| 2 7.50E+05 ( 27) 2.56E+06 ( 92) 100 24 5 6                                                                                | 3.0 39.2 97.2                          |
| 3 1.39E+06 ( 15) 3.06E+06 ( 33) 30 28 10 9                                                                                | 7.5 49.0 182.6                         |
| 5 1.19E+06 ( 30) 1.67E+06 ( 42) 70 15 5 15                                                                                | 1.8 91.8 246.8                         |
| 6 1.39E+06 ( 20) 1.74E+06 ( 25) 40 16 6 16                                                                                | 9.8 89.7 315.0                         |
| 7 7.87E+05 ( 17) 1.34E+06 ( 29) 60 12 5 12                                                                                | 5.2 64.4 233.1                         |
| 8 2.61E+06 ( 94) 5.08E+06 ( 183) 100 47 7 10                                                                              | 9.1 82.0 145.2                         |
| 10 1.91E+06 (. 33) 3.24E+06 (. 56) 48 30 8 12                                                                             | 5.6 79.0 195.5                         |
| 11 1.67E+06 ( 30) 2.39E+06 ( 43) 50 22 7 14                                                                               | 8.3 89.9 240.5                         |
| 12 1.57E+06 ( 34) 2.41E+06 ( 52) 60 22 6 13                                                                               | 9.1 87.5 217.4                         |
| 13 8.53E+05 ( 18) 1.39E+06 ( 30) 60 13 5 12<br>14 1.11E+06 ( 20) 1.67E+06 ( 30) 50 15 6 14                                | 28.0 67.2 234.9                        |
| 15 1.70E+06 ( 49) 2.15E+06 ( 62) 80 20 5 16                                                                               | 7.6 112.9 246.9                        |
| 16 1.08E+06 ( 39) 1.86E+06 ( 67) 100 17 4 12                                                                              | 4.0 81.2 186.1                         |
| 17 9.88E+05 ( 32) 1.45E+06 ( 47) 90 13 4 14                                                                               | 4.8 89.4 230.5                         |
| 18 1.02E+06 ( 11) 1.67E+06 ( 18) 30 15 7 13<br>19 1.69E+06 ( 61) 4.67E+06 ( 168) 100 43 7 13                              | 0.6 55.7 287.4                         |
| 20 1.16E+06 ( 25) 1.94E+06 ( 42) 60 18 6 12                                                                               | 6.9 74.1 211.7                         |
| 0ZetaAge Program v. 4.7 (Brandon 4/11/9                                                                                   | 7)                                     |
| DATE/TIME: 01-17-2012/16:32:30 FILENAME: C:\FTDATA\CR7A-BA.                                                               | TXT                                    |
| Number of grains = 20                                                                                                     | 1501 1/1//12                           |
| GRAIN AGES ORDERED WITH INCREASING AGE                                                                                    |                                        |
| Grain Rhos (Ns) RhoI (Ni) Grain age (Ma) P(X2                                                                             | ) Sum age (Ma)                         |
| 2 7.50E+05 ( 27) 2.56E+05 ( 92) 63.0 39.2 97.2 100.                                                                       | Age95% CI                              |
| 19 1.69E+06 ( 61) 4.67E+06 ( 168) 77.6 56.7 104.7 42.                                                                     | 1 72.2 54.5 95.5                       |
| 1 9.92E+05 ( 15) 2.31E+06 ( 35) 91.9 46.4 171.0 56.                                                                       | 5 74.4 57.0 97.1                       |
| 4 1.43E+06 ( 36) 3.1/E+06 ( 80) 96.2 62.8 143.8 50.                                                                       | 9 79.0 62.0 100.6                      |
| 8 2.61E+06 ( 94) 5.08E+06 ( 183) 109.1 82.0 145.2 27.                                                                     | 1 89.4 72.7 110.0                      |
| 16 1.08E+06 ( 39) 1.86E+06 ( 67) 124.0 81.2 186.1 19.                                                                     | 7 92.9 76.1 113.5                      |
| 7 7.87E+05 ( 17) 1.34E+06 ( 29) 125.2 64.4 233.1 22.                                                                      | 2 94.3 77.3 114.9                      |
| 9 1.91E+00 ( 33) 3.24E+00 ( 30) 125.0 /9.0 195.5 20.                                                                      | 5 95.5 /9.5 11/.2<br>5 08.6 81 5 110 3 |
| 20 1.16E+06 ( 25) 1.94E+06 ( 42) 126.9 74.1 211.7 22.                                                                     | 2 100.0 82.9 120.6                     |
| 13 8.33E+05 ( 18) 1.39E+06 ( 30) 128.0 67.2 234.9 25.                                                                     | 4 101.0 83.8 121.6                     |
| 18 1.02E+06 ( 11) 1.67E+06 ( 18) 130.6 55.7 287.4 29.                                                                     | 9 101.6 84.4 122.2                     |
| 14 1.116+06 (20) 1.676+06 (30) 142.0 76.4 256.0 25.                                                                       | 9 104.8 87.4 125.6                     |
| 17 9.88E+05 ( 32) 1.45E+06 ( 47) 144.8 89.4 230.5 22.                                                                     | 5 106.6 89.1 127.6                     |
| 11 1.67E+06 ( 30) 2.39E+06 ( 43) 148.3 89.9 240.5 19.                                                                     | 8 108.3 90.7 129.4                     |
| 5 1.19E+06 ( 30) 1.6/E+06 ( 42) 151.8 91.8 246.8 1/.<br>15 1.70E+06 ( 49) 2.15E+06 ( 62) 167 6 112 9.246 9 R              | 2 110.0 92.2 131.2                     |
| 6 1.39E+06 ( 20) 1.74E+06 ( 25) 169.8 89.7 315.0 7.                                                                       | 3 114.2 96.0 135.9                     |
| Prov 1 287-067 (20) 2 (27-067 1100)                                                                                       |                                        |
| 95% CI BRACKETS FOR POOLED AGE (Ma); 7.                                                                                   | -18.2 +21.6                            |

Figure A.9: CR7 Data Sheet 1

Figure A.8: CR2 Grain Sheet 2

Page 1

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Package No. Provo- 14 Sample No. 08 314 Analyst: 280 Date: 1/12/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CR7A-BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample REDLICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CENTRAL AGE (Ma): AGE DISPERSION = 0.16 117.7 97.3 142.3<br>95% CI BRACKETS FOR MEAN AGE (Ma): -20.4 +24.6                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CHI^2 AGE (number & percentage of grains: 20, 100%) 114.2 96.0 135.9<br>95% CI BRACKETS FOR CHI^2 AGE (Ma): -18.2 +21.6                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MEAN URANIUM CONCENTRATION +/- 2 SE (ppm): 23.8 1.8<br>D====================================                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| At 50 Ma, delta $z=0.1$ is equivalent to a time interval of 5 m.y.<br>Total range for grain ages = $63.52$ to $170.34$ Ma                                                                                                                                                                                                                                                                                                                                                                              | 2) <u>X</u> Y<br>acas, 13(x;2, 10,2) / / / / / / / / / / / / / / / / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| First Search: peaks with zero first derivatives.                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sale 123,10 Cale 119.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| AGE PROBABILTY DENSITY AT PEAK EST. N<br>(Ma) (grains/DZ=0.1) (grains)                                                                                                                                                                                                                                                                                                                                                                                                                                 | Actual         12 :: 2         10.5         Actual         119.0         12.8         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1 <th1.1< th="">         1.1         <th1.1< th=""></th1.1<></th1.1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Second search: find minima in the second derivative of the Gaussian<br>probability density function.                                                                                                                                                                                                                                                                                                                                                                                                   | Spet Ind Tot Sq. Spet. Ind Tot Sq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AGE PROBABILTY DENSITY AT PEAK EST. N<br>(Ma) (grains/DZ=0.1) (grains)<br>59.83 0.298 1.86<br>77.61 0.846 5.29<br>110.42 2.428 15.20<br>136.83 3.049 19.08<br>DATE/TIME: 01-17-2012/16:32:30 FILENAME: C:\FTDATA\CR7A-BA.TXT<br>Cr-7a Littleton Schist 4350' Mt Washington PL060-14 B Anderson 1/17/12<br>Kernel factor = .6 (Ratio of kernel window size to standard error)<br>Number of grains = 20 Barwidth (z units) = .1<br>Histogram shown by asterisks and probability distribution by circles. | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PROBABILITY DENSITY (GRAINS PER DELTA Z=0.1)<br>0 1 2 3 4 5 6<br>AGE COUNT                                                                                                                                                                                                                                                                                                                                                                                                                             | 4) <u>x y</u><br>meas. <u>138.1 11.2.</u><br>Cale. <u>121.3</u><br>Acreal <u>121.5 10.47</u><br><u>360</u> <u>500</u> <u>40</u> <u>70</u> <u>500</u> <u>100</u> |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Figure A.10: CK/ Data Sheet 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Figure A.11: CR7 Grain Sheet 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Irradiation                                                                                                                                 |                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Iraradistion Num. Man-14 Sample No. CV                                                                                                      | Analyst: 200 Date: 1 / 0 / 9                                                                                                                                                                                                                                                                     |
|                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                |
| X         Y                                                                                                                                 | 16)         X         Y           mease         141.1         172.5           Cale         118.2         172.0           Actual         11 8.7         172.0           32-         47         90         1007           Spot         Ind         Tot So.         10                              |
| 12) X Y<br>moes. <u>136-0</u> 15,0<br>Cale. <u>12.50</u><br>Actual <u>12.3.2</u> (4.4)<br>1.8                                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                            |
| Scat. Ind Tox Sa.                                                                                                                           | Sper. lad Tor Sq.                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                       | 18)         X         Y           meas.         1340         18.9           Calc.         1263           Actual         1251           (01         102           Spet.         Ind                                                                                                               |
| 16)     X     Y       mean     141.3 $1_{12.4}$ Cale     118.5       Actual     118.1       15.7     N.9       49     62       Spat     Ind | 19)         X         Y           mess.         141.0.         12.0           Cale.         115.3         1           Acrual         1         1         1           ZST         1.12         000         1         1           Speet         1 ad         Tot Sq.         1         1         1 |
| 15) X Y<br>meas. 125-1 173-0<br>Cale: 121.7<br>Actual 12.7.0 Ro.7<br>39 107 100<br>Spat. Lad Tox Sq.                                        | 20) X Y<br>mean.<br>Cale.<br>Actual<br>Spat. Ind. Tor Sq.                                                                                                                                                                                                                                        |

| CR-11A<br>DATE/TIME: 01-03-2012/18:08:07 FILENAME: C:\FTDATA\CR-11A.TXT<br>CR-11a Rangeley schist 2765' Mt Washington PL061-6 mrt 1/3/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| >>NEW PARAMETERSZETA METHOD<<<br>EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 4.042E+06<br>RELATIVE ERROR (%): 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| EFFECTIVE URANIUM CONTENT OF MONITOR (ppm):<br>ZETA FACTOR AND STANDARD ERROR (yr cm^2):<br>SIZE OF COUNTER SQUARE (cm^2):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39.20<br>98.40 1.70<br>3.600E-07                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Grain         RhoS         (Ns)         RhoI         (Ni)         Squares         U+/-2s         G           no.         (cm^A-2)         (cm^A-2)         Age           1         4.00E+06         (72)         7.17E+06         129)         50         70         13         109.           2         1.39E+06         (30)         3.24E+06         (70)         60         31         8         84.           3         5.56E+05         (16)         1.87E+06         54)         80         18         5         59.           4         3.05E+06         (79)         5.98E+06         (155)         72         58         10         100.           5         2.06E+06         (74)         4.47E+06         (161)         100         43         7         90.           6         1.87E+06         (47)         2.82E+06         (151)         70         27         7         130.           7         6.94E+05         10)         1.32E+06         (19)         40         13         6         104.           8         3.11E+06         (56)         6.83E+06         (171)         100         46         7         102.                                                                 | rain Age (Ma)<br>95% CI<br>7 82.0 146.6<br>9 53.3 131.5<br>1 31.3 103.9<br>3 76.3 131.8<br>5 68.5 119.5<br>5 88.2 190.7<br>6 43.3 232.7<br>1 64.3 124.4<br>4 79.0 132.7<br>2 56.5 109.3<br>1 68.2 121.7<br>4 73.5 121.3<br>9 65.4 146.6                                                                                                                                                                   |  |  |  |
| 14       6.11E+05 (22)       1.75E+06 (63)       100       17       4       69.         15       1.94E+06 (28)       4.72E+06 (68)       40       46       11       81.         16       1.56E+06 (56)       2.81E+06 (101)       100       27       6       109.         17       2.08E+06 (60)       3.96E+06 (114)       80       38       7       104.         18       2.55E+06 (55)       5.69E+06 (123)       60       55       10       88.         19       2.78E+06 (60)       4.40E+06 (95)       60       43       9       124.         20       6.67E+05 (24)       1.14E+06 (41)       100       11       3       115.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 40.5 113.7<br>7 50.4 128.0<br>5 77.4 153.0<br>0 74.6 143.2<br>5 63.0 122.4<br>5 88.5 173.6<br>7 66.8 194.7                                                                                                                                                                                                                                                                                              |  |  |  |
| DATE/TIME: 01-03-2012/18:08:07 FILENAME: C:\FTDATA\CR-11A.TXT<br>CR-11a Rangeley schist 2765' Mt Washington PL061-6 mrt 1/3/12<br>Number of grains = 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Grain         Rhos (Ns)         RhoI (Ni)         Grain age (Ma)         P(X2)           no.         (cmA-2)         (cmA-2)         Age95% CI         (%)           3         5.56E+05 (16)         1.87E+06 (54)         59.1         31.3         103.9         100.0           14         6.11E+05 (22)         1.75E+06 (63)         69.4         40.5         113.7         66.3           10         3.00E+06 (54)         7.50E+06 (135)         79.2         56.5         109.3         63.9           15         1.94E+06 (28)         4.72E+06 (68)         81.7         50.4         128.0         77.6           2         1.39E+06 (30)         3.24E+06 (70)         84.9         53.3         131.5         84.5           18         2.55E+06 (55)         5.690E+06 (123)         90.1         64.3         124.4         86.8           5         2.06E+06 (74)         4.47E+06 (161)         90.5         68.5         119.5         88.6           11         2.70E+06 (68)         5.83E+06 (147)         91.1         68.2         121.7         91.2           12         4.31E+06 (93)         8.98E+06 (155)         100.3         76.3         131.8         91.0           9 | Sum age (Ma)<br>Age95% CI<br>59.1 31.3 103.9<br>64.5 43.3 93.5<br>72.1 56.5 91.9<br>74.1 59.7 91.8<br>76.0 62.5 92.3<br>78.9 66.6 93.5<br>81.0 69.5 94.5<br>83.0 72.3 95.3<br>84.3 74.1 95.8<br>86.1 76.4 96.9<br>86.9 77.4 97.5<br>88.4 79.2 98.6<br>90.0 81.1 99.9<br>90.9 82.2 100.7<br>91.1 82.3 100.8<br>92.1 83.5 101.7<br>93.3 84.8 102.8<br>93.8 85.3 103.2<br>95.2 86.7 104.6<br>96.4 87.9 105.7 |  |  |  |
| POOL 1.99E+06( 1032) 4.07E+06( 2112) 66.4<br>95% CI BRACKETS FOR POOLED AGE (Ma):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96.4 87.9 105.7<br>-8.5 +9.3                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |

| CR-IIA                                                                                                                         |                               |                   |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|--|--|--|
| DATE/TIME: 01-03-2012/18:08:07 FILENAME: C:\FTDATA\CR-11A.TXT<br>CR-11a Rangeley schist 2765' Mt Washington PL061-6 mrt 1/3/12 |                               |                   |  |  |  |
| >>NEW PARAMETERSZETA METHOD<<                                                                                                  |                               |                   |  |  |  |
| EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tr<br>RELATIVE                                                                    | acks/cm^2):<br>ERROR (%):     | 4.042E+06<br>2.25 |  |  |  |
| EFFECTIVE URANIUM CONTENT OF MON                                                                                               | ITOR (ppm):                   | 39.20             |  |  |  |
| SIZE OF COUNTER SQL                                                                                                            | ARE (cm^2):                   | 3.600E-07         |  |  |  |
| GRAIN AGES IN ORIGINAL ORDER                                                                                                   | 111/-20 00                    | ain has (No)      |  |  |  |
| no. (cm <sup>A</sup> -2) (cm <sup>A</sup> -2)                                                                                  | Age                           | 95% CI            |  |  |  |
| 1 4.00E+06 ( 72) 7.17E+06 ( 129) 50                                                                                            | 70 13 109.7                   | 82.0 146.6        |  |  |  |
| 3 5.56E+05 ( 16) 1.87E+06 ( 54) 80                                                                                             | 18 5 59.1                     | 31.3 103.9        |  |  |  |
| 4 3.05E+06 ( 79) 5.98E+06 ( 155) 72                                                                                            | 58 10 100.3                   | 76.3 131.8        |  |  |  |
| 5 2.06E+06 ( 74) 4.47E+06 ( 161) 100<br>6 1.87E+06 ( 47) 2.82E+06 ( 71) 70                                                     | 27 7 130.5                    | 88.2 190.7        |  |  |  |
| 7 6.94E+05 ( 10) 1.32E+06 ( 19) 40                                                                                             | 13 6 104.6                    | 43.3 232.7        |  |  |  |
| 8 3.11E+06 ( 56) 6.83E+06 ( 123) 50<br>9 2.47E+06 ( 89) 4.75E+06 ( 171) 100                                                    | 66 12 90.1<br>46 7 102 4      | 64.3 124.4        |  |  |  |
| 10 3.00E+06 ( 54) 7.50E+06 ( 135) 50                                                                                           | 73 13 79.2                    | 56.5 109.3        |  |  |  |
| 11 2.70E+06 ( 68) 5.83E+06 ( 147) 70                                                                                           | 57 10 91.1                    | 68.2 121.7        |  |  |  |
| 13 1.08E+06 ( 39) 2.17E+06 ( 78) 100                                                                                           | 21 5 98.9                     | 65.4 146.6        |  |  |  |
| 14 6.11E+05 ( 22) 1.75E+06 ( 63) 100                                                                                           | 17 4 69.4                     | 40.5 113.7        |  |  |  |
| 15 1.94E+06 ( 28) 4.72E+06 ( 68) 40<br>16 1.56E+06 ( 56) 2.81E+06 ( 101) 100                                                   | 46 11 81.7<br>27 6 109.5      | 50.4 128.0        |  |  |  |
| 17 2.08E+06 ( 60) 3.96E+06 ( 114) 80                                                                                           | 38 7 104.0                    | 74.6 143.2        |  |  |  |
| 18 2.55E+06 ( 55) 5.69E+06 ( 123) 60<br>19 2.78E+06 ( 60) 4.40E+06 ( 95) 60                                                    | 55 10 88.5                    | 63.0 122.4        |  |  |  |
| 20 6.67E+05 ( 24) 1.14E+06 ( 41) 100                                                                                           | 11 3 115.7                    | 66.8 194.7        |  |  |  |
| DATE /TTHE: 01-03-2012/18:08:07 ETLENAME: C1) ETL                                                                              | andon 4/11/97)=               | **************    |  |  |  |
| CR-11a Rangeley schist 2765' Mt Washington PLO                                                                                 | 1-6 mrt 1/3/12                |                   |  |  |  |
| Number of grains = 20                                                                                                          |                               |                   |  |  |  |
| Grain Rhos (Ns) RhoI (Ni) Grain ad                                                                                             | e (Ma) P(X2)                  | Sum age (Ma)      |  |  |  |
| no. (cm^-2) (cm^-2) Age                                                                                                        | 5% CI (%)                     | Age95% CI         |  |  |  |
| 3 5.56E+05 ( 16) 1.87E+06 ( 54) 59.1 31.<br>14 6.11E+05 ( 22) 1.75E+06 ( 63) 69.4 40                                           | 3 103.9 100.0<br>5 113.7 66.3 | 59.1 31.3 103.9   |  |  |  |
| 10 3.00E+06 ( 54) 7.50E+06 ( 135) 79.2 56                                                                                      | 5 109.3 63.9                  | 72.1 56.5 91.9    |  |  |  |
| 15 1.94E+06 ( 28) 4.72E+06 ( 68) 81.7 50.                                                                                      | 4 128.0 77.6                  | 74.1 59.7 91.8    |  |  |  |
| 18 2.55E+06 ( 55) 5.69E+06 ( 123) 88.5 63.                                                                                     | 0 122.4 84.8                  | 78.9 66.6 93.5    |  |  |  |
| 8 3.11E+06 ( 56) 6.83E+06 ( 123) 90.1 64.                                                                                      | 3 124.4 86.8                  | 81.0 69.5 94.5    |  |  |  |
| 11 2.70E+06 ( 68) 5.83E+06 ( 147) 91.1 68                                                                                      | 2 121.7 91.2                  | 84.3 74.1 95.8    |  |  |  |
| 12 4.31E+06 ( 93) 8.98E+06 ( 194) 94.4 73.                                                                                     | 5 121.3 91.2                  | 86.1 76.4 96.9    |  |  |  |
| 13 1.08E+06 ( 39) 2.17E+06 ( 78) 98.9 65.<br>4 3.05E+06 ( 79) 5.98E+06 ( 155) 100 3 76                                         | 4 146.6 92.5                  | 86.9 77.4 97.5    |  |  |  |
| 9 2.47E+06 ( 89) 4.75E+06 ( 171) 102.4 79.                                                                                     | 0 132.7 88.7                  | 90.0 81.1 99.9    |  |  |  |
| 17 2.08E+06 ( 60) 3.96E+06 ( 114) 104.0 74.                                                                                    | 6 143.2 88.9                  | 90.9 82.2 100.7   |  |  |  |
| 16 1.56E+06 ( 56) 2.81E+06 ( 101) 109.5 77.                                                                                    | 4 153.0 90.3                  | 92.1 83.5 100.8   |  |  |  |
| 1 4.00E+06 ( 72) 7.17E+06 ( 129) 109.7 82                                                                                      | 0 146.6 87.7                  | 93.3 84.8 102.8   |  |  |  |
| 20 6.67E+05 ( 24) 1.14E+06 ( 41) 115.7 66.<br>19 2.78E+06 ( 60) 4.40E+06 ( 95) 124 5 88                                        | 8 194.7 88.3<br>5 173.6 77.8  | 93.8 85.3 103.2   |  |  |  |
| 6 1.87E+06 ( 47) 2.82E+06 ( 71) 130.5 88                                                                                       | 2 190.7 66.4                  | 96.4 87.9 105.7   |  |  |  |
| POOL 1.99E+06( 1032) 4.07E+06( 2112)                                                                                           | 66.4                          | 96.4 87.9 105.7   |  |  |  |
| GEN CT REACKETS FOR BOOLED ACE (Ma)                                                                                            |                               | -8 5 -0 3         |  |  |  |

95% CI BRACKETS FOR POOLED AGE (Ma):

Figure A.13: CR11 Data Sheet 1

Figure A.12: CR2 Grain Sheet 2

Page 1

|                                                                                                                                                                               | Package No. Mary a 7 Sample No. Ch. U. Anabet (1) The Los (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| CR-11A<br>CENTRAL AGE (Ma): AGE DISPERSION = 0.00 96.4 87.9 105.8<br>95% CI BRACKETS FOR MEAN AGE (Ma): -8.5 +9.3                                                             | $\begin{array}{c} Sample \\ \cdot X = \underbrace{\text{Sample}}_{X = 12347} Y \underbrace{12.5}_{X = 1234$ |          |
| CHIA2 AGE (number & percentage of grains: 20, 100%) 96.4 87.9 105.7<br>95% CI BRACKETS FOR CHIA2 AGE (Ma): -8.5 +9.3                                                          | A 12.00 1 12.00 BOTTOM A 12.000 1 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| MEAN URANIUM CONCENTRATION +/- 2 SE (ppm): 39.5 2.5<br>D====================================                                                                                  | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7        |
| At 50 Ma, delta Z=0.1 is equivalent to a time interval of 5 m.y.                                                                                                              | $\frac{1}{2}$ $\frac{x}{2}$ $\frac{y}{1}$ $\frac{y}{1}$ $\frac{x}{2}$ $\frac{y}{1}$ $\frac{y}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| Total range for grain ages = 59.92 to 130.76 Ma<br>First Search: peaks with zero first derivatives.                                                                           | Sec. 112.11 Cale, 120.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| AGE PROBABILTY DENSITY AT PEAK EST. N<br>(Ma) (grains/DZ=0.1) (grains)                                                                                                        | Actual 118.0 9.4 Actual 120.8 11.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| Second search: find minima in the second derivative of the Gaussian<br>probability density function.                                                                          | span, inc (100.3q.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| AGE PROBABILTY DENSITY AT PEAK EST. N<br>(Ma) (grains/DZ=0.1) (grains)<br>56.20 0.318 1.59<br>95.33 4.310 21.50<br>132.71 1.117 5.57<br>D==================================== | 3) X Y<br>meas. $140.5$ $10.2$<br>Cale. $1160.9$ $9.6$<br>17 $53$ $20$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| PROBABILITY DENSITY (GRAINS PER DELTA Z=0.1)<br>0 .83 1.67 2.5 3.33 4.17 5<br>AGE COUNT                                                                                       | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n i<br>G |
| 91.3 - 5                                                                                                                                                                      | S)         X         Y         10)         X         Y           meas.         129.0         11.9         100         X         Y           meas.         129.0         11.9         100         X         Y           k.         116.0         11.0         100         X         Y           Actual         110.0         100         X         Y         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| Page 2                                                                                                                                                                        | 76 52 100<br>Spar lad Tor Sq. 54 121 50 005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| Figure A.14: CR11 Data Sheet 2                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |

Figure A.15: CR2 Grain Sheet 1

| LITABUTIA                                                                                                                                                                                                                         |                                                                                |                                                                                                                                                                                                                                              |              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Iranidistion Num.                                                                                                                                                                                                                 | Place - C Sample No. cc.                                                       | IA Analyst CRA                                                                                                                                                                                                                               | Date: 115192 |
| 11) X<br>new. 1389<br>Cale, 117.00<br>Actual 117.00<br>(09-145<br>Seat. Ind 13                                                                                                                                                    | Y<br>2.9<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4<br>2.4 | 16)         X         Y           mean         13 5 0         15 10           Calc.         121 5         14.9           Actual         121 5         14.9           55         98         100           Spat.         Ind         Tot Sa.   |              |
| 12) $\dot{X}$ model $13 \le .0$ $13$ Call $121.5$ 12       Actual $121.5$ 12       973     193     160       Spar.     Ind     Top                                                                                                |                                                                                | 17)         X         Y           mease.         135.0         15.0           Cale.         121.5         15.0           Actual         121.5         15.0           58         111         50.5           Spot.         1ad         Tot Sq. |              |
| 13) X Y<br>neer. 132.1 /11<br>Calc. 11-34<br>Actual 113.3 113<br>35 710 100<br>Spec. Lad Tool                                                                                                                                     |                                                                                | 18)         X         Y           mean         13.4.0         15.4           Cale         172.5           Actual         122.5           SPEL         Ind                                                                                    |              |
| 14)         X         Y           meas.         133-5         15           Cale.         127.7         16           Actual         127.4         V8.           24         61         100           Spec         Ind         Tot S |                                                                                | 19)         X         Y           mean         134.0         15.0           Cale         122.5           Actual         122.5           59         43           Spat         Ind                                                             |              |
| 15) X Y<br>neur. 132 in 15-0<br>Cale. 113 J<br>Actual 1137 11007<br>200 1010 141045<br>Spat. Lad Tor Sp                                                                                                                           |                                                                                | 20) X Y<br>mess.<br>Cale.<br>Actual<br>Spot. Ind Tot Sq.                                                                                                                                                                                     |              |

|            |  | ; | 5.1 |  |
|------------|--|---|-----|--|
| Iradiation |  |   |     |  |

| CR13A-BA<br>ZetaAge Program v. 4.7 (Brandon 4/11/97)<br>DATE/TIME: 01-18-2012/15:18:18 FILENAME: C:\FTDATA\CR13A-BA.TXT<br>Cr-13A Bretton Woods Granite 1770' Mt Washington PL061-10 B Anderson 1/18/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|
| >>NEW PARAMETERSZETA METHOD<<<br>EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 3.986E+06<br>RELATIVE FROM (%): 2.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |  |  |  |
| EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 39.20<br>ZETA FACTOR AND STANDARD ERROR (yr cm^2): 101.60 7.20<br>SIZE OF COUNTER SQUARE (cm^2): 3.600E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |  |  |  |
| Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Na)<br>no. (cm^-2) (cm^-2) Age95% CI<br>1 1.00E+06 (36) 1.44E+06 (52) 100 14 4 138.9 88.2 215.4<br>2 2.08E+06 (60) 3.99E+06 (115) 80 39 8 104.9 75.3 144.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |  |  |  |
| 3 3.06E+06 ( 55) 5.00E+06 ( 90) 50 49 11 122.7 86.0 173.1<br>4 1.90E+06 ( 41) 5.05E+06 ( 109) 60 50 10 75.9 51.5 109.4<br>5 1.67E+06 ( 60) 4.86E+06 ( 175) 100 48 8 69.2 50.5 93.2<br>6 6.94E+05 ( 25) 2.22E+06 ( 80) 100 22 5 63.3 38.5 99.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |  |  |  |
| 7 1.84E+06 ( 33) 3.92E+06 ( 113) 80 39 7 94.4 66.7 131.8<br>8 1.19E+06 ( 30) 2.38E+06 ( 60) 70 23 6 100.7 62.6 157.9<br>9 4.17E+05 ( 15) 8.61E+05 ( 31) 100 8 3 97.8 48.9 184.7<br>10 2.08E+06 ( 45) 3.33E+06 ( 72) 60 33 8 125.5 84.4 184.0<br>11 9.52E+05 ( 24) 3.97E+06 ( 100) 70 39 8 48.7 29.6 76.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |  |  |  |
| 12 1.28E+06 ( 23) 3.00E+06 ( 54) 50 30 8 86.0 50.2 141.7<br>13 1.19E+06 ( 43) 3.53E+06 ( 127) 100 35 6 68.4 47.0 97.1<br>14 1.81E+06 ( 52) 5.24E+06 ( 151) 80 52 9 69.5 49.5 95.7<br>15 2.58E+06 ( 65) 6.75E+06 ( 170) 70 66 11 77.1 56.8 103.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |  |  |  |
| 16 1.17E+06 ( 42) 3.36E+06 ( 121) 100 33 6 70.1 48.0 100.1<br>17 1.33E+06 ( 48) 2.22E+06 ( 80) 100 22 5 120.5 82.4 174.0<br>18 1.61E+06 ( 58) 3.11E+06 ( 112) 100 31 6 104.2 74.4 144.1<br>19 2.50E+06 ( 90) 5.06E+06 ( 182) 100 50 8 99.1 74.3 132.3<br>20 1.11E+06 ( 40) 2.2E+06 ( 80) 100 22 5 100.7 67.0 148.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |  |  |  |
| DATE/TIME: 01-18-2012/15:18:18 FILENAME: C:\FTDATA\CR13A-BA.TXT<br>Cr-13A Bretton Woods Granite 1770' Mt Washington PL061-10 B Anderson 1/18/12<br>Number of grains = 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |  |  |  |
| GRAIN AGES ORDERED WITH INCREASING AGE<br>Grain RhoS (NS) RhoI (Ni) Grain age (Ma) P(X2) Sum age (Ma)<br>no. (cm^-2) (cm^-2) Age95% CI (%) Age95% CI-<br>11 9.52E+05 ( 24) 3.97E+06 ( 100) 48.7 29.6 76.2 100.0 48.7 29.6 76.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ź                |  |  |  |
| 6 6.94E+05 ( 25) 2.22E+06 ( 80) 63.3 38.5 99.7 41.3 55.0 39.1 75.1<br>13 1.19E+06 ( 43) 3.53E+06 ( 127) 68.4 47.0 97.1 47.9 60.3 45.9 79.1<br>5 1.67E+06 ( 60) 4.86E+06 ( 175) 69.2 50.5 93.2 58.7 63.5 50.4 80.1<br>14 1.81E+06 ( 52) 5.24E+06 ( 151) 69.5 49.5 95.7 71.2 64.9 52.4 80.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8<br>2<br>0<br>3 |  |  |  |
| 16 1.17E+06 ( 42) 3.36E+06 ( 121) 70.1 48.0 100.1 81.2 65.7 53.6 80.<br>4 1.90E+06 ( 41) 5.05E+06 ( 109) 75.9 51.5 109.4 83.8 67.0 55.0 81.<br>15 2.58E+06 ( 65) 6.75E+06 ( 170) 77.1 56.8 103.1 83.7 68.6 56.8 82.1<br>12 1.28E+06 ( 23) 3.00E+06 ( 54) 86.0 50.2 141.7 83.7 69.5 57.7 83.1<br>2 44E+06 ( 23) 3.00E+06 ( 54) 86.0 50.2 141.7 83.7 69.5 57.7 83.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55861            |  |  |  |
| 9 4.17E+05 ( 15) 5.61E+05 ( 11) 97.8 48.9 184.7 62.2 72.4 60.5 86.1<br>19 2.50E+06 ( 90) 5.06E+06 ( 182) 99.1 74.3 132.3 28.9 75.9 63.7 90.<br>20 1.11E+06 ( 40) 2.22E+06 ( 80) 100.7 67.0 148.5 24.4 77.2 64.9 91.3<br>8 1.19E+06 ( 30) 2.38E+06 ( 60) 100.7 62.6 157.9 23.8 78.1 65.8 92.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7488             |  |  |  |
| 18 1.61E+06 ( 58) 3.11E+06 ( 112) 104.2 74.4 144.1 16.5 79.9 67.4 94.0<br>2 2.08E+06 ( 60) 3.99E+06 ( 115) 104.9 75.3 144.4 12.0 81.5 68.9 96.0<br>17 1.33E+06 ( 48) 2.22E+06 ( 80) 120.5 82.4 174.0 5.7 83.2 70.4 98.3<br>3.06E+06 ( 55) 5.00E+06 ( 90) 122.7 86.0 173.1 2.3 85.0 72.0 100.1<br>10 2.08E+06 ( 45) 3.33E+06 ( 72) 125.5 84.4 184.0 1.1 86.4 73.3 101.1<br>1 1.00E+06 ( 36) 1.44E+06 ( 72) 125.5 88.4 184.0 0.4 87.7 74.5 103.1<br>1 1.00E+06 ( 36) 1.44E+06 ( 72) 125.5 88.4 10.4 87.7 74.5 103.1<br>1 1.00E+06 ( 36) 1.44E+06 ( 72) 125.5 88.4 184.0 1.1 86.4 73.3 101.1<br>1 1.00E+06 ( 36) 1.44E+06 ( 72) 125.5 88.4 184.0 1.1 86.4 73.3 101.1<br>1 1.00E+06 ( 36) 1.44E+06 ( 72) 125.5 88.4 184.0 1.0 87.7 74.5 103.1<br>1 1.00E+06 ( 36) 1.44E+06 ( 36) 1.0 88.9 88.2 215.4 0.4 87.7 74.5 103.1<br>1 1.00E+06 ( 36) 1.44E+06 ( 36) 1.0 88.9 88.2 215.4 0.4 87.7 74.5 103.1<br>1 1.00E+06 ( 36) 1.44E+06 ( 36) 1.0 88.9 88.2 215.4 0.4 87.7 74.5 103.1<br>1 1.00E+06 ( 36) 1.44E+06 ( 36) 1.0 88.9 88.2 215.4 0.4 87.7 74.5 103.1<br>1 1.00E+06 ( 36) 1.44E+06 ( 36) 1.0 88.9 88.2 215.4 0.4 87.7 74.5 103.1<br>1 1.00E+06 ( 36) 1.44E+06 ( 36) 1.0 88.9 88.2 215.4 0.4 87.7 74.5 103.1<br>1 1.00E+06 ( 36) 1.44E+06 ( 36) 1.0 88.9 88.2 215.4 0.4 87.7 74.5 103.1<br>1 1.00E+06 ( 36) 1.44E+06 ( 36) 1.0 88.9 88.2 215.4 0.4 87.7 74.5 103.1<br>1 1.00E+06 ( 36) 1.44E+06 ( 36) 1.0 88.9 88.2 215.4 0.4 87.7 74.5 103.1<br>1 1.00E+06 ( 36) 1.44E+06 ( 36) 1.0 88.9 88.2 215.4 0.4 87.7 74.5 103.1<br>1 1.00E+06 ( 36) 1.44E+06 ( 36) 1.0 88.9 88.2 215.4 0.4 87.7 74.5 103.1<br>1 1.00E+06 ( 36) 1.44E+06 ( 36) 1.0 88.9 88.2 215.4 0.4 87.7 74.5 103.1<br>1 1.00E+06 ( 36) 1.44E+06 ( 36) 1.0 88.9 88.2 215.4 0.4 87.7 74.5 103.1<br>1 1.00E+06 ( 36) 1.44E+06 ( 36) 1.0 88.9 88.2 215.4 0.4 87.7 74.5 103.1<br>1 1.00E+06 ( 36) 1.44E+06 ( 36) 1.0 88.9 88.2 215.4 0.4 87.7 74.5 103.1<br>1 1.00E+06 ( 36) 1.0 88.9 88.2 100.1 88.9 88.2 100.1 88.9 88.2 100.1 88.9 88.0 88.0 88.0 88.0 88.0 88.0 88.0 | 642297           |  |  |  |
| POOL 1.51E+06( 905) 3.45E+06( 2074) 0.4 87.7 74.5 103.<br>95% CI BRACKETS FOR POOLED AGE (Ma): -13.3 +15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36               |  |  |  |

95% CI BRACKETS FOR POOLED AGE (Ma):

Figure A.17: CR13 Data Sheet 1

Figure A.16: CR2 Grain Sheet 2

.

Page 1

| Package No. PLa                                                                                                                                                                                                                                                                          | - 10 Sample No. 2.134                                                      | Analyst: 694                                                                                                           | Date: 11.1.5_1 12 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------|
| Sample<br>• X=2; Y<br>X=2 Y                                                                                                                                                                                                                                                              | S. ?-         TOP         X=_12           2.5         BOTTOM         X=_12 | Δ<br><u>2.5 Υ.5.5</u><br>(2.1 Υ.19-2                                                                                   |                   |
| X Y<br>121.3 G.4<br>121.6<br>121.6<br>121.6<br>121.6<br>121.6<br>121.6<br>121.6<br>121.5<br>1200<br>121.5<br>1200<br>121.5<br>100<br>121.5<br>100<br>121.5<br>100<br>121.5<br>100<br>121.5<br>100<br>121.5<br>100<br>100<br>121.5<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10 |                                                                            | 6) X Y<br>meas. 12012 7.1<br>Cale. 122-7<br>Actual 122-1 7.5<br>25 1 20 1 10 0<br>Spot. Lad Tot Sq.                    |                   |
| X Y<br>1363 4.3<br>116-0<br>116-0<br>116-7 6.2<br>0 145 50 <sup>001</sup><br>t Tot Sq.                                                                                                                                                                                                   |                                                                            | 7) X Y<br>meas. <u>132.5</u> 2.2<br>Cale. <u>120.4</u><br>Actual <u>1203</u> 7.8<br>63 113 00 104<br>Spot. Ind Tot Sq. |                   |
| X Y<br>1350 7.1<br>117.0<br>117.0<br>102.3 7.0<br>102.5 7.0<br>102.5<br>100 Tor Sq.                                                                                                                                                                                                      |                                                                            | 8) X Y<br>mear. 133-8 2.5<br>Calc. 119.1<br>Actual<br>30 60 30 371<br>Spat. Ind Tot Sq.                                |                   |
| X Y<br>134.5 3.2<br>112.4<br>112.4<br>112.1 6.0<br>109. (cb/c <sup>10</sup> )<br>109. (cb/c <sup>10</sup> )                                                                                                                                                                              |                                                                            | 9) X Y<br>meas. <u>1369182</u><br>Cale. <u>116</u><br>Actual<br>15 31 100<br>Spet. Ind Tor Sq.                         |                   |
| X Y<br>1341.4 7.1<br>121.5<br>175 100<br>175 100<br>100 Sq.                                                                                                                                                                                                                              |                                                                            | 10) X Y<br>meas.<br>Cale.<br>Actual -<br>US 72 (00 ev10<br>Spot. Ind Tot Sq.                                           |                   |

| CR13A-BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rackage rue, <u>PLast-10</u> Sample No. <u>CP-13A</u> Analyst: <u>CPA</u> Date: <u>H</u> [] S [12]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CENTRAL AGE (Ma): AGE DISPERSION = 0.17 88.7 73.9 106.3<br>95% CI BRACKETS FOR MEAN AGE (Ma): -14.7 +17.6                                                                                                                                                                                                                                                                                                                                                                                                     | Sample REPLICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CHI^2 AGE (number & percentage of grains: 19, 95%) 86.4 73.3 101.9<br>95% CI BRACKETS FOR CHI^2 AGE (Ma): -13.1 +15.4                                                                                                                                                                                                                                                                                                                                                                                         | $X = \frac{12.41.41}{12.41.2}$ Y $\frac{12.51}{12.51}$ TOP $X = \frac{12.51}{12.51}$ Y $\frac{12.51}{12.51}$ X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MEAN URANIUM CONCENTRATION +/- 2 SE (ppm): 33.9 2.1<br>D====================================                                                                                                                                                                                                                                                                                                                                                                                                                  | 1) $X$ Y<br>mean. 121.3 (a.4)<br>Cale. 121.40<br>Actual<br>30 52 100<br>Spet. Ind Tee Sq. (a.4)<br>(a.4)<br>(b.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4)<br>(c.4 |
| Total range for grain ages = 49.17 to 139.25 Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| First Search: peaks with zero first derivatives.                                                                                                                                                                                                                                                                                                                                                                                                                                                              | acar. 126/3 14.2 mean. 132.5 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AGE PROBABILTY DENSITY AT PEAK EST. N<br>(Ma) (grains/DZ=0.1) (grains)                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Second search: find minima in the second derivative of the Gaussian probability density function.                                                                                                                                                                                                                                                                                                                                                                                                             | (10) 145 50°°°<br>Sont Ind Tot Sq. 50°°°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| AGE PROBABILTY DENSITY AT PEAK EST. N<br>(Ma) (grains/DZ=0.1) (grains)<br>47.39 0.312 1.52<br>70.68 2.527 12.27<br>100.66 2.848 13.83<br>127.24 1.603 7.78<br>DATE/TIME: 01-18-2012/15:18:18 FILENAME: C:\FTDATA\CR13A-BA.TXT<br>Cr-13A Bretton Woods Granite 1770' Mt Washington PL061-10 B Anderson 1/18/12<br>Kernel factor = .6 (Ratio of kernel window size to standard error)<br>Number of grains = 20 Barwidth (z units) = .1<br>Histogram shown by asterisks and probability distribution by circles. | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PROBABILITY DENSITY (GRAINS PER DELTA Z=0.1)<br>0 1 2 3 4 5 6<br>AGE COUNT                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4) $X$ Y<br>meas. 134.5 3.2<br>Cake. 112.4<br>Actual 115.1 6.0<br>41 100 (rb <sup>67</sup> )<br>Spet. Ind Tot Sq.<br>41 100 Spet. Ind Tot Sq.<br>41 100 Spet. Ind Tot Sq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 91.3 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5) <u>x y</u> <u>10) x y</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 122.9 = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mean. <u>124.4 2.1</u> mean.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Page 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Actual Actual Actual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Figure A.18: CR13 Data Sheet 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD 175 100<br>Spot. Ind Tot Sc. 1111 Spot. Ind Tot Sc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Figure A.19: CR13 Grain Sheet 1

89

|                                                                                                                                                                                                                | · . · .              |                                                                                                                                                                                                                                           |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Irradiation                                                                                                                                                                                                    |                      |                                                                                                                                                                                                                                           |                  |
| Iranidiation Num. Photo                                                                                                                                                                                        | -10 Sample No. CP-12 | Analyst: 286                                                                                                                                                                                                                              | Date: 1 /12 / 92 |
| (13) X Y<br>mess. 1210-2 7.0<br>Celc. 110: <sup>10</sup><br>Actual 110:0 8.4<br>224 <sup></sup> 100 3.0<br>Solt. Ind Tor So.                                                                                   |                      | 16)         X         Y           mess.         100         200           Calc.         1100         200           Actual         1100         200           U 2:         121         130           Spot.         Test Sa.         300    |                  |
| 12) <u>X</u> Y<br>mores. <u>126.9</u> <u>7.0</u><br>Celc. <u>110</u> <u>7.0</u><br>Actual <u>1106</u> <u>8.14</u><br><u>7.24</u> <u>5.4</u> <u>5.6</u><br><u>5005</u> <u>Led</u> Tot Sq.                       |                      | 17)         X         Y           messe.         3.3         3.5           Cale.         1.0         1.0           Actual         119.7         1.0           LFS         3.0         1.00           Scot.         Ind         Tor So.    |                  |
| 13)         X         Y           mean,         13.4.5         2.13           Cale,         11元以           Actual         11元以           月辺         12.3           月辺         10.0           Spot.         Iad |                      | 18)         X         Y           meas.         12.9.6         10.2           Cale.         12.3.3           Actual         12.3.4         10.2           SS         112         100           Spar.         Ind         Tor.So.          |                  |
| 14) X Y<br>mean. <u>132.6</u> 10.0<br>Cale. <u>120.7</u><br>Actual <u>170.7</u><br>52 151 20<br>Spat. Ind Tor Sal                                                                                              |                      | 19)         X         Y           mess.         131.9         11.5           Cale.         121.0         1.5           Actual         120.7         11.0           90         182         100           Spot.         Iad         Tox Sq. |                  |
| 15) X Y<br>ness.<br>Calc.<br>Actual<br>1/0 <sup>5</sup> 1/2 <sup>10</sup> 21 <sup>0</sup><br>Spat. Lad Tox Sq.                                                                                                 |                      | 20)         X         Y           mcest.         127.33         11.97           Cale.         1147.2           Actual         1147.07         1.177           L/O         200         1.00           Spat.         Ind         Tor Sq.    |                  |

Figure A.20: CR13 Grain Sheet 2

#### References

- Bosch, F., Goresey, A.E., Martin, B., Povh, B., Nobling, R., Schwalm, D., Traxel, K., 1978, The proton microprobe: a powerful tool for nondestructive trace element analysis: Science, New Series, V. 199, N. 4330, p. 765-768.
- Carlson, W.D., Donelick, R.A., Ketcham, R.A., 1999, Variability of apatite fission-track annealing kinetics: I. Experimental results; American Mineralogists, V. 84, p. 1213-1223.
- Doherty, J.T., Lyons, J.B., 1980. Mesozoic erosion rates in northern New England. Geological Society of America Bulletin 91, 16–20
- Eusden, J.D., 1996, Bedrock geology of the Presidential Range, New Hampshire: Harvard University : Cambridge, MA, United States, United States.
- Eusden, J.D., 2010. The Presidential Range: Its Geologic History and Plate Tectonics. Durand Press, Lyme, New Hampshire. 62 pp. and 1:20,000 scale bedrock map.
- Eusden, J.D., Garesche, J.M., Johnson, A.H., Maconochie, J., Peters, S.P., O'Brien, J.B., and Widmann, B.L., 1996, Stratigraphy and ductile structure of the Presidential Range, New Hampshire: Tectonic implications for the Acadian orogeny: Geological Society of America Bulletin, v. 108, no. 4, p. 417-436.
- Eusden Jr., J.D., Guzofski, C.A., Robinson, A.C., Tucker, R.D., 2000. Timing of the Acadian Orogeny in Northern New Hampshire. Journal of Geology 108, 219–232
- Eusden, J.D., and Lux, D.R., 1994, Slow late Paleozoic exhumation in the Presidential Range of New Hampshire as determined by the 40Ar/39Ar relief method: Geology, v. 22, no. 10, p. 909-912.
- Faure, S., 2006, Paleostress analysis of Atlantic crustal extension in the Quebec Appalachians: University of Chicago Press : Chicago, IL, United States, United States.
- Faure, S., Tremblay, A., and Angelier, J., 1996, State of intraplate stress and tectonism of northeastern America since Cretaceous times, with particular emphasis on the New England-Quebec igneous province: Tectonophysics, v. 255, no. 1-2, p. 111-134.
- Galbraith, R.F., Laslett, G.M., Green, P.F., Duddy, I.R., 1990, Apatition fission track analysis: geological thermal history analysis based on three-dimensional random process of linear radiation damage: Philosophical Transactions: Physical Sciences and Engineering, V. 332, N. 1627, p. 419-438.
- Gallagher, K., 1995, Evolving temperature histories from apatite fission-track data: Earth and Planetary Science Letters, V. 136, p 421-435.

- Gallagher, K., Brown, R., Johnson, C., 1998, Fission Track Analysis and its applications to geological problems: Annual Review of Earth and Planetary Science, v. 26, p. 519-572.
- Hibbard, J., van Staal, C., and Rankin, D., 2007, A comparative analysis of pre-Silurian crustal building blocks of the northern and the southern Appalachian orogen: American Journal of Science, v. 307, no. 1, p. 23-45.
- Kindley, C., 2011, Paleostress Analysis of Mesozoic Extension in Fractures and Basalt Dikes, Great Gulf, NH: Bates College.
- Ketcham, R.A., Donelick, R.A., Donelick, M.B., 2000, AFTSolve: A program for multi-kinetic modeling of apatite fission-track data: Geological Materials Research, V.2, N.1, p 1-31.
- Kohn, M.J., Rakovan, J., Hughes, J.M., 2002, Phosphates Geochemical, geobiological and materials importance: Reviews in Mineralogy and Geochemistry, V. 48.
- Matton, G., and Jébrak, M., 2009, The Cretaceous Peri-Atlantic Alkaline Pulse (PAAP): Deep mantle plume origin or shallow lithospheric break-up?: Tectonophysics, v. 469, no. 1-4, p. 1-12.
- McHone, J.G., 2000, Non-plume magmatism and rifting during the opening of the central Atlantic Ocean: Tectonophysics, v. 316, no. 3-4, p. 287-296.
- McHone, J.G., 2005, Giant dikes, rifts, flood basalts, and plate tectonics; a contention of mantle models: Geological Society of America (GSA) : Boulder, CO, United 89 States, United States.
- McHone, J.G., 1988, Tectonic and paleostress patterns of Mesozoic intrusions in eastern North America: Elsevier : Amsterdam, Netherlands, Netherlands.
- McHone, J.G., 1995, The Christmas Cove Dike, coastal Maine; petrology and regional significance: Geological Society of America (GSA) : Boulder, CO, United States, United States.
- McHone, J.G., 2003, Volatile emissions from Central Atlantic Magmatic Province basalts; mass assumptions and environmental consequences: American Geophysical Union : Washington, DC, United States, United States.
- McHone, J.G., Ross, M.E., and Greenhough, J.D., 1987, Mesozoic dyke swarms of eastern North America: Geological Association of Canada : Toronto, ON, Canada, Canada.
- McHone, J., and Butler, J., 1984, Mesozoic igneous provinces of New England and the opening of the North Atlantic Ocean: Geological Society of America Bulletin, v. 95, no. 7, p. 757-765.
- Moench, R.H., and Aleinikoff, J.N., 2003, Stratigraphy, geochronology, and accretionary terrane settings of two Bronson Hill arc sequences, northern New England: Physics and

Chemistry of the Earth, Parts A/B/C, v. 28, no. 1-3, p. 113-160.

- Reiners, P.W., Ehlers, T.D., 2005, Low Temperature Thermochonology: Techniques,
- College.
- no. 2, p. 159 178.
- track and (U-Th)/He thermochronology. Journal of Geology 113, 535-552.
- Roden-Tice, M.K., Wintsch, R.P., 2002. Early Cretaceous normal faulting in southern New 159-178.
- northern New England. Journal of Geology 117, 627-641.
- Roden-Tice, M.K., Eusden, J.D., Wintsch, R.P., 2012. Apatite fission-track evidence for the New England. Geomorphology, 141, 114-120.
- separator. American Mineralogist, 43, 170-173.
- Evidence for an upper mantle origin. Earth Planet. Sci. Lett.
- Schlische, R.W., Withjack, M.O., and Olsen, P.E., 2003, Relative Timing of CAMP, Rifting,

McHone, J., and Butler, J., 1984, Mesozoic igneous provinces of New England and the opening of the North Atlantic Ocean: Geological Society of America Bulletin, v. 95, no. 7, p. 757-765.

Nesse, W.D., 2000, Introduction to Mineralogy: Oxford University Press, New York, p. 346-349.

Interpretations and Applications; Reviews in Mineralogy & Geochemistry, V. 58, p 19-86.

Robinson, A.C., 1997, The Timing of Metamorphism, Deformation, and Plutonism in the Presidential Range, New Hampshire, Based on U=Pb Radiogenic Age Dating: Bates

Roden-Tice, M.K., and Wintsch, R.P., 2002, Early Cretaceous normal faulting in southern New England; evidence from apatite and zircon fission-track ages.: Journal of Geology, v. 110,

Roden-Tice, M.K., Tice, S.J., 2005. Regional-Scale mid-Jurassic to Late Cretaceous unroofing from the Adirondack Mountains through central New England based on apatite fission-

England: evidence from apatite and zircon fission-track ages. Journal of Geology 110,

Roden-Tice, M.K., West Jr., D.P., Potter, J.K., Raymond, S.M., Winch, J.L., 2009. Presence of a long-term lithospheric thermal anomaly: evidence from apatite fission-track analysis in

Cretaceous development of kilometer-scale relief and steady-state Tertiary topography in

Rosenblum, Sam (1953) Magnetic susceptibilities of minerals in the Franz isodynamic magnetic

Roulleau, E., Pinti, D.L., Stevenson, R., Takahata, N. et Sano, Y., Pitre, F., 2010. Nitrogen, helium and argon isotopes in minerals from alkaline intrusions of the Monteregian Hills, QC:

Continental Breakup and Basin Inversion: Tectonic Significance, in Hames, W., McHone, J.G., Renne, P., and Ruppel, C. eds., The Central Atlantic Magmatic Province: Insights from Fragments of Pangea, American Geophysical Union, Washington, DC, p. 33-59.

- Schlische, R.W., 2003, Progress in understanding the structural geology, basin evolution, and tectonic history of the eastern North American rift system, in LeTourneau, P.M. and Olsen, P.E. eds., The Great Rift Valleys of Pangea in Eastern North America, Columbia University Press : New York, NY, United States, United States, p. 21-64.
- VanStaal, C.R., Whalen, J.B., Valverde-Vaquero, P., Zagorevski, A., Rogers, N., 2009. Pre-Carboniferous, episodic accretion-related, orogenesis along the Laurentian margin of the northern Appalachians, 327, 271-316.
- Wagner, G.A., 1968. Fission-track dating of apatites. Earth and Planetary Science Letters 4, 411–414.
- Warnock, A.C., Zeitler, P.K., Wolf, R.A., Bergman, S.C., 1997. An evolution of low-temperature apatite U-Th/He thermochonometry. Geochimica et Cosmochimica Acta 61, 5371-5377.
- West Jr., D.P., Roden-Tice, M.K., 2003. Late Cretaceous reactivation of the Norumbega fault zone, Maine: evidence from apatite fission-track ages. Geology 31, 649–652.
- West Jr., D.P., Tomascak, P.B., Coish, R.A., Yates, M.G., Reilly, M.J., 2007. Petrogenesis of the ultrapotassic Lincoln Syenite, Maine: Late Silurian–Early Devonian melting of a source region modified by subduction driven metasomatism. American Journal of Science 307, 265–310.
- West Jr., D.P., Roden-Tice, M.K., Potter, J.K., Barnard, N.Q., 2008. Assessing the role of orogenparallel faulting in post-orogenic exhumation: low-temperature thermochronology across the Norumbega fault system, Maine. Canadian Journal of Earth Sciences 45, 287–301.