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HE GULF OF MAINE is one of the world’s
most productive marine ecosystems. Its

coastal codfish stocks attracted European
colonists, including the Pilgrims at Plymouth,
Massachusetts, on the shores of the then appro-
priately named Cape Cod. Today, however,
Atlantic cod (Gadus morhua) and virtually all
large-bodied fishes are rare and “ecologically
extinct” (sensu Estes et al. 1989) from coastal
zones of the Gulf of Maine. The decline of cod
and other groundfishes is widely believed to be
the result of overfishing (Jackson et al. 2001).
Further, because cod were the dominant preda-
tor in Gulf of Maine waters (Steneck and Carl-
ton 2001) their functional absence affects the
entire ecosystem. Declines in apex predators
release prey species at lower trophic levels, so
mesopredators and herbivores often increase in
abundance, becoming new fisheries targets
(Jackson et al. 2001; Steneck and Sala 2005;
Steneck et al. 2004). This process is known as
“fishing down marine food webs” (Pauly et al.
1998).

Conventional wisdom assumes that fish
stocks remained “pristine” until targeted by
commercial fishing fleets to supply foreign
markets, thus initiating a historical process of

fishing down the marine food web (e.g., Jack-
son et al. 2001; Lotze et al. 2006). Thus, in the
western North Atlantic a pristine state—one
unaffected by human activity—is assumed to
have persisted until European contact (Jackson
et al. 2001; Lotze and Milewski 2004). Archae-
ological studies in the Aleutians (Simenstad 
et al. 1978), California (Erlandson et al. 2004,
2005), and the Caribbean (Wing and Wing
2001), however, have presented compelling evi-
dence for prehistoric declines of apex predators
due to fishing. If such prehistoric effects were
widespread, then perhaps we will have to reset
our timeline for when coastal ecosystems first
departed from their pristine baseline (Erland-
son and Fitzpatrick 2006; see also Erlandson
and Rick, this volume).

In this chapter, we present archaeological
and isotope data from a coastal site in Maine
that suggests localized fishing down of
nearshore coastal food webs may have begun
thousands of years before European coloniza-
tion. Specifically, we report on changes in the
relative abundance of faunal remains in the
well-preserved and best-studied midden in
coastal Maine, the Turner Farm site in Penob-
scot Bay. We also use stable nitrogen and
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carbon isotope analysis of prehistoric and mod-
ern bone collagen of cod, sculpin, flounder, and
humans to estimate relative trophic positions of
each species and the degree to which coastal,
kelp-derived organic matter supported the food
web. We do this to provide long-term data on
the magnitude and scale (spatial and temporal)
of environmental change in nearshore coastal
marine settings in the western North Atlantic to
better understand when the region departed
from pristine conditions, so managers can set
realistic goals for ecosystem restoration.

GULF OF MAINE KELP FOREST

ECOSYSTEM AND FOOD WEBS PAST 

AND PRESENT

Although the Gulf of Maine is highly produc-
tive, it has never been highly diverse (Steneck 
et al. 2002; Witman et al. 2004). This naturally
low diversity results from three factors. First,
the North Atlantic is relatively young and only
recently inoculated with a subset of higher taxa
from the eastern North Pacific (Vermeij 1991).
Second, of the possible species relatively few
could withstand the western North Atlantic’s
shallow water temperature extremes (Adey and
Steneck 2001). Finally, North American glaciers
expanded as recently as 18,000 BP (uncor-
rected radiocarbon years BP) to cover most of
North America’s rocky shores, resulting in local
extinctions and biogeographic zone compres-
sion. As a result, the comparatively few species
that lived in the Gulf of Maine were found in
high abundance and provided key ecological
services in the ecosystem.

The Gulf of Maine’s coastal ecosystem com-
prises four dominant trophic levels: apex and
mesopredators, herbivores, and algal primary
producers (Figure 8.1). The algae include large
structure-producing kelp such as Laminaria spp.
(Steneck et al. 2002) and other algal forms. Kelp
forests dominate nearshore rocky habitats from
zero to 20–45 m deep, depending on water clar-
ity (Vadas and Steneck 1988). Algae contribute
significantly to the energy flow in nearshore food
webs (Duggins et al. 1989; Mann 1973).

Most kelp forest ecosystems are sensitive to
changes in herbivore populations, particularly
the sea urchin Strongylocentrotus droebachiensis
(Figure 8.1; Steneck et al. 2002). Strong inter-
actions between adjacent trophic levels can cre-
ate “trophic cascades” (sensu Paine 1980) in
which predator declines release limits on her-
bivorous sea urchin population growth, result-
ing in urchin population explosions and wide-
spread kelp deforestation (Steneck et al. 2002).
Such sea urchin–induced algal deforestations
are common globally and often result from the
overfishing of predators (reviewed by Steneck 
et al. [2002]). However, in species-depauperate
ecosystems such as the Gulf of Maine, there are
so few species at each trophic level in the food
web that population declines in a few key
species can trigger significant changes through-
out the system (Steneck et al. 2002).

Steneck et al. (2004) examined long-term
ecological change in the Gulf of Maine and pro-
posed that its coastal kelp forest ecosystem had
remained relatively stable, dominated by apex
predators and kelp for over 4,000 years (Figure
8.1). Evidence for this phase came from pooled
archaeological records, mainly from the Penob-
scot Bay area of Maine, indicating a long-term
abundance of large predatory fish, especially
the demersal cod in nearshore waters begin-
ning 4,200 to 4,000 years ago and ending early
in the last century. Steneck et al. (2004)
inferred the persistence of the three-trophic-
level system of apex predators (primarily
Atlantic cod), herbivores (the green sea urchin),
and algae (mostly kelp) throughout that phase
(Figure 8.1) with no hint of major changes in
food webs. Mesopredators such as lobsters and
crabs are generally not considered strong inter-
actors. Then, in the last century, two significant
ecosystem phase changes occurred. The first
was a rapid, fisheries-induced decline in preda-
tory finfish that began around AD 1930 with
large-scale mechanized coastal trawling (Ste-
neck and Carlton 2001). Affected species
included cod and most other large-bodied, com-
mercially important species such as haddock,
hake, and halibut. Their decline allowed the
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FIGURE 8.1.  Three phases in marine food webs in coastal Maine over the past 5,000 years (modified from Steneck et al.
2004). All species determined to have been abundant at one time were plotted according to their assigned trophic level
(Table 8.1). Only fully marine organisms are included; birds and terrestrial mammals (e.g., sea mink) were excluded.
Abundant species are identified by larger font and boldface; rare or low-abundance species are shown in smaller regular
type. Most trophic linkages (lines connecting species) have been demonstrated with ecological studies (see Steneck et al.
2004). Apex predators were all fish with a fractional above trophic level (TL) � 4.They feed on mesopredators (TL �2, �4)
and herbivores (TL �2). Algae are primary producers in this system (TL 1). All TL values and scientific binomials are in
Table 8.1. Interaction strengths correspond to the width of trophic linkage lines. Note that some species are weak interac-
tors in this system. Lobsters’ trophic linkages are weak despite their abundance in recent years because they feed primarily
on lobster bait. Functionally dominant taxa at each trophic level are illustrated with an arrow indicating abundance. Dou-
ble-headed arrows (pointing up and down) indicate taxa that fluctuate in importance during the identified phase.

expansion of prey species such as crabs, lob-
sters, and eventually sea urchins, which in turn
caused a decrease in kelp forests, amounting to
a functional phase shift in the system from
three to two trophic levels (Figure 8.1b). The
second sudden change was triggered by the
unprecedented fishing of sea urchins, which
began in AD 1987, peaked in AD 1993, and
then quickly culminated in widespread stock
collapse and another phase shift from two to
one trophic level that persists to the present.
Here kelp forests have expanded significantly,
and crabs and lobster are the top predators
(Figure 8.1c; Steneck et al. 2004).

These two recent phase shifts are examples
of “trophic level dysfunction,” where the abun-
dance of organisms at a highly interactive
trophic level declined to the point that they no
longer limited the abundance of their prey, and
their functional role was lost. The inability of
the Gulf of Maine’s coastal ecosystem to resist
these phase shifts stems from its low biodiver-
sity, which fails to provide ecologically equiva-

lent species to buffer against trophic level dys-
function (Steneck at al. 2004). To date, no
study has considered that such phase shifts
may have occurred prehistorically. Such a con-
sideration requires that we examine the archae-
ological record and cultural history of the
region.

THE PENOBSCOT BAY ARCHAEOLOGICAL

RECORD AND CULTURAL HISTORY

Penobscot Bay is centrally located on the Maine
Coast within the Gulf of Maine. Most impor-
tant archaeological sites in the bay are located
on its many islands, including the Turner Farm
site on North Haven Island (Figure 8.2). These
sites have been the focus of archaeological
research since 1970, and the bay now ranks
among the better-studied archaeological regions
of the western Atlantic Coast of North America.
The number of excavated sites currently stands
at over 40, the number of catalogued artifacts
exceeds 10,000, and the number of faunal
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specimens is exponentially larger. For purposes
of this analysis, however, we focus on faunal
samples from the Turner Farm site, a large,
extensively analyzed shell midden on North
Haven Island (see Bourque 1995; Spiess and
Lewis 2001). The faunal samples from this site
span, more or less continuously, the period
from about 5000 to 400 BP. We grouped the
samples into five occupation periods, although
the record for the earliest and latest present
problems. The faunal sample from the earliest
occupation is very small, but we include it
because it provides a glimpse of what early peo-

ple ate in coastal Maine. The latest sample dates
to around the time of first sustained European
contact (�400 BP) but came from a stratum
disturbed by historic agricultural plowing,
Bourque’s (1995) “plow zone” (Table 8.1). We
include it in the present analysis despite the
likelihood that it is to some extent contami-
nated by late prehistoric material because it
exhibits trends we regard as significant. We use
published chronostratigraphic dates (i.e.,
Bourque 1995) to show the overall trends,
although the dates will likely be somewhat
revised in the near future.
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FIGURE 8.2.  Map of the Penobscot Bay area showing North Haven Island on the outer coast of Maine, where
most midden sites, including the Turner Farm site, were located.
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The earliest clear evidence of human occu-
pation in the Penobscot Bay area comprises a
scattering of Early and Middle Archaic projec-
tile points in styles found over large portions of
northeastern North America that date between
about 8500 and 6000 BP (Bourque 2001). The
earliest intact archaeological components,
however, are manifestations of the Small
Stemmed point tradition, found primarily
from southern New York to the mid-Maine
Coast and dating between about 5000 and
4500 BP (Bourque 1995). The Turner Farm site
produced the only significant faunal sample
from this period.

The next clear cultural manifestation in the
region, known as the Moorehead Phase, seems
to be a regional descendant of the Small
Stemmed point tradition and dates between
about 4500 and 3800 BP (Bourque 1995). This
was a population located between the Kennebec
and St. John’s rivers and devoted to a maritime
lifestyle that included extensive fishing for cod
and swordfish, as well as terrestrial hunting
(Figures 8.3 and 8.4). Also characteristic of the
Moorehead Phase is a complex pattern of mor-
tuary behavior that included multiple, large
cemeteries with ocher-filled graves furnished
with beautifully crafted locally made artifacts
and exotics from other regions. Some of the
exotic artifacts come from sources (e.g., Ramah
Bay, Labrador) as far as 1,000 miles away
(Bourque 1995).

All traces of the Moorehead Phase disap-
peared around 3800 BP. Immediately there-
after a very different cultural manifestation
appeared on the scene. Known as the Susque-
hanna Tradition, it took over territory not
only of Moorehead Phase people but also
apparently of all contemporaneous Northeast-
ern cultures as far north as the St. Lawrence
River (Bourque 1995:244–254). The earliest
reliable dates for the Susquehanna Tradition
in Maine do not exceed 3700 BP. There is
now an archaeological consensus that the
Susquehanna Tradition represents a com-
plete break with the Moorehead Phase, mak-
ing the arrival of a new population the likely

explanation for its appearance. In southern
New England, where the Susquehanna Tradi-
tion also looks like a population replacement,
the pattern remained in place and changed
over time for nearly 1,000 years. In Maine,
however, its tenure was apparently brief, with
the latest reliable radiocarbon dates falling no
later than 3500 BP, and the artifact styles that
typify the later phases of the Susquehanna
Tradition to the south are rare or absent
there.

The archaeological record becomes weak
and ambiguous after the disappearance of the
Susquehanna Tradition and does not revive
until around 2800 BP when the earliest
ceramic pottery appears and midden accumula-
tion resumes. Thereafter, the rate of midden
accumulation at the Turner Farm site and else-
where in Penobscot Bay appears to increase
throughout the remainder of the prehistoric
period (Bourque 1995:169–222).

Beginning in the mid-sixteenth century, the
presence of Europeans in the Gulf of St.
Lawrence began to impact populations in the
Gulf of Maine and, by AD 1600 (�400 BP),
Europeans began to appear there on a regular
basis. By that time, European demand for
beaver pelts had caused indigenous economies
to shift toward terrestrial beaver hunting at the
expense of pursuing marine foods (Bourque
1995; Bourque and Whitehead 1994). There-
after, native occupation of the coastal zone
decreased as epidemics drastically reduced 
populations, and as new population amalgama-
tions established villages in the interior.

FAUNAL TRENDS AT THE TURNER 

FARM SITE

To search for trends in faunal assemblages and
fishing activity over time, we quantified the
abundance and trophic level of all dominant
species found in the Turner Farm midden (Table
8.1). Specifically, we assigned each species a
fractional trophic level (TL) value (Froese and
Pauly 2002) based on the trophic level of prey it
consumed. Thus, primary producers, herbi-
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vores, mesopredators, and apex predators were
assigned TL numbers ranging from 1 to 4.6
(Table 8.1). All taxa were compiled at the level of
species or at the TL possible (some bones could
only be identified as seal or flounder, for exam-
ple). Operationally we defined apex predators as

species with a fractional trophic level of four or
more. Mesopredators were assigned TLs
between 3.0 and 4.0. We assigned lower frac-
tional TLs to invertebrate mesopredators such
as crabs (Figure 8.1), although they were absent
from the midden (Table 8.1). Species with 
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FIGURE 8.3.  Bone artifacts from the Turner Farm site. The large hooks in the upper row
are from Occupation 2 (~4350 BP) and probably were used to catch cod. The small hooks
are from late prehistoric strata and are appropriately sized to catch flounder, the bones of
which were extremely abundant in these strata. The bone points below the hooks repre-
sent an artifact type commonly found in late prehistoric contexts where flounder bone is
abundant, and may have served as the central piercing element in leisters, such as the
example shown in Figure 8.4.
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TLs � 3.0, including suspension feeders and
herbivores, were relatively rare and thus were
pooled for this analysis.

Apex predators declined and mesopredators
increased proportionally over the five-occupa-
tion sequence (Figure 8.5). The most important
trends were the decline in Atlantic cod and
increase in flatfish (four species of flounder
including American dab). Another group of

mesopredators, the sculpins (probably several
species), also increased. Today, sculpins are the
most abundant fish in Maine’s cod-depleted
nearshore benthic communities (Figure 8.1b
and c; Steneck 1997). There was no clear trend
among the suspension feeders or herbivores.

Two groups of apex predators, seals and dog-
fish, increased slightly in abundance during the
prehistoric period (Figure 8.5, Table 8.1), possi-
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FIGURE 8.4.  Leisters were used historically throughout the Maine–Maritime Provinces
region to spear fish, including flounder. The central piercing element of this nineteenth-
century Penobscot specimen is of steel and may represent a modern modification of the
bone point used prehistorically. The shaft of this example has been sawed off.
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bly because their populations were being
released from competitive suppression as cod
decreased in abundance and size over time.
Recent declines in cod stocks in the 1980s to
1990s were followed by such an increase in
dogfish (Fogarty and Murawski 1998) and seals
(Trzcinski et al. 2006). The upward trend in
seals is particularly interesting because they
swallow their prey (predominantly fish) whole
and would have been at a competitive disadvan-
tage against large cod, which eat a wider size
range of fish, including all species consumed
by seals. The large cod found in the Turner
Farm middens (i.e., averaging 1 m long) may
well have reduced the prey available for seals,
thereby putting them at a competitive advan-
tage over the seals.

We suspect that the changes we have
observed at the Turner Farm site were caused
by a human-induced reduction of apex preda-
tors brought about by fishing practices (e.g., via
enhanced fishing pressures, altered fishing
methods, technology, or traditions, such as the
abrupt culture change evident during the brief
occupation by people of the Susquehanna Tra-
dition). We regard climate change as an
unlikely cause because climate conditions for
cod in coastal zones should have improved dur-
ing the cooling of the Little Ice Age of the thir-
teenth to nineteenth centuries AD (Grove 2001;
Planque and Fredou 1999), when their abun-
dance at Turner Farm reached a low point. Fur-
ther, by the 1600s AD, large and abundant cod
were reported at numerous other nearby coastal
areas, such as in Rosier’s AD 1605 account of
fishing at nearby Pemaquid (Quinn and Quinn
1983:25–311).

STABLE ISOTOPES AND MARINE FOOD

WEB MODELS

Faunal remains from the Turner Farm site
described briefly above and elsewhere (Spiess
and Lewis 2001) indicate that prehistoric peo-
ple consumed many species of marine fishes
for at least 5,000 years before European colo-
nization (Table 8.1). However, as Spiess and
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Lewis (2001:86) pointed out, “it is difficult to
estimate the relative contribution of fish versus
mammals [primarily deer] to the diet of the
site’s inhabitants” based only on faunal identifi-
cation. Nor can faunal identification alone
reveal where an organism was captured. To
shed light on these issues, we turn to stable iso-
tope analyses. We then consider if the several
millennia of prehistoric harvesting could have
affected relative abundances and even altered
marine food webs.

Where isotopically distinct primary produc-
ers occur at the base of the food web, it is pos-
sible to use stable carbon and nitrogen isotopes
of animal tissue (e.g., bone collagen, muscle,
lipids) to reconstruct animal diets and energy
flow within the ecosystem, as well as animal
foraging behavior (Michener and Schell 1994;
Michener and Kaufman 2007). In most tem-
perate marine settings, for example, kelp and
sea grasses incorporate more 13C-enriched dis-
solved inorganic carbon during photosynthesis
than most species of phytoplankton (Fry and
Sherr 1984). Consequently, kelp and sea
grasses have more enriched, or more positive,
carbon isotope values (expressed as �13C) than
phytoplankton. The �13C value of the food sources
is passed on, with some modification (�1–2‰
enrichment with each trophic level [Fry and Sherr
1984]), to the tissues of the consumer (Figure
8.6). Similarly, the �15N value of the food sources
is passed on, with some modification (�3‰
enrichment for each trophic level [Ambrose and
DeNiro 1986; Fry 1988; Minagawa and Wada
1984]) to the consumer such that nitrogen iso-
topes can be used to discern the relative trophic
positions of organisms living within an ecosys-
tem (Wada et al. 1991; Figure 8.6).

In Penobscot Bay, the dominant marine pri-
mary producers are benthic macroalgae (e.g.,
kelp), sea grass, and phytoplankton. For various
species of macroalgae, carbon and nitrogen iso-
tope values range between �12 and �27‰,
and between 5 and 8‰, respectively (Fry 1988;
McMahon et al. 2005). Sea grass isotope values
range between �3 and �15‰ for carbon
(McMillan et al. 1980) and 4 and 6‰ for nitro-

gen (B. Johnson, unpublished data). For Gulf of
Maine phytoplankton, carbon isotope values
range between �18 and �27‰, with nitrogen
isotope values between 5 and 9‰ (Fry 1988;
McMahon et al. 2005). Detritus and dissolved
organic matter derived from these photosynthe-
sizing organisms is consumed by passive sus-
pension feeders and deposit feeders such as
polychaetes, amphipods, isopods, mollusks,
and sea urchin (Josefson et al. 2002; Duggins
and Eckman 1994), then passed up the food
web, with the appropriate isotope fractionations
occurring at each trophic level (e.g., Lesage et
al. 2001). In certain settings, it is possible to use
isotopes to determine the degree to which
marine species depend on various primary
producers (Bustamante and Branch 1996;
Stephensen et al. 1986; Duggins et al. 1989).

The dominant primary producers in Penob-
scot Bay generally occupy different ecological
settings. Kelp and other benthic macroalgae
grow on rocks in relatively shallow nearshore
environments, whereas sea grasses (primarily
Zostera marina) are the dominant producers in
more protected, shallow, sediment-dominated
environments. Rocky shores dominate most
outer exposed habitats near the islands of North
Haven and nearby Vinalhaven, as well as the
corresponding outer coastal region (Figure 8.2),
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so the nearshore setting would have been kelp
and benthic algal dominated. Sea grass was
probably locally abundant primarily in the Fox
Island Thoroughfare adjacent to the Turner
Farm site.

The food web contribution of kelp and
other algae relative to pelagic phytoplankton
declines with distance from the shore (Mann
1973; Steneck and Dethier 1994), and phyto-
plankton become the dominant primary pro-
ducer in pelagic, offshore systems. Within the
nearshore kelp forest ecosystem, sea urchins
are dominant herbivores, but they appear in
low abundance in the middens at Turner
Farm (Spiess and Lewis 2001), implying that
they probably would have had little impact on
the standing kelp biomass. Sea grass is slower
than kelp to break down and is consumed by
fewer organisms (Harrison 1989). Epiphitic
algae in grass beds, however, is taken up by
primary consumers and has isotopic values
similar to that of the sea grass (Hoshiko et al.
2006). These trophic pathways presented in
Figure 8.1 are localized to these areas of
production.

The isotopic composition of marine ani-
mal tissues can be used to determine the
degree to which these animals forage in
nearshore versus offshore settings (Aurioles
et al. 2006; Burton et al. 2001; Kaehler et al.
2000; Lesage et al. 2001). Tissue from ani-
mals that forage on kelp or sea grass in
nearshore waters are enriched in 13C, whereas
those that forage in more pelagic, offshore
waters are depleted of 13C. When more than
two sources of primary carbon are present
(e.g., kelp, sea grass, phytoplankton, epiphytic
algae), the use of multiple chemical tracers
(e.g., nitrogen, carbon, and sulfur isotope
compositions and C/N values) and isotope
mixing models can elucidate more specific
information on energy transfer and food web
structure (e.g., Phillips and Koch 2002).

For this study, we analyzed the isotopic com-
position of well-preserved Middle and Late
Holocene deer, bear, cod, sculpin and flounder
bone collagen from the Turner Farm site to

determine if the major species found in mid-
dens are trophically linked to the prehistoric
people. We evaluated the degree to which mem-
bers of the marine community show isotope
signatures indicative of nearshore kelp and sea
grass communities. We also analyzed modern
muscle tissue from cod, flounder, and sculpin
collected from the Gulf of Maine to compare to
the Holocene record of fish diets and evaluate
the degree to which fish diets may have
changed over the last 4,000 years.

Cod are trophic generalists that feed on
small and large crustaceans and, as they grow
and mature, on other fishes (discussed fur-
ther below). We predict that if cod and other
coastal fish were abundant in coastal zones
near the Turner Farm site, they would be
enriched in 13C, reflecting the presence of kelp
and/or sea grass beds. Isotopically depleted
cod would reflect a shift to a more phyto-
plankton-based, offshore food web. Flounder
and to a lesser extent, sculpins commonly live
in shallow sediment-dominated habitats colo-
nized by the eelgrass Zostera marina. Thus,
we predict that the isotopic composition of
flounder and sculpin will be more enriched in
13C than the cod, reflecting coastal kelp and
perhaps some sea grass-derived organics at
the base of the food web.

ISOTOPIC TRENDS IN PENOBSCOT BAY

Our study includes stable isotope analysis of
one to four samples of deer, bear, cod, sculpin,
and flounder bones picked from four different
strata in the Turner Farm midden. Two samples
of modern cod were analyzed, one caught by a
local lobsterman in July 2005 not far from the
Turner Farm site, and the other collected by 
the state of Maine’s Department of Marine
Resources (DMR) inshore trawl surveys in May
2006. Three modern flounder and sculpin
were also collected by the DMR inshore surveys
in May 2006. The archaeological bone collagen
was extracted and prepared after Harrison and
Katzenberg (2003). White muscle tissue was
lipid-extracted from the modern fish.
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All samples were run in the Environmental
Geochemistry Laboratory at Bates College
using a ThermoFinnigan Delta Plus Advantage
stable isotope ratio mass spectrometer inter-
faced to a Costech elemental analyzer via the
combustion interface. Atomic C/N ratios
between 2.9 and 4 and the presence of collagen
“ghosts” were used to verify the presence of
intact collagen in the archaeological samples
(after Tuross et al. 1988).

The isotope data for the Holocene deer and
bear bones were not statistically different from
each other (Figure 8.7), suggesting that they ate
similar diets comprised almost exclusively of C3

vegetation (e.g., leaves, shoots, berries, etc.). In
contrast, the Holocene cod, flounder, and
sculpin samples were significantly more
enriched in 15N and 13C relative to the bear and
deer samples (Figure 8.7). The marine fish
incorporated more isotopically enriched and
variable carbon at the base of the food web (e.g.,
phytoplankton, kelp, sea grasses) and occupied
a higher trophic level relative to the terrestrial
animals analyzed.

The human isotope data were also enriched
relative to the bear and deer data, implying

that marine resources were an important
component to the human diet (in agreement
with Bourque and Krueger [1994]). Thus, it
appears that the Turner Farm humans were
eating a diet dominated by marine fish, as
well as some terrestrial animals. At this stage,
it is impossible to be more precise about the
degree to which these different animals were
consumed, and the importance of shellfish to
the diet.

Temporal changes in the carbon isotope
composition of the flounder, sculpin, and cod
provide insight into the types of primary con-
sumers at the base of the food web through the
Middle to Late Holocene (Figure 8.8). Between
4000 and 1300 BP, the isotope data for cod,
flounder, and sculpin were relatively consistent.
In general, more 13C-depleted values were
measured in cod and more enriched values
were measured in sculpin and flounder
through the time series. This suggests that
flounder and sculpin fed on nearshore kelp
and/or sea grass–associated organisms com-
pared to cod that had a much larger foraging
range often taking them far from kelp-associated
organisms in the coastal zone (Figure 8.8).

The most significant prehistoric decline in
carbon isotope values appears to have occurred
in cod at 400 BP (Figure 8.6). This may indicate
that large cod were extirpated from nearshore
environments, while sculpin and flounder per-
sisted and were hunted there. It is possible
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tery at the Turner Farm site; Bourque and Krueger 1994)
plot very close to the marine field, implying that human
diets were heavily influenced by marine fish.
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FIGURE 8.8.  The average carbon isotope composition 
(�1 SD) of archaeological cod, flounder, and sculpin bone
collagen and modern muscle tissue, where age is plotted in
thousands of years (ka) BP. Dramatic shifts in cod diets
occurred sometime between 1300 and 400 BP.
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that cod’s high food value (especially its preserv-
ability) stimulated offshore and distant fishing
following coastal extirpation. While cod may
have been overfished at some point before 400
BP, there is no evidence that sea urchin popula-
tions expanded as a result. The carbon isotope
signature of nearshore sculpins and flounders
remained enriched indicating that kelp and/or
sea grass dominated throughout the prehistoric
period. Importantly, sea urchin remains did not
increase during the later occupations (Figure
8.5). In contrast, other researchers have reported
an increase in sea urchin fragments and other
herbivore remains in archaeological sites where
predators were extirpated, including Simenstad
et al. (1978) in the Aleutians and Erlandson et al.
(2005) in California.

In general, the biomass of benthic macroal-
gae is currently high in coastal Maine (post-
1995) due to overfishing of sea urchins in the
early 1990s (Steneck and Sala 2005). As fish-
ery trawl surveys generally avoid shallow
rocky areas where kelp is most abundant, the
relatively depleted 13C signal of modern fish
samples may reflect the more offshore, phyto-
plankton-based nature of the sampling
locations.

The convergence of isotopic values in the
modern fish may represent evidence for a loss
of biodiversity accompanied by overfishing of
the marine food web (e.g., Steneck et al. 2004).
Alternatively, the isotope data may merely
reflect homogeneity in the food sources avail-
able at the collection sites. Sampling at finer
spatial scale resolution will be necessary to
determine the extent and significance of the
recent carbon isotope depletion and the loss of
biodiversity.

DISCUSSION

Cod were ecologically important as the largest
abundant apex predator in Gulf of Maine
coastal ecosystems (Steneck and Carlton 2001).
Individuals more than 180 cm long and weigh-
ing over 95 kg were recorded as recently as the
1800s (Collette and Klein-MacPhee 2002).

Significantly, Turner Farm site faunal remains
indicate average body lengths of about a meter
(Jackson et al. 2001; Steneck and Carlton
2001). 

Atlantic cod were targeted by the earliest
inhabitants of the Turner Farm site and domi-
nated midden deposits until around 3500 BP.
The carbon and nitrogen isotope signatures
from both cod and human bone indicate that
the marine coastal ecosystem supported popu-
lations of people and cod for at least several
thousand years. The prominence of cod in this
and other middens throughout the region from
Maine’s Boothbay Harbor (Carlson 1986) to
Canada’s Bay of Fundy (Lotze and Milewski
2004) is easy to understand. Cod have high
food value, are easy to catch because they do not
resist capture, and can be preserved with sim-
ple techniques available to prehistoric people
(Kurlansky 1997).

Because of its large size and high food
value, the decline of Atlantic cod through time
at the Turner Farm site probably reflects a real
decline in cod stocks/populations rather than a
change in climate or fishing preference. Fur-
ther, while most of the fish bone isotope signa-
tures were consistent with those associated
with kelp forest (or benthic algal-dominated)
ecosystems, the carbon isotope values from
400 BP suggest a more pelagic, phytoplank-
ton-based food web (Figure 8.6). If cod had
become locally rare in the nearshore kelp
forests surrounding North Haven and Vinal-
haven, prehistoric cod fishers may have been
forced to travel offshore.

We suspect that large and old cod living
close to shore were locally overfished. Large cod
may live for 30 to 50 years, but their rate of
growth slows with age (Collette and Klein-
MacPhee 2002; Scott and Scott 1988). The
archaeological record suggests that the prehis-
toric human population of North Haven grew
over time, and fishing pressure could have even-
tually extirpated stocks locally. The decline of
this large apex predator is important because it
could have relaxed population controls at lower
trophic levels, resulting in a mesopredator
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release. In a recent case study from the Cana-
dian Maritimes, a similar release occurred
when collapsed cod stocks seem to have
resulted in increases in shrimp and crab popu-
lations (Worm and Myers 2003).

The increase of flounders, sculpins, and
dogfish over time in the Turner Farm samples
is also in accord with declining cod stocks.
Importantly, cod diets change as they grow.
When they first reach the benthos, they feed on
small crustaceans; later in their juvenile life
they feed on decapods such as shrimp, crabs,
and lobsters (Langton and Bowman 1980). As
they grow to larger sizes, adult cod become
increasingly piscivorous, feeding on larger fish.
Since cod longer than a meter are known to
feed on several species of flounder (Langton
and Bowman 1980), it is possible that the
increase of flounders in the Turner Farm mid-
dens reflects a mesopredator release from the
loss of large cod in the areas. Similarly, floun-
der, sculpins, and dogfish all increased in abun-
dance following the recent collapse of Atlantic
cod in the southern Gulf of St. Lawrence (Han-
son and Lanteigne 2000) and in the Bay of
Fundy (Lotze and Milewski 2004). It is impor-
tant to note that such a mesopredator release
could have occurred if only the largest cod in
the population were extirpated, since smaller
cod function differently as predators only of
invertebrates. Thus, an absence of large cod
does not necessarily indicate that the species
was absent from the region—the situation in
modern times that Steneck et al. (2004) identi-
fied as trophic level dysfunction in the Gulf of
Maine.

At the Turner Farm site, seal abundance
varies inversely with cod, increasing dramati-
cally with time. Given their high value for food
and pelts, seals would likely have been hunted
by early coastal peoples as they were in the
North Pacific (Hildebrandt and Jones 2002).
The relative scarcity of seal bone in prehistoric
Gulf of Maine middens reported by Lotze and
Milewski (2004) and Spiess and Lewis (2001;
Table 8.1) suggests that they may have been less
abundant in the region’s prehistoric coastal

ecosystems where cod were limiting their prey.
According to Frank et al. (2005), recent
increases in seal abundances may likewise
reflect the collapse of cod populations because
of a mesopredator release in small forage fish
that seals can swallow, although marine mam-
mal protection legislation has also likely had a
strong influence on the dramatic increase in
seal populations in the United States and
Canada (Baraff and Loughlin 2000; Trzcinski 
et al. 2006).

Lobsters and crabs are strikingly absent from
the Turner Farm site faunal samples (Table 8.1;
Steneck et al. 2004). In fact, none have been
found at archaeological sites anywhere in the
Gulf of Maine (Lotze and Milewski 2004). This
is surprising given their current hyperabun-
dance in Maine’s coastal zone, where lobster
population densities can exceed two per meter
square in boulder habitats (Butler et al. 2006;
Steneck 2006; Steneck and Wilson 2001). Their
abundance in early historic times is suggested
by reports that Europeans captured very large
ones with boat hooks (Quinn and Quinn
1983:283, 307). One possible explanation for
this absence is a prehistoric scarcity of lobsters
and crabs resulting from cod predation that
allowed them to survive only in low numbers
and/or hidden in sheltered refugia were they
would have been particularly difficult to catch.
A prehistoric depletion of cod in nearshore
coastal zones could have had significant demo-
graphic consequences for lobsters. Lobsters
begin life on the benthos, in shallow-water
nearshore coastal zones (i.e., �20 m; Butler et
al. 2006). Thus, a loss of predators could have
contributed to local increases of lobsters by the
time of early European colonial fisheries. Sup-
porting such an inference is the fact that lob-
sters and crabs were commonly eaten by cod in
Maine’s coastal zone during the 1800s 
(Herrick 1911; Smith 1879), suggesting that
these predators did indeed suppress lobster and
crab population densities in coastal zones dur-
ing early prehistoric times (Butler et al. 2006).
Another possibility, however, is that lobster and
crab shells may not preserve well in shell
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middens. Their exoskeletons are well calcified
and so, like sea urchins, might be expected to
preserve well in the alkaline environment of
shell middens. Indeed, both decapods can pre-
serve well in the fossil record (Bishop 1986).
However their shells are made of chitin, a poly-
saccharide embedded in a hardened proteina-
ceous matrix that may succumb to biological
degradation in the well-oxygenated context of a
shell midden. Furthermore, if they were at all
abundant prehistorically, their shells would, as
today, likely be commonly found along the
shore. If so, an occasional specimen would
likely have been collected along with small gas-
tropods that are often found in the lenses of
beach gravel used to cover prehistoric house
floors. In any case, the high abundances of today
may well be another manifestation of meso-
predator release (Steneck and Carlton 2001).

Despite our evidence for declines in apex
predators and increases in mesopredators, we
found no evidence of change in sea urchin
abundance and, by inference, kelp forests (Ste-
neck et al. 2002). In other coastal zones, preda-
tor declines were followed by increases of sea
urchins in middens (e.g., Erlandson et al. 2004,
2005; Simenstad et al. 1978). Thus, the possible
changes to coastal food webs by prehistoric cul-
tures in Maine were relatively subtle by being
confined to apex and mesopredators, compared
to the larger changes that affected herbivory
recently (Steneck et al. 2002, 2004).

That prehistoric peoples negatively affected
ecosystems is no longer novel, but there have
been few reported marine examples, and we
suspect the effects we describe here were very
localized. Many past studies have focused on
agricultural or large-scale societies affecting ter-
restrial ecosystems (Redman 1999). We sug-
gest that prehistoric hunter-gatherers in Penob-
scot Bay negatively affected a highly productive
marine coastal ecosystem but did so very locally.
As an example of how a simple fishing tech-
nology might have fished down a coastal Maine
marine food web, we offer two examples of
local cod stock depletion from the seventeenth
century.

In AD 1614, Captain John Smith described
Monhegan Island (about 20 km from the
Turner Farm site) as a marvelous fishpond. He
reported 15 to 18 fishermen using small boats to
catch cod at a rate of 60,000 fish per month.
This developed into a fishing station where as
many as 80 fishing boats were based in the
island’s harbor between AD 1616 and 1622. Yet
the station closed a few years later in AD 1626
(McLane 1992). About a decade later, a very
small English fishing station was established at
a very rich fishing location on Richmond Island
near Casco Bay in Maine (about 100 km south-
west of the Turner Farm site). This station, ini-
tially operating just three small vessels, pro-
duced 2,000 quintals (100 tons) of salt cod in
AD 1639. Thereafter, however, catches rapidly
declined to only 257 quintals by AD 1641
despite a threefold increase in fishing effort
(Baxter 1884:155, 163–169, 215, 283, 312, 335).

Importantly, these very early fishing stations
operating close to shore at a spatial scale com-
parable to prehistoric fishing efforts in Penob-
scot Bay appear to have rapidly depleted local
cod stocks. The history of the early English fish-
ing stations suggests that localized nearshore
fisheries suffered nonsynchronous booms and
busts. This asynchrony is important because it
argues against cod stock declines having been
climate driven.

The evolution toward larger boats with
greater range continued following local coastal
extirpations. By AD 1840, a “Report of the Joint
Select Committee on the Fisheries, Maine leg-
islature, 1841” (reported in O’Leary 1996)
stated: “The coast of Maine, is in some parts
sterile.” From that period forward a greater pro-
portion of Maine’s landings came from more
distant locations. By the mid 1800s, the fishing
fleet from Massachusetts was fishing primarily
on Canada’s Scotian Shelf (Rosenberg et al.
2006). Although coastal cod of that era may not
have been economical to harvest using the hook
and line methods of the day, they were not
absent. For example, scientists studying crabs
collected them from the stomachs of cod in
Casco Bay (Smith 1879). However, as discussed
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earlier, decapods are food for juvenile cod, so it
is unlikely that abundant and large inshore cod
such as the meter-long cod in Maine’s prehis-
toric middens survived in Maine’s coastal zones
into the mid-nineteenth century.

Both the Turner Farm site faunal sample
and early historic records of fishing in Maine
suggest that depletions can occur at small spa-
tial and temporal scales. Recent research on cod
population structure has revealed why this is
true. Rather than vast schools of interbreeding
fish, as cod stocks have traditionally been char-
acterized, they are actually composed of
mosaics of loosely connected metapopulations
in which some substocks are very localized
(Bentzen et al. 1996). For example, a small
stock was identified in the mouth of the Sheep-
scot River in Maine, and tagging studies
showed a high proportion were recaptured in
the same area over a six-year period (Perkins
et al. 1997). The local nature of cod stocks helps
explain why the chronology of extirpation can
be so asynchronous. Even at larger scales, evi-
dence suggests that coastal stocks in Maine col-
lapsed in the 1930s (Steneck 1997), whereas
offshore Canada and U.S. stocks declined
decades later (Myers et al. 1997). Thus, local-
ized depletions of cod due to low-tech fishing
may have happened repeatedly beginning in
prehistoric times.

CONCLUSIONS

The Gulf of Maine is one of the world’s most
productive and species-depauperate marine
ecosystems, leaving it relatively susceptible to
changes in trophic structure and function. A
prime driver of ecosystem change is overfish-
ing that first depletes key predators in upper
trophic levels, causing former prey species to
increase and become the new targets for fish-
ing effort. Such cases of fishing down food
webs have significantly affected other
nearshore ecosystems on historical (and
archaeological) timescales. While it is tempting
to assume Maine’s coastal ecosystem was pris-
tine at the time of European contact, we have

presented archaeological and isotope evidence
from the Turner Farm site in Penobscot Bay
suggesting that localized fishing down of
nearshore coastal food webs may have begun
thousands to hundreds of years before Euro-
pean fishers first arrived. Apex predators in
this ecosystem were the first targeted and dom-
inate the midden bone mass in the earliest
strata (�4350 BP). However, cod were also
among the first to decline in relative abun-
dance. Thus by �3550 BP, cod no longer were
the dominant species represented in the mid-
dens. By �1600 and 400 BP cod were a minor
midden constituent. Coincident with this cod
decline, mesopredators such as flounder and
sculpins increased over the next 3,500 years.
Although the nearshore fauna appears to have
changed locally due to prehistoric fishing pres-
sures, we found minimal indication in the sta-
ble carbon isotope composition of cod, sculpin,
or flounder bone collagen between 4350 and
1200 BP that sea urchin populations expanded
enough to induce kelp deforestation. Cod did
show an isotope change before European con-
tact, however, suggesting that fished individu-
als were no longer coming from a kelp forest
ecosystem. By about 400 BP, it is possible that
cod had been extirpated from the nearshore
kelp-dominated coastal zone, forcing the site’s
occupants to travel farther to catch them. The
ease in capture and preservation of cod may
have made them sufficiently valuable to pre-
historic people that they expended extra effort
to pursue this species. In sum, prehistoric
changes to food web structure and functioning
at the Turner Farm site suggest that significant
human impacts in Gulf of Maine coastal
ecosystems—although probably localized in
nature—may have started earlier and been of
greater magnitude than previously thought. As
a result, the fragility of this coastal ecosystem
may be underestimated.
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