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ABSTRACT 

Philpotts (1972) suggests the presence of an immiscible liquid (ocelli) crystallized within 

the Sté Dorothée Sill near Montréal, Canada. To test this hypothesis, I use the alphaMELTS 

program (Antoshechkina et al., 2012) which combines thermodynamic data and bulk 

compositional data to mimic natural magmas as they crystallize in the crust. Isobaric and 

isentropic models are used to simulate both the emplacement conditions and the source 

conditions of the parent magma that formed the Sté Dorothée Sill. The isobaric model uses 

temperature constraints that are unrealistic for emplacement, however ensure the composition is 

entirely liquid upon emplacement in order to compare the modal minerology of the sill. The 

mineral groups that crystallize from the isobaric trials are largely similar to the mineral groups 

observed in the Sté Dorothée Sill. Isentropic trials present a more realistic representation of the 

sill’s emplacement. Upon ascent from 1 GPa to 300 bars, the minerology of the crystallized 

portion of the melt in both trials suggest a mineralogy similar to the host fourchite which 

surrounds the ocelli. The remaining liquid upon reaching the suggested emplacement depth 

closely resembles the chemical composition of the hypothesized immiscible liquid. This 

evidence suggests that the liquid, which was previously thought to be of immiscible origin, was 

instead the result of fractional crystallization.  
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INTRODUCTION 

In this thesis, I use petrological modeling to test the hypothesis of liquid immiscibility in 

the Ste. Dorotheé sill, largely composed of a groundmass of silica-rich fourchite. Philpotts 

(1972) proposed liquid immiscibility as the mechanism that produced the two separate fourchite 

type units found in the sill. Liquid immiscibility corresponds to the separation of a homogenous 

magma into two or more liquids. Liquid immiscibility is one of many different mechanisms that 

offer explanations for the differentiation of magmas. Liquid immiscibility has been observed in 

tectonic rifting zones and in magmas from hotpots. Focusing on the Ste. Dorotheé Sill, I 

conducted research that uses bulk rock compositional data of the sill to test whether Philpotts’ 

hypothesis of liquid immiscibility is responsible for the compositional differences seen 

throughout the sill.  

1.1 Alkaline Rock Genesis and Nomenclature 

Joseph Iddings first proposed the idea that igneous rocks fall into specific categories or 

series based upon parent magmas of silicic types in the late 1800s. His proposal included that all 

igneous rocks fell into two categories; subalkaline series and alkaline series. The distinctions 

between the two series could initially be conducted in the field based upon both mineralogical 

characteristics and tectonic setting (Winter, 2010). By using microscopic techniques, Iddings was 

able to identify slight mineralogical differences between igneous rocks to develop a complex 

classification involving geographical location and mineralogical differences. He defined augite 

as the most prevalent mineral found in igneous rocks, which due to its variability in color, can be 

used to differentiate igneous rocks based upon location. Iddings also noted other minerals such 

as quartz, orthoclase-feldspar, and biotite to classify igneous rocks based on location (Iddings, 

1892). In 1909, Alfred Harker characterized the series further from the geographical attributes 
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proposed by Iddings. By using this classification, Harker was able to identify Cenozoic volcanic 

activity and used this to see differences between igneous rocks found in the Pacific and Atlantic 

oceans. Harker suggested that alkaline rocks bordered the Atlantic Ocean whereas subalkaline 

rocks bordered the Pacific. Further research and classification conducted by Irvine and Baragar 

(1971) helped them redefine the two series and added peralkaline as an addition to Iddings’ 

proposed series (Philpotts and Ague, 2009). Irvine’s and Baragar’s classification of igneous 

rocks is the most modern and widely accepted to date.  

 The division of the three main groups is based upon the alkali content of the rocks. 

Alkaline rocks are alkali rich and are usually undersaturated with silica, whereas subalkaline 

rocks are silica saturated to silica oversaturated (Winter, 2010). Silica saturation pertains to the 

amount of silica-based minerals in the rock. If a magma is oversaturated with silica, quartz will 

Figure 1.1: Alkali-Silica plot distinguishing the boundary between alkaline rocks and 
subalkaline rocks. This line was derived from an equation created by Irvine and Baragar 
(1971). The equation for the line defined by Irvine and Baragar can be found in Appendix A 
(Philpotts and Ague, 2009) 
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precipitate out of the magma and be present in the cooled rock. If a rock is undersaturated with 

respect to silica, quartz will not precipitate out of the magma and will not appear in the 

crystallized rock. Peralkaline rocks are alkali rich like the previous two series, however they are 

defined with respect to their 𝐴𝑙#𝑂% concentrations and will not be as important to the discussion 

of this thesis. The distinction between subalkaline and alkaline rocks is calculated through an 

equation created by Irvine and Baragar based upon the total 𝑁𝑎#𝑂 + 𝐾#𝑂 weight percentage 

versus the silica weight percent (Irvine and Baragar, 1971). This equation can be seen in 

Appendix A. Figure 1.2 shows the alkali-silica plot with the line distinguishing the boundary 

between alkaline and subalkaline. These groups can also be represented in a modal minerology 

diagram based on olivine, nepheline, and quartz, which uses an equation that can be found in 

Figure 1.2: Olivine-Nepheline-Quartz ternary plot distinguishing alkaline and subalkaine rocks. This 
plot is based upon the percent of cation equivalents (represented by the ‘ symbol)  found in the rock. 
Equations for each of the corners are provided in Appendix A that calculate the composition of (cation) 
normative minerals. The solid line represents the division between subalkaline and alkaline rocks  
(Philpotts and Ague, 2009). 
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Appendix A. In Figure 1.2, alkaline rocks are plotted on the nepheline side of the diagram 

whereas subalkaline rocks are plotted on the quartz side (Philpotts and Ague, 2009).  

The subalkaline series is further subdivided into the tholeiitic series and the calcalkaline 

series as represented in Figure 1.3. This figure shows this distinction between subalkaline and 

calcalkaline rocks which is based upon their iron content. As the rocks become more mafic or 

felsic, there is overlap between the two series. When the rocks are considerably felsic, there is no 

way to distinguish between calcalkalic and tholeiitic members, therefore all granitic rocks are 

assigned to the calcalkalic series. According to Irvine and Baragar (1971), these can also be 

further distinguished by plotting the 𝐴𝑙#𝑂% weight percentage versus the normative plagioclase. 

Calcalkaline basalts and andesites contain roughly 16%-20% 𝐴𝑙#𝑂%, which is shown when they 

are plotted on an AFM (alkali oxides	𝑁𝑎#𝑂 + 𝐾#𝑂 , iron oxide 𝐹𝑒𝑂 + 	𝐹𝑒#𝑂#, and magnesium 

Figure 1.3: Irvine and Baragar’s (1971) AFM plot classifying 
the subalkaline series into tholeiitic and calcalkline rocks based 
upon weight percentages. A; 𝑁𝑎#𝑂 + 𝐾#𝑂. F; FeO + 
0.8998𝐹𝑒#𝑂% . M; MgO. The boundary line between tholeiitic 
and calc-alkaline is not defined completely across the plot since 
the distinction between rocks becomes difficult on the mafic and 
felsic ends of the plot (Philpotts and Ague, 2009). 

 

Figure 1.4: An-Ab-Or plots distinguishing the boundary 
between sodic and potassic series based upon percent cation 
equivalents. The equation governing the defined line can be 
found in Appendix A. These series belong to the main alkali 
olivine basalt series (Irvine and Baragar, 1971). 
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oxide 𝑀𝑔𝑂 diagram). Theoleiitic rocks contain less 𝐴𝑙#𝑂%, whereas calc-alkaline rocks generally 

consist of 12%-16% 𝐴𝑙#𝑂% (Philpotts and Ague, 2009).  

The alkaline series is further subdivided into the alkaline olivine basalt series and the 

nephelinitic-leucite-analcite series (Philpotts and Ague, 2009). The alkali olivine basalt series is 

defined on the basis of its normative feldspar composition (Philpotts and Ague, 2009). There are 

two subseries of rock that are associated with the alkali olivine basalts: the sodic series and the 

potassic series. The boundary between sodic and potassic rocks are defined by their 𝐾#𝑂/𝑁𝑎#𝑂 

ratio (Mitchell, 1996). Potassic rocks contain a larger percentage of 𝐾#𝑂, while sodic rocks 

contain more 𝑁𝑎#𝑂 (Winter, 2010).  Figure 1.4 shows Irvine and Baragar’s (1971) classification 

based upon the normative albite-anorthite-orthoclase within the rock represented through their 

cation equivalents. Many of the alkaline series have color indices which help to further define 

Figure 1.5: Plots of the normative color index versus normative plagioclase composition. (A) Sodic series (B) Potassic series. 
The equations that govern the boundary lines can be found in Appendix A (Irvine and Baragar, 1971). Images of these plots were 
provided by Philpotts and Ague (2009).  
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and recognize differences in these igneous rock series. Figure 1.5 shows further distinction 

between the two subseries and the rocks that exists within them. Both of these subseries contain 

mafic derivatives called alkali picrite-basalt and ankaramite, however these derivatives are 

difficult to distinguish due to the low concentration of alkalis in the rocks (Irvine and Baragar, 

1971). Rocks within the nephelinitic-leucite-analcite series typically contain less than 45% 𝑆𝑖𝑂# 

and have color indices greater than 50, and in some cases they contain small amounts of leucite 

(Philpotts and Ague, 2009). Even though the use of the color index is a qualitative description, it 

is useful in telling the difference between dark colored (mafic) and light colored (felsic) 

minerals. The values shown on the y-axis in Figure 1.5 show the ratio between mafic and felsic 

rocks. Using the combination of these features, the nephelinitic-leucite-analcite series can be 

easily be distinguishable from the alkali olivine basalt series.  

The alkaline, tholeiitic, and calc-alkaline rock series are the most dominate series and 

represent a large part of the igneous history of the Earth. Based upon the chemical composition, 

geologic setting can be derived from alkaline rocks that further describe tectonic activity such as 

orogenic belts, subduction zones, crustal extension, mid-ocean ridges, and continental rifting 

(Philpotts and Ague, 2009). 

1.2 Tectonic Settings of Igneous Rocks 

 The largest volumes of alkaline rocks are associated with continental rift systems. During 

early stage rifting and rift systems, flood basalts are common and produce almost entirely 

alkaline rocks. Many continental rift magmas a similar composition to that of oceanic intraplate 

basalts (Allègre et al., 1981). Oceanic intraplate basalts are thought to have formed from deep 

mantle plumes, which suggests the contribution of the lower mantle to the production of alkaline 

magmas in continental rift systems (Haase and Renno, 2008). The Mesozoic Era produced many 
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alkaline rocks, specifically along failed branches of rifting zones during the breakup of Pangaea 

(Philpotts and Ague, 2009). The process in which rift zones produce alkaline magma flows is 

highly debated in the scientific community. Some researchers suggest that asthenospheric 

upwelling forces the lithosphere to spread apart, making way for new magma to push through 

and create new rock. However, other researchers suggest that the mechanism of plate spreading 

causes weakness and collapse in the lithosphere which allows the asthenosphere to rise and fill in 

the space created (Winter, 2010).  

Bodies of igneous rocks are divided into plutonic, hypabyssal, and volcanic depending on 

their depth of emplacement. There is no definitive separation between hypabyssal and plutonic, 

however grain size is the distinction many petrologists use. Volcanic and hypabyssal rocks form 

on or near the surface of the Earth. Volcanic rocks were classified by Irvine and Baragar (1971) 

and provided geographical and formation characteristics for each of the igneous series. The calc-

alkali series discussed in the previous section is characteristic of volcanic island arcs and 

orogenic belts which is indicative of subduction zones. Tholeiitic rocks are developed in areas of 

crustal extension and in areas characterized by flood basalts (Philpotts and Ague, 2009). Many 

alkali olivine basalts and similar alkali rocks are associated with areas of continental rifting or in 

regions overlying deeply subducted plates (Philpotts and Ague, 2009).  

1.3 Liquid Immiscibility 

Liquid immiscibility corresponds to the separation of one magma into two or more, 

compositionally unique magmas. The idea behind liquid immiscibility had been considered as 

early as the beginning of the 20th century, however petrologists struggled to find evidence that 

strongly supported immiscibility in magmas (Bowen, 1928). Bowen suggested that immiscibility 

is a phenomenon that occurs in a natural magma that separates into basalt and rhyolite, however 
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only at high temperatures. At low temperatures, Bowen’s findings suggested that basalt and 

rhyolite are homogenous and could not exist in immiscible phases (Bowen, 1928). Liquid 

immiscibility lost attention in petrology because high-temperature liquid immiscibility wouldn’t 

be pertinent to crustal temperatures. Because of this, liquid immiscibility was not researched 

extensively again until Roedder discovered the low-temperature immiscibility field in a fayalite-

leucite-silicate series (Figure 1.6; (Roedder, 1951). This sparked interest in the field again and 

led more petrologists to focus on immiscibility in common magmas.  

 It is not possible to view liquid immiscibility happening in real time in a magma as the 

liquids are separating, so petrologists determine whether this process occurred by looking at 

crystallized or quenched magma. For a petrologist to determine if they see immiscibility in a 

Figure 1.6: This ternary diagram shows the fayalite-leucite-silica series defined by Roedder (1951) at 
atmospheric conditions and high temperature.  Two separate multiple liquid fields are seen by the shaded 
areas. The presence of even a small proportion of leucite is known to drop the two-liquid field well below the 
silica liquidus (Roedder, 1951). 
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sample, there must be two chemically unique glasses preserved within one another in the form of 

globules (Philpotts, 1982).  Examples of the globule structures are seen in Figure 1.7 in two 

separate magmas from Hawaii. Many studies have been conducted focusing on tholeiitic 

magmas and the compositional changes that occur upon their crystallization. Charlier and Grove 

(2012) found that as tholeiitic magmas cool, silicate liquid immiscibility is common. As minerals 

crystallize out of the magma, the proportion of alkalis, phosphorous, and titanium in the 

remaining melt increases, leading to the development of two separate liquids. This produces one 

mafic liquid and one more evolved liquid (Charlier and Grove, 2012). Low-pressure fractional 

crystallization in these systems is the most favorable condition that produces the unmixing of 

liquids.  

Alkaline systems, which are the focus of this thesis, behave differently than tholeiitic 

systems upon crystallization. Liquid immiscibility in tholeiitic basalts is quite common, whereas 

it is rare in alkaline magmas (Philpotts, 1982; Philpotts and Ague, 2009). Alkaline magmas 

contain higher proportions of oxides that are known to expand the field of immiscibility in 

tholeiitic basalts. Oxides such as titanium, phosphorous, and iron can be critical to the 

development of immiscible liquids (Freestone, 1978; Visser and Groos, 1979). Despite being 

chemically similar, the larger proportion of alkalis in alkaline rocks significantly changes the 

Figure 1.7: (A) Globules of an immiscible liquid are seen to exist within one another in a 
tholeiite glass from Kilauea, Hawaii. (B) Smaller globules seen in an olivine-basalt 
sample from Mauna Loa, Hawaii (Philpotts, 1982) 
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way alkaline magmas crystallize compared to tholeiitic magmas. One would assume the presence 

of more alkalis would suggest a larger number of examples of liquid immiscibility in alkaline 

magmas, however only a limited number have been successfully studied (Freestone, 1978; 

Philpotts, 1982; Philpotts and Hodgson, 1968).  

The few examples of alkaline liquid separation are important to explain features in many 

alkalic dikes in the Monteregian Igneous Province in Canada, even though their chemical 

compositions vary slightly. The alkaline magmas are thought to produce small, globular 

structures called ocelli which can coalesce to form larger bodies of a separate, more felsic 

composition.  

1.4 Monteregian Igneous Province 

Continental rifting is known to produce alkaline magmas (Allègre et al., 1981; Haase and 

Renno, 2008; Sengör and Burke, 1978), which is consistent with alkaline intrusions in the 

Monteregian Igneous Province. The rifting of Pangaea is the broader tectonic process that 

preceded the formation of these intrusions. However, the regional tectonic process that formed 

the intrusions in the Monteregian Igneous Province (MIP) has been highly debated by geologists 

since the early 1980s. Crough (1981) hypothesized that the passing of the North American plate 

over a mantle hotspot, called the Great Meteor Hotspot in the deep mantle, was the source of 

these intrusions. The intrusions extend from the oldest intrusions in southeastern Canada, 

through the White Mountains in New Hampshire, all the way to the younger New England 

seamounts in the Atlantic ocean (Crough, 1981). Studies after Crough (1981) dispute his 

hypothesis suggesting the Great Meteor Hotspot is not responsible for all of the intrusions 

expanding across the region.  
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Eby and McHone (1997) suggest the MIP can be divided into two episodes of intrusive 

activity, one during the Jurassic (170-200 Ma) and one during the Cretaceous (125 Ma). Instead 

of following the Great Meteor Hotpost track, the age of the intrusions seen in the White 

Mountains of New Hampshire are older than those in MIP (Eby and McHone, 1997). In an 

earlier paper, McHone (1996) discusses that the New England seamounts to the southeast are at 

least 20 million years too young for the intrusions found in New England, further discrediting the 

Great Meteor Hotspot hypothesis. Eby (1985) found contrasting results by looking at Sr and Pb 

isotope ratios in rocks from the MIP and New England seamounts. The isotopic ratios suggested 

that the Great Meteor Hotspot only provided heat energy that melted the sub-lithospheric mantle 

source, rather than the deep mantle source (Eby, 1985). In the same paper however, Eby (1985) 

Figure 1.8: This figure represents the Cretaceous Monteregian intrusions of southern Quebec. This linear belt extends 
eastward from the Ottawa graben across the St. Lawrence Lowlands into the Appalachian Mountains. For the purpose 
of this thesis, the most important intrusion is the Ste. Dorothée intrusion is labeled number 3 in this figure (Philpotts 
and Ague, 2009). 
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used a different method that compared Pb radiogenic isotope composition of the New England 

seamounts that indicated a direct contribution of the deep mantle material from the Great Meteor 

Hotspot.  

Despite the debated timeline of all the intrusions from the MIP to the New England 

seamounts, the chemical compositions of the intrusions are consistent among studies in the MIP. 

The intrusions in the MIP can be seen in Figure 1.8. Silica concentrations in the rocks vary with 

distance along the east-west faults in the MIP described by Philpotts and Hodgson (1968). The 

silica content of the rock increases eastward, which may correlate to the thickening of the crust 

in that direction. The increase in crustal thickness may account for contamination of silica and 

provide the reason for compositional differences in the dikes and sills seen throughout the MIP 

(Philpotts and Ague, 2009). East of the St. Lawrence Lowlands, the plutons become larger and 

the rock in the region become silica saturated to silica oversaturated (Eby and McHone, 1997). 

The only reason for the slight chemical differences was contamination of the magma coming up 

through a thicker crust. Philpotts (1970) classifies the Monteregian intrusions into two groups. 

One of the groups range from peridotite to gabbro and the other group is classified as syenitic.  

1.5 Ste. Dorothée Sill 

The Ste. Dorothée Sill is just west of the island of Montreal, sitting between the Mount 

Royal and Oka plutons and was first described by Howard et al. in 1922. There are seven sill-like 

bodies in the area, all composed of fourchite suggesting that they originated from the same 

source (Lentz et al. 2006). Fourchite is a hypabyssal rock that is related to the nepheline syenite. 

Dikes and sills are rare in western Quebec, however the sills that all chemically correspond with 

the Ste. Dorothée sill are found closest to the Mont Royal intrusion. These fourchite sills almost 



 20 

completely lack feldspar (Clark, 1972). A chemically identical sill to the Ste. Dorothée sill is 

found to the southwest near a town called Ste. Rose. 

The Ste Dorothée sill was main sill was best exposed in a quarry which has since been 

filled. Before the quarry was filled, Philpotts was able to describe the sill in detail. It has a 

thickness of 5.45 meters and intrudes the Lower Ordovician Beekmantown dolomite. (Philpotts, 

1972). Philpotts (1972) suggests that the rock in the Ste. Dorotheé sill is that of analcite syenite, 

which is the groundmass within what is defined as fourchite. Phenocrysts of titanaugite and 

hastingsite amphibole are a large component of the sill, estimated to constitute roughly 10% of 

the sill’s volume (Philpotts, 1972). The composition of the groundmass includes hastingsite, 

titanaugite, magnetite, and an aggregate of analcite, plagioclase, and alkali feldspar (Philpotts 

and Hodgson, 1968). Included within the sill are rounded feldspathic material called ocelli. 

Philpott’s uses these ocelli as an argument for the presence of an immiscible phase within the 

sill.  

1.6 Description of Ocelli within the Ste. Dorothée Sill 

Philpotts (1972) defines the ocelli as small, rounded feldspathic material largely 

composed of alkali feldspar, analcite or quartz, some even including minor amounts of 

hornblende or pyroxene (Philpotts, 1972). Philpotts has strategically focused on the sill near Ste. 

Dorothée, as the ocelli within this sill were better exposed than the other sills in the Monteregian 

Hills igneous province. The ocelli mapped by Philpotts range in diameter from less than 1 mm to 

5 cm and are largely concentrated in the chilled margins of the sill. Other structures labeled as 

felsic units occur as layers in the upper part of the sill and have the same chemical composition 

as the ocelli. In this thesis, I test Philpotts’ hypothesis of liquid immiscibility as the origin of  
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Figure 1.9: Cross-section of the Ste. Dorothée sill provided by Philpotts (1972) with brief indications of 
the main places where ocelli and felsic units are present. This diagram is not drawn to scale. (Philpotts, 
1972) 
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ocelli in the Ste. Dorothée sill, thus the following descriptions will be entirely from his 1972 

paper. A cross-section outlining the sill according to Philpotts (1972) is provided in Figure 1.9. 

Starting from the bottom contact of the sill, the ocelli are extremely small but frequent in 

number. Moving from the lower chilled contact up to 12 cm, the ocelli become larger in size and 

less frequent, reaching a maximum diameter of 1 mm. The ocelli in this section is outlined in 

Figure 1.10. The ocelli then disappear at 15 cm from the bottom and do not reappear until 360 

cm above the bottom chilled margin. At this point, the ocelli increase in abundance until the 375 

cm above the bottom and are all roughly 5mm in diameter. Between 375 cm and 445 cm, the 

abundance of ocelli relative to the host is not reported, but ocelli exists within a matrix of the 

host fourchite and sub-angular xenoliths of dolomite and feldspathic sandstone. There are two 

slightly concentrated layers of ocelli roughly 5 mm in diameter at 445 cm and 467 cm from the 

bottom contact. From 467 cm to 485 cm, ocelli increase in abundance and again, have diameters 

around 5mm. The felsic lenses at this layer have flat bases and diapiric structures that rise 1 to 2 

Figure 1.10: Plot of the logarithm of the number of ocelli per 𝑐𝑚% versus the 
logarithm of the distance from the lower contact of the sill (Philpotts, 1972). 
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cm above the flat bases. Above this layer, ocelli are present with a dimeter of 3 mm until 512 cm 

and increase in frequency until 530 cm above the base. At this point, the upper chilled margin 

contains ocelli that vary in size less than 2 cm decreasing towards the upper contact mimicking 

the trend observed in the lower contact. In addition to the ocelli, felsic layers and felsic lenses 

exist within the sill (Philpotts, 1972). 

Within the sill, there were five prominent feldspathic unit layers, which Philpotts (1972) 

refers to as felsic. Starting from the top contact of the sill, a felsic layer at 512 cm, with respect 

to the bottom of the sill, runs the entire length of the quarry and is not more than 1 cm thick. 

Between 485 cm and 500 cm, the ocelli within have a diameter of 5 mm and are intermixed with 

felsic lenses that range from 3-10 cm long. The third felsic layer is at 485 cm and is 

approximately 5 mm thick with a flat base and diapiric structures that are tilted slightly and on 

average, rise 2 cm above the layer. Philpotts notes that anywhere a diapiric structure reaches 

above 2 cm from the layer, the diapir structure cuts off and becomes a separate globular mass up 

to several centimeters in diameter. At 430 cm, there is a prominent felsic layer of a continuous 

sheet roughly 1 cm thick with a flat bottom and a domed upper surface. The last felsic layer that 

exists within the sill occurs at 385 cm above the lower contact. On average, this layer is up to 10 

cm thick and runs the entire length of the sill. It has a relatively flat lower surface and a bulbous 

upper surface with domes that are larger than other parts of the sill (Philpotts, 1972).  

1.7 Hypotheses for the Origin of Ocelli and Felsic Units 

Philpotts (1972) proposed three different hypotheses for the origin of the ocelli: 

1. Fragments of feldspathic country rock were incorporated into the fourchite 

magma and melted, however due to slow diffusion rates, the fragments were 

not entirely assimilated. 
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2. Gas cavities present in the magma may have provided a space where residual 

felsic components  migrated to, causing an appearance that could be 

interpreted as an immiscible liquid. 

3. An immiscible felsic liquid separated out from the fourchite magma.  

Philpotts argues that the most unlikely hypothesis is that of the incorporation of the 

fragments of feldspathic rock. Within the sill, there is a zone that contains many xenoliths of 

feldspathic sandstone which would likely provide an ideal composition for some melting fraction 

to occur. In addition, the high concentration of quartz within the sandstone would have most 

likely reacted with the highly undersaturated fourchite magma. Philpotts indicates that the lack of 

melting within the xenoliths and lack of ocelli material surrounding them, is a large indication 

that this hypothesis is least likely to have created the ocelli. The ocelli found at the bottom of the 

chilled margin increase in size as a function of the distance from the chilled margin. This 

suggests that they may have separated as a different liquid and grown from the host fourchite 

magma. The ocelli gradually decrease and at 15 centimeters above the margin, they completely 

disappear. He suggests that the gradual change in size and numbers would be difficult to explain 

if the ocelli had been a product of the random xenolith inclusions within the magma. Additional 

isotopic and rare earth analyses indicate that the fourchite and ocelli are genetically related. Both 

the fourchite and ocelli have a 𝑆𝑟56/𝑆𝑟57 ratio of 0.704 which suggests that there was little to no 

contamination from crustal material, discrediting the first hypothesis (Philpotts, 1972).  

The ocelli’s size and distribution in addition to the minor element data do not completely 

rule out the second hypothesis. Philpotts suggests that if the gas cavity hypothesis were to have 

led to the origin of the ocelli, high gas pressures would have been required to support the open 

spaces. Once the host fourchite solidified and the gas pressures decreased, only then would the 
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residual liquids have been able to migrate to fill these cavities. However, the thick felsic sheet 

that exists 385 cm contains diapiric structures that rise from the surface of the layer into the 

overlying fourchite rock. Since the fourchite deformed in such a way that allowed the diapiric 

structures to form, Philpotts argues that this occurrence negates the condition that the 

surrounding rock had enough strength before the remaining liquid was able to fill the gas 

cavities. Regardless if the ocelli originated from filling gas cavities or from droplets of an 

immiscible liquid, there had to have been an initial separation of an immiscible phase.  

This initial separation of the immiscible phase would cause ocelli to grow and exist 

within the fourchite. Philpotts uses the distribution and shapes of the ocelli and felsic units to 

make approximate calculations of the viscosity and density of the immiscible phase and fourchite 

magma. Using Stokes Law, found in Appendix A, Philpotts was able to quantify the velocity in 

which the initial ocelli phase rose through the host fourchite magma. He found that the density of 

the immiscible silicate liquid was 2.10 𝑔/𝑐𝑚% while the host fourchite was 2.54 𝑔/𝑐𝑚% 

(Philpotts, 1972). This data suggesting that the ocelli had risen up through the more dense 

fourchite magma, which validates the diapiric structures seen at 385 cm above the bottom sill 

margin. The less-dense, immiscible silicate liquid was able to float towards the top of the sill and 

accumulate into large lens-shaped masses. Based upon the results of viscosity and density, 

Philpotts states that these properties correspond to a silicate magma, ruling out the first two 

hypotheses and suggesting that the ocelli within the Ste. Dorothée Sill formed from an 

immiscible silicate liquid (Philpotts, 1972). 
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2 METHODS 

2.1 Overview  

  Philpotts (1972) provided descriptions of the Ste. Dorothée sill in the excavated quarry 

before it was filled again. I use the bulk rock analyses of Philpotts (1972) and the alphaMELTS 

program (Antoshechkina et al., 2012) to test the hypothesis of liquid immiscibility as the origin 

for the ocelli in the Ste. Dorothée sill. A description of the alphaMELTS program and how the 

program works is provided in the Modeling section of this thesis.  

 In order to test his hypothesis, the composition of the magma before liquid separation has 

to be estimated. I used the descriptions and stratigraphy of the sill provided by Philpotts (1972) 

to estimate the relative proportions of ocelli and of felsic layers in the sill. The ocelli and felsic 

layers were both considered to be the same separated liquid. Calculation of the proportion of 

ocelli in the sill was separated into eight different sets based upon the various layers where ocelli 

are present in the sill. Calculation of the proportion of felsic layers in the sill was separated into 

five different sets corresponding to the five prominent felsic layers in the sill. The calculations 

start from the top of the sill and work downward towards the bottom contact. I estimated the 

volume proportions of ocelli and felsic lenses for the entire 5.45 m of exposed sill. Refer to 

Figure 1.10 in the introduction, which shows the sill stratigraphy.  

2.2 Volume Calculations for Ocelli 

 Ocelli in 545-530 cm: The ocelli were described as no larger than 2 mm in diameter at 

maximum size and decreasing in size towards the chilled margin. I assume that the average 

diameter was 1 mm. I also assumed the ocelli were all spherical, and used the sphere volume 

equation, 𝑉 = :
%
𝜋𝑟% to estimate their volume. Since no frequency of the ocelli was mentioned in 

any paper for the first 15 cm of the sill, I assumed a frequency of one ocelli per cubic centimeter. 
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 Ocelli in 530-512 cm: The ocelli between 15 cm and 33 cm decrease in frequency. To 

account for this, the radius used for the volume calculation was reduced in an equal steps from 

0.5 mm to 0 for the 18 cm thick layer. The volume equation was used for each of the 18 steps 

and the results were added together.   

 Ocelli in 512-500 cm: Ocelli have diameters of 3 mm in this layer and I assume a 

frequency of one ocelli per cubic centimeter. 

 Ocelli in 500-485 cm: Ocelli have diameters of 5 mm and I assume a frequency of one 

ocelli per cubic centimeter. 

 Ocelli in 485-445 cm: Ocelli of 5 mm in diameter exist in this layer. Philpotts (1972) 

states that two concentrated layers of ocelli exist in this section, however no frequency is given. I 

disregard the concentrated layers and assume a frequency of one ocelli per cubic centimeter. 

Similar to the way the ocelli volumes were calculated between 15cm and 33 cm, the radius 

gradually decreases from 2.5 mm to 0 in 40 equal steps to account for a decrease in abundance.  

Ocelli in 445-385 cm: The ocelli in this layer was described as 1cm in diameter on 

average. Keeping with aforementioned assumptions, the total volume of ocelli for this layer was 

calculated to be 3141.59 𝑐𝑚%.  

 Ocelli in 385-370 cm: Ocelli in this layer are described to have a radius of 2.5 mm, 

gradually decreasing in abundance. Since no value is given for frequency of the ocelli, I decrease 

the radius for calculations in an equal step interval starting from a radius of 2.5 mm to 0 mm. 

 Ocelli in 15-0 cm: The calculations for this layer used Philpotts’ (1972) graph, 

represented by Figure 1.10, based upon the logarithmic concentration of ocelli/𝑐𝑚% versus the 

logarithm of the distance up from the lower contact of the sill. First, the values were calculated 
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from log values back to ocelli/𝑐𝑚% and distance in centimeters. From then, each centimeter 

volume could be calculated.  

 Table 2.1 shows the volume totals for each layer described above based upon my 

assumptions. 

2.3 Calculations for Felsic Units 

 Five separate calculations were made to estimate the total volume of felsic material that 

exists within the Ste. Dorothée Sill. Not having access to the sill, I resorted to photo analysis and 

Philpotts’ (1972) descriptions to calculate felsic unit volumes. I defined the area calculated for 

each of the layers as being 10,000 𝑐𝑚#, or 100 x 100 cm, and multiplied by the thickness of the 

specified felsic layer or units. The calculations were made as follows: 

 Felsic Layer 1 at 512 cm: The felsic layer has a thickness of 1 cm and extends throughout 

the entirety of the sill for a total volume of 10,000 𝑐𝑚%. 

 Felsic Layer 2 between 485 cm and 500 cm: This layer within the sill contained felsic 

units that ranged between 3-10 cm long (Figure 2.1). I estimated the proportion of felsic units in 
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Figure 2.1 to be 15%. This percentage then extrapolated over the 15 cm layer came out to 22,500 

𝑐𝑚%.  

 Felsic Layer 3 at 500 cm: Using the image seen in Figure 2.2 as reference from Philpotts’ 

(1972) paper, I was able approximate the volume. The block in the image shown is 10x12x7 cm. 

Descriptions of the domes give relative spacing of 5 domes per block. I simplified the 

calculations and used the volume of a sphere equation with a radius of 0.5 cm each. At the 

bottom of this section was a 0.25 cm thick felsic layer as well. These two values were added 

together and came out to 32.6 𝑐𝑚%. I then had to take the 10x12x7 volume and calculate what the 

volume would be over the 100x100 cm area. The total volume for this area came out to 2718.17 

𝑐𝑚%.  

Figure 2.1: Image showing Felsic Layer 2 between 485 cm and 500 cm from the bottom of the sill. This 
image is used to approximate the volume based on the felsic units, seen as the white material in this photo 
(Philpotts, 1972). 



 30 

  

 

Figure 2.2: Image showing a representation of Felsic Layer 3 at 500 cm above the bottom 
chilled margin. This diagram was created by cutting a block from this section of the sill into 
thin slices so the diapiric felsic structures could be traced (Philpotts, 1972). 
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Felsic Layer 4 at 430 cm: In this section, there is a consistent 1 cm thick felsic layer with 

a domed upper surface. I assume the domes occurred at the same frequency as the domes in the 

Felsic Layer 3, roughly 5 domes for every 10x12 cm area. Based upon this assumption, it was 

calculated that there are roughly 218 domes within the 100x100 cm area. Using the sphere 

volume equation with domes at 0.5 cm in radius and the 1 cm thick felsic layer, I add the two 

values together to get a total volume of 10218.17 𝑐𝑚%.  

 Felsic Layer 5 at 385 cm: Philpotts (1972) states that this layer is up to 10 cm thick in 

areas with variation. I assume an average thickness of 6 cm, the layer was simply calculated over 

the 100x100 cm area multiplied by 6 to get a total volume of 60000 𝑐𝑚% for this layer.  

 In total, the felsic units made up 105436 𝑐𝑚% within the defined 100x100x545 cm section 

of the sill, or 1.9% of the sill’s volume. 
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3 MODELING 

3.1 Background of the alphaMelts Program 

 AlphaMELTS calculates equilibrium assemblages along a thermodynamic path defined 

by the user. These paths can be an adiabat, an isotherm, or a geotherm. It is suitable for multi-

component systems such as anhydrous, hydrous, or water undersaturated systems. This program 

has the ability to perform calculations for either sub-solidus or with liquids present in the defined 

system. It also allows for the melting or crystallization of a defined rock composition in batches, 

fractionally, or continuous (Antoshechina and Asimow, 2018).  

 The thermodynamic model is calibrated on a wide variety of bulk compositions and other 

research papers outlining natural thermodynamic processes (Antoshechina and Asimow, 2018). 

Pressure, temperature, oxygen fugacity, calculation intervals  are defined using an environment 

file. Various functions are also offered within the environment file, however the functions that 

are important to this thesis are the Multiple Liquids and Fractionate Second Liquid functions. 

Both of these functions are used in an attempt to look at the possibility of liquid immiscibility 

within a bulk rock composition, specifically Philpotts (1972). The Fractionate Second Liquid 

function will treat all liquids as fractioning phases, and remove them from the calculations as 

they crystallize. The Multiple Liquids function is able to see exsolution of immiscible liquids, 

and is able to indicate and separate out liquids that coexist within a melt.  

 A bulk composition file is used to define the composition of a starting magma. The bulk 

composition file and the environment file are used in tandem to set all of the conditions needed to 

run the calculations. The output that is created from the calculations includes modes and 

compositions for all solid and liquid phases including other thermodynamic data such as density 

and viscosity measurements (Antoshechina and Asimow, 2018). The program is run through the 
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terminal window (Mac OSX) and all outputs are text files which can be converted to Excel files 

for interpretation.  

3.2 Isobaric Experimental Trials  

 Bulk composition data was taken from Philpotts (1972) and represented in a Melts file. 

Using Philpotts’ (1972) bulk composition data for the ocelli and host fourchite, various relative 

weight percentages of ocelli and fourchite were tested as parental melt composition. The trials 

were run at 2, 5, 10, 20, and 50 wt. % ocelli composition relative to host fourchite, seen in Table 

3.1. These trials were run three different ways, varying only with two of the settings in the 

environment file. The first test used the Multiple Liquids setting on, the second with both the 

Multiple Liquids and Fractionate Second Liquid functions turned on, and the third with both 

turned off. In total, twelve runs were completed for the experiments. 

3.2.1 Parental Liquid Composition 

To calculate the relative proportions of oxides for the parent magmas the bulk 

composition of the ocelli/felsic units were multiplied by the respective percent abundance in the 

whole magma. For example, each of the components within the bulk composition data for the 

ocelli/felsic units was scaled to 2% abundance whereas the fourchite composition was scaled to 

98%. These values were then added together to form an estimate as to the composition of the 

parent magma. Estimated values for the parent magma in each trial can be seen in Table 3.1. I 

focus strictly on the MC2 and MC10 data sets, corresponding to the values in Table 3.1. The 

MC2 proportions are representative of Goldie’s (1972) calculated values and the MC10 is the 

closest proportion of ocelli to host fourchite in my volume calculations.  

 Based on his field observations, Philpotts considered that liquid immiscibility must have 

occurred after the emplacement of the sill. This isobaric trials are designed to test thi hypothesis.  
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He estimated the pressure of emplacement to be 300 bars, and he estimated the temperature of 

emplacement of the sill to be 1100°C and the sill have been largely solid by 1000°C (Philpotts, 

1972). I performed all trials at 300 bars and used a starting temperature of 1900°C to ensure a 

complete liquid magma with a final temperature of 400°C to sure complete solidification. I used 

cooling steps of 5°C.  

3.3 Isentropic Experimental Trials 

 If we allow for liquid separation to occur during melt transport before the sill is 

emplaced, an isentropic model can be used in the alphaMELTS program. The isentropic mode 

allows for a change in pressure and temperature, but preserves entropy of the system. Since 

Philpotts (1972) does not comment on the source of the magma, I assumed that the parental 

magma originated near the base of the crust, corresponding to a pressure of 1 GPa and 1000°C, 

reasonable estimates for the conditions at the base of the crust. In a perfect system, isentropic 

processes conserve the total entropy, not allowing heat to enter or leave the system (Kieffer and 

Delany, 1979). In these trials, perfect entropy is not observed and some heat does leave the 

system. Then, by decreasing the pressure to 0.03 GPa (300 bars), it would simulate the transport 

of the magma from a deeper source to the suggested emplacement depth. The isentropic model 

can be represented in Figure 3.1 (HMXEarthScience). 

Once the parent magmas in each trial reaches the suggested emplacement pressure of 300 

bars, I cooled the remaining liquids to track the minerals that would precipitate from the melt in 

addition to any immiscible liquids that may separate from the melt. To ensure consistency in the 

model, I cooled each of the respective remaining liquids from the parent magmas from MC2 and 

MC10 at the temperature in which they reached the emplacement pressure of 300 bars. I allowed 
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the program to calculate any immiscible liquids that would separate immiscible liquids by 

turning on the Multiple Liquids and Fractionate Second Liquid functions.  

 After the trials, I then take the minerology and compositional data from the separated 

liquids and compare those to the data that Philpotts (1972) provides in his paper. The mineral 

groups that alphaMELTS calculates during crystallization have chemical formulas that I then use 

to compare to the specific minerals described for the Ste. Dorothée sill and other intrusions in the 

Monteregian Hills igneous province. Each of the separate liquids calculated for the isentropic 

trials are compared to Philpotts (1972) composition for the ocelli.  

 

Figure 3.1: This diagram shows a visualization of the isentropic model. The pressures used to constrain the 
program directly correlate to depth in the crust. 1 GPa implies the depth at the base of the crust and 300 
bars represents Philpotts’ (1972) suggested depth of emplacement. (HMX Earth Science). 
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4 RESULTS 

4.1 Crystallization in the Upper Crust 

The isobaric model attempts to represent the conditions of the sill after it had been 

emplaced. Any separation of an immiscible liquid is considered to occur post-emplacement of 

the sill. The only variable changing in these trials is the temperature, allowing these results to 

focus on the mineralogical composition of the sill. The results from the isobaric trials did not 

yield multiple liquids that resembled the bulk rock composition provided by Philpotts (1972).  

However, immiscible liquids separated out of the initial melt in both MC2 and MC10. I present 

the results of the trials in data sets that show the separated liquids and mineralogy of both MC2 

and MC10. The compositions of the immiscible liquids are based on the calculations of the 

alphaMELTS software and the mineralogical compositions are based upon thermodynamic data 

calculated through the program.  

Shown in Figure 4.1 A, clinopyroxene is the first group of minerals that crystallize from 

the starting liquid, followed by other mineral groups. Table 4.1 shows the temperature at all of 

the various mineral groups crystallize out of the melt. There are slight variations between MC2 

and MC10 in regards to crystallized minerals by their respective final temperatures. Minerals 

such as olivine and nepheline begin to crystallize in the total melt but are reabsorbed. Both the 

MC2 and MC10 trials are run until the program fails due to unknown reasons. This leaves 3.6 wt. 

% of initial liquid left over for MC2 and 9.0% at the end of MC10. 
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4.1.1 Modal Minerology  

  

  

Figure 4.1: (A) Graphs showing the wt. % vs. Temperature of the proportions of minerals to crystallize out from the initial liquid in 
each of the isobaric trials. The trials end at different temperatures due to calculation failure in the alphaMELTS software. (B) 
Proportions of liquids separated from the isobaric trials are shown in a Wt. % vs Temperature graph. The dashed line in each of the 
graphs represent the temperature at which minerals first begin to crystallize from the initial melt. Only one liquid separated from 
MC2, whereas two separate from MC10. Liquid 1 from MC10 separates before any crystallization occurs.  
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While similar mineral groups crystallize for each of the initial liquids, the wt. % of the 

mineral groups are slightly different in each data set. The point where the total melt begins to 

crystallize occurs at 1190°C for MC2 and 1135°C for MC10. The first mineral group to 

precipitate from MC2 is spinel, followed by the other mineral groups at the temperatures shown 

in Table 4.1. During crystallization, both the feldspar and clinopyroxene groups undergo phase 

separation labeled Feldspar 1 and Clinopyroxene 1, respectively. During the MC10 trial, 

clinopyroxene is the first mineral group to precipitate from the initial liquid. Similar to the MC2 

data set, both Feldspar and Clinopyroxene undergo phase separation in MC10, producing a 

separate composition of each. 

* Denotes minerals that begin to precipitate from the initial liquid but are reabsorbed before alphaMELTS  
  completes the calculations 
All mineral groups produced by alphaMELTS were validated by comparing to CITATION 
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During the MC2 trial, only one liquid is seen to separate from the initial melt. The 

separation occurs at 1000°C, however it is reincorporated back into the melt at 955°C. Liquid 1 

separates from MC10 at 1655°C and Liquid 2 separates at 1085°C. Figure 1.4 B shows the 

separated liquids and their proportions compared to the initial liquids. During the trials, 

alphaMELTS stops calculating at different temperatures due to calculation failures. For MC2, the 

calculations stop at 630°C while MC10 stops at 575°C.  

4.1.2 Immiscible Liquids from Isobaric Trials 

In both the MC2 and MC10 data sets, immiscible liquids are only found to separate when 

Multiple Liquids or Fractionate Second Liquid functions are turned on. The compositions of all 

separated liquids from both MC2 and MC10 are represented in Figure 4.2. All three of the 

liquids separated from the MC2 and MC10 have unique proportions of oxides . Liquid 1 from the 

MC2 data set initially separates out with a high proportion of silica, 𝐶𝑂#,	and 𝐶𝑎𝑂, however as 

temperature continues to decrease, the content of 𝐶𝑎𝑂 and 𝑃#𝑂@ increase becoming the dominant 

oxides along with 𝑆𝑖𝑂#. Liquid 1 from MC10 begins with  high proportion of iron oxides. At 

700°C, the compositions of both immiscible liquids and the initial liquid . Liquid 2 from MC10 

has high proportions of calcium and phosphorous oxides with very low proportions of every 

other oxide. Due to numerous failures of the alphaMELTS program, modal mineralogy could not 

be determined for the separated liquids from either the MC2 or MC10 data sets.    
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Figure 4.2: Each of the diagrams show the proportions of oxides in the immiscible liquids calculated during the isobaric 
experiments. Each of the immiscible liquids separate from the parental magma at different temperatures so the x-axis on each 
graph varies. Some liquids separate from the melt, but are reabsorbed back into the parental magma at a lower temperature  (A) 
Parent magma of MC2 (B) Parent magma of MC10 (C) Liquid 1 from MC2. This liquid initially separates from the parent magma 
but is reabsorbed at 955°C. (D) Liquid 1 from MC10. (E) Liquid 2 from MC10 which is reabsorbed back into the initial melt at 
715°C. 
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4.2 Melt Ascent from Source Region 

 Since the isobaric trials did not yield liquids that resembled those from Philpotts (1972) 

paper, I used an isentropic model to look at where the total melt would have originated. 

Assuming the melt originated at the base of the crust, an adiabatic ascent (isentropic) model that 

begins at 1GPa and slowly depressurizes to the suggested emplacement of 0.03 GPa is used in 

addition to the accepted temperature of 1000°C for the starting depth. In both the MC2 and 

MC10 data sets, there is no liquid separation from either initial melt. Even in trials where the 

Multiple Liquids and Fractionate Second Liquid functions are turned on, no liquids separate out. 

* Denotes minerals that begin to precipitate during ascent, but are reabsorbed into the melt 

* Denotes minerals that begin to precipitate during ascent, but are reabsorbed into the melt 
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However, some mineral groups do precipitate out from the melt during the ascent from 100 kb to 

0.3 kb. The remaining liquid from the MC2 and MC10 trials was then cooled through the 

isobaric model to crystallize the rest of the liquid. The remaining liquid, when cooled under 

constant pressure, produced two separate liquids. The separate liquids from the isobaric model 

after the adiabatic ascent are different in composition to the liquids that separated out in the 

strictly isobaric trials. 

In the MC2 isentropic model, mineral groups that precipitate from the melt are similar to 

those from MC10. Biotite, feldspar, two phases of clinopyroxene, spinel, and apatite all 

precipitate from the melt. However, apatite crystallizes during the ascent, but is reabsorbed back 

into the melt. Table 4.2 shows the mineral groups that precipitate out of MC2 during ascent and 

the wt. % of each mineral. At the end of the ascent from 1 GPa to 300 bars, 39 wt. % of the 

initial melt remained liquid. 

In the MC10 isentropic model, mineral groups such as clinopyroxene, biotite, feldspar, 

apatite, and spinel precipitate out of the ascending melt. The chemical formulas for minerals that 

precipitate out are shown in Table 4.3. The initial clinopyroxene underwent a phase separation 

that produced clinopyroxene 1. The proportions of magnesium, titanium, aluminum, and silicon 

is slightly varied between the two phases of clinopyroxene, where the other elements in the 

mineral stay relatively similar. At the end of the ascent from 1 GPa to 300 bars, 41 wt. % of the 

initial melt remained liquid. 

4.2.1 Crystallization of Remaining Liquid from Isentropic Trials 

After each of the remaining liquids from both the MC2 and MC10 reached the suggested 

emplacement pressure of 300 bars during the isentropic model, they were cooled for the 

remaining liquid to crystallize. The bulk composition of both remaining liquids from the MC2 
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and MC10 isentropic trials are seen in Table 4.4 compared to the composition of ocelli from 

Philpotts (1972). The minerals that precipitate out are shown in Table 4.5. Slight variations are 

seen in the chemical compositions of the minerals, however the most dominant mineral groups in 

each data set to precipitate are leucite, clinopyroxene, and feldspar. This is consistent between 

both the MC2 and MC10 data sets for this model. I chose the starting temperature and pressure 

based on the ending pressure and temperature of the isentropic trials for consistency.  

At these starting conditions, feldspar and both phases of clinopyroxenes had already 

crystallized from the remaining melts. In MC2, both feldspar and clinopyroxene had already 

began to crystallize at the beginning of the trials. In MC10, only clinopyroxene began 

crystallizing at the start of the trial. In both trials, leucite is the most dominant mineral 

proportionally to the other mineral groups. The clinopyroxene and feldspar groups are the most 

dominant after leucite. Figures 4.3 and 4.4 show how the mineral proportions of each trial 

change during crystallization. Some mineral groups begin to crystallize, go back into solution, 

then crystallize again.  

Philpotts (1972) column shows the bulk composition data for the ocelli and felsic units 
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Cooling the remaining liquids from the MC2 and MC10 isentropic models yield similar 

results to that of the isobaric models. Two liquids separated from each of the MC2 and MC10 

data. These liquids have slightly different compositions than the immiscible liquids from the 

isobaric trials. The compositions of these separated liquids from both MC2 and MC10 isentropic 

trials are seen in Figure 4.5. Liquid 1 for MC10 and MC2, have a high weight percentage of 

𝑃#𝑂@ ,	𝐶𝑎𝑂, and relatively low proportions of all other oxides. By the time these liquids reach 

their lowest temperatures, the proportions change where 𝐶𝑂#, 𝑆𝑖𝑂#, 𝑀𝑛𝑂 have the highest 

proportions. Liquid 2 for each of the MC2 and MC10 data sets are iron-rich silicates, however 

only exist for a short amount of time during cooling.   
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Table 4.4: Compositions of separated liquids from the leftover liquid of the isentropic trials. After the isentropic 
trials were run, remaining liquid was cooled under isobaric conditions close to the suggested emplacement depth. 
MC10 and MC2 were run through alphaMELTS at a pressure of 400 and 540 bars, respectively. Pressure 
conditions were restricted due to a failure in the simulation in alphaMELTS.  

Figure 4.3: This figure shows the mineral composition for the remaining liquid in MC2 after the isentropic trial. The software 
uses thermodynamic and chemical data to calculate the minerals to be expected in the crystalized rock. These values are 
proportions of the minerals with respect to their wt. % compared to the crystallization of the liquid. Both clinopyroxene and 
feldspar had already begun to crystallize at the starting temperature in small proportions. 

Figure 4.4: This figure shows the mineral composition for the remaining liquid in MC10 after the isentropic trial. The software 
uses thermodynamic and chemical data to calculate the minerals to be expected in the crystalized rock. These values are 
proportions of the minerals with respect to their wt. % compared to the crystallization of the liquid. Only clinopyroxene had 
already begun to crystallize out of the melt by the starting temperature.  
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Figure 4.5: Each of the immiscible liquids to separate from the remaining liquids after adiabatic ascent. These 
liquids did not separate during ascent, but rather separated from the crystallization of the remaining liquid at the 
suggested emplacement pressure of 300 bars. (A) Liquid 1 from MC2. (B) Liquid 2 from MC2. (C) Liquid 1 from 
MC10. (D) Liquid 2 from MC10. In both data sets, Liquid 1 and Liquid 2 are nearly identical in composition 
between MC2 and MC10. The difference between all the separated liquids is the slight variation of the temperatures 
they separated from the initial magma at.   
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5 DISCUSSION 

While the results obtained from alphaMELTS do not support Philpotts’ (1972) hypothesis 

of liquid immiscibility, other data from the trials suggest consistency between alphaMELTS and 

observed minerals crystallized in the sill. Interpretations of the minerals calculated from 

alphaMELTS compared to published literature on the Ste. Dorothée Sill show similar modal 

minerology. One consideration in these interpretations is the accuracy of the alphaMELTS 

program for immiscible liquids. Despite the inconsistencies between Philpotts (1972) research 

and my alphaMELTS trials, other immiscible liquids produced may correlate to other tectono-

magmatic processes in the Oka Pluton, another intrusion within the Monteregian Igneous 

Province. Further research on this topic will be needed to fully interpret and guarantee the 

accuracy of Philpotts (1972) hypothesis on the origin of the ocelli in the sill, but the results still 

provide data that suggests other important petrological interpretations.  

5.1 Liquid Immiscibility in Alkaline Magmas 

 Liquid immiscibility has been shown to exist mainly in three types of magmas, with more 

research conducted on iron-rich tholeiitic magmas. Sulfide-saturated silicate magmas and highly 

alkaline magmas rich in 𝐶𝑂# are widely accepted as the other two systems that exhibit liquid 

immiscibility (Winter, 2010). However, the magma emplaced to form the Ste. Dorothée Sill 

focused on in this thesis does not fall into these categories. Instead, the sill can be classified as an 

alkalic, silica-undersaturated intrusion with relatively low concentration of 𝐶𝑂#. Philpotts 

(1972), the lead researcher on the study of the Ste. Dorothée Sill even suggests that liquid 

immiscibility is highly rare in alkaline basalts (Philpotts and Ague, 2009). Given this 

information, it is possible that the ocelli in the sill did not exist as an immiscible liquid, but 

instead as a separate liquid from fractional crystallization from the host fourchite.  
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5.2 Effectiveness of alphaMELTS for Modeling Liquid Immiscibility 

 The separation of liquids within each of the MC2 and MC10 trials does not occur unless 

the ‘Multiple Liquids’ or ‘Fractionate Second Liquid’ functions are turned on. This can be 

interpreted a few different ways. Either liquid immiscibility does not occur in the parental 

magma for the Sté Dorothée Sill or alphaMELTS is not able to accurately produce the separated 

liquids physically observed in the Ste. Dorothée Sill. One suggestion from the programmers and 

researches that developed alphaMELTS is the careful use of the ‘Multiple Liquids’ and 

‘Fractionate Second Liquid’ functions. Particular to the ‘Multiple Liquids’ functions, they 

suggest that “the solvi are not very well determined, and [sic] do not recommend serious use of 

this feature, but in some cases operation inside an unrecognized two-liquid field can lead to path-

dependent non-unique equilibria. This option should not be used if trace element calculations are 

enabled.” (Antoshechina and Asimow, 2018). Given that no research papers regarding liquid 

immiscibility in alkaline magmas are used for the calibration of the program, it is not unlikely 

that the program cannot calculate the immiscible liquids according to Philpotts’ (1972) findings. 

However, the immiscible liquids calculated from the isentropic trials may highlight larger 

tectono-magmatic processes that exist within the Monteregian Igneous Province. This 

significance will be discussed in a later section.    

For the most part, the mineral assemblages discussed in the following sections provide 

evidence that alphaMELTS crystallizes minerals consistent with Philpotts’ (1972) and Goldie’s 

(1972) findings.  

5.3 Isobaric Interpretations 

 Philpotts (1972) originally suggests the ocelli formed after the emplacement of the sill, 

implying that only isobaric trials were needed to test his hypothesis. In order to test his 
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hypothesis using the alphaMELTS program, a total chemical composition for the sill that 

included both the ocelli and the groundmass was needed. By using the images provided in 

Philpotts’ (1972) research, I found that the sill contained roughly 8% ocelli by volume. My 

volume calculation is strictly based on the limited number of images provided and Philpotts’ 

descriptions in his paper. I have no personal field research on the sill, due to the inaccessibility of 

the area Philpotts researched. Other research conducted by R. J. Goldie suggests a total ocelli 

composition of 2.2% by volume (Goldie, 1972). Irrespective of which volume calculation is 

more accurate, I accounted for this discrepancy by running various ocelli volume proportions 

through the alphaMELTS software.  

Starting with 2% ocelli relative to the host fourchite and working up towards 50% 

composition of ocelli in the total melt, I was able to determine that isobaric trials with melt 

composition of 10% or more of ocelli did not indicate a significant variance in the minerals 

crystallized. There is significant variance in the mineral assemblages between MC2 and MC10 

which I will discuss in a later section. For this reason, I focus on the MC2 and MC10 trials to 

compare results between Goldie’s (1972) research and my own ocelli volume calculation.     

5.3.1 Mineral Interpretations 

 The minerals that crystallize from the isobaric trials in MC2 and MC10 vary from the 

given minerals observed by Goldie (1972) and Philpotts (1972). Philpotts defines the ocelli and 

felsic units as an analcite syenite. Analcite syenite is characterized by alkali feldspar, nepheline, 

analcite, some quartz, and minor amounts of hornblende and pyroxene. The host fourchite is 

composed of titanaugite, magnetite, minor plagioclase and alkali feldspar. The alphaMELTS 

results do not match these minerals exactly. A clinopyroxene with a composition similar to 

titanaugite crystallized in both of the MC2 and MC10 trials. Biotite also crystallizes from both 
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MC2 and MC10 liquids, but is not mentioned in Philpotts (1972) or Goldie’s (1972) descriptions 

of the sill.  

The crystallization leucite in the MC10 trial is the most noticeable difference between the 

MC2 and MC10 trials. Leucite is not mentioned in either Philpotts’ (1972) research or Goldie’s 

(1972) mineral analysis of the sill. However, the way in which Sack and Ghiorso (1998) have 

defined and programed alphaMELTS to calculate leucite in a crystallizing magma provides the 

reason for crystalline leucite in the results. The empirical formula calculated by alphaMELTS in 

the isobaric trials is shown as: 𝐾B.BB𝑁𝑎𝐴𝑙𝑆𝑖#𝑂@.C#(𝑂𝐻)C.66, whereas the accepted chemical 

formula for leucite is 𝐾(𝐴𝑙𝑆𝑖#𝑂7)	(Mindat.org, 2019a). Within leucite, there exist 24 cavities in 

the unit cell which may contain water molecules under certain conditions (Sack and Ghiorso, 

1998). In isostructural analcite, two thirds of these cavities are occupied by sodium atoms with 

𝐻#𝑂 replacing potassium on the larger site. Due to the small amounts of potassium in the mineral 

assemblage, alphaMELTS defined the precipitate as leucite. Based on my interpretation of the 

chemical composition, it is more likely that analcite is the mineral to precipitate out and not 

leucite. If this interpretation is valid, alphaMELTS is providing accurate information on the 

mineral assemblage of the fourchite surrounding the ocelli.     

Taking a sample of the sill, I tested the rock for magnetism and found that it is magnetic, 

confirming the presence of a magnetic mineral like Philpotts (1972) suggests. The isobaric trials 

do not produce a magnetic mineral from either the MC2 or MC10 trials. Instead, the results show 

that iron is used in the clinopyroxene and biotite in each of the trials. If this is the case, the 

calculated biotite may have used up the remaining iron left in the melt, not allowing for a 

magnetic mineral to precipitate out. Neither Philpotts (1972) or Goldie (1972) see the presence 

of biotite in the host fourchite or ocelli. Given this information, it is more likely that the presence 
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of water in the bulk composition allowed biotite to crystallize and use the iron in solution, rather 

than producing a magnetic mineral.   

5.4 Isentropic Interpretation 

 In the isentropic trials, I attempt to simulate the process of adiabatic ascent of the magma 

before emplacement. These trials suggest a more accurate representation of the mineral 

assemblage that exists in the Ste. Dorothée sill. Philpotts (1972) suggests that the ocelli separate 

from the magma post-emplacement, meaning that no liquid immiscibility occurs as the magma 

rises from depth. In the MC2 and MC10 isentropic trials, even with the Multiple Liquids and 

Fractionate Second Liquid functions turned on, there is no liquid separation from the initial 

magma. Even though both Philpotts (1972) and Goldie (1972) suggest 1100°C as the 

emplacement temperature, I use values of 1000°C and 1 GPa for the starting temperature and 

pressure of the trials to simulate the conditions at the base of the crust.  

 The minerals that crystallize out during ascent to the emplacement depth in the 

alphaMELTS trials seem to align more accurately with minerals observed by Philpotts (1972) 

and Goldie (1972). Titanaugite still crystallizes from both of the MC2 and MC10 liquids. 

Philpotts (1972) suggests that the phenocrysts of titanaugite that are seen in the sill must have 

crystallized before emplacement, aligning with the findings from the isentropic model. 

Moreover, the isentropic trials also produce an iron-rich spinel. The empirical formula produced 

by alphaMELTS suggests that the spinel would be magnetite. While the calculated formula 

contains both titanium and aluminum, it is common for these elements to exist in magnetite as 

impurities (Mindat.org, 2019b). This is consistent with my observations of the magnetism in the 

sill’s hand sample.  
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5.4.1 Remaining Liquid after Adiabatic Ascent  

The remaining liquid from the parent magmas of MC2 and MC10 after the ascent from 1 

GPa to 0.03 GPa, give bulk composition data that closely resembles the composition of ocelli 

from Philpotts’ (1972) paper. Table 4.5 from the results is provided below for interpretation. The 

remaining liquid from the isentropic ascent to the suggested emplacement depth imply that the 

ocelli may not have been of immiscible origin. The remaining liquid composition compared to 

the bulk composition of the ocelli provided by Philpotts (1972) is very similar, except for some 

minor oxides. Magnesium, phosphorus, and manganese oxides differ in composition, but all have 

relatively low weight percent, which shouldn’t affect the mineralogy as much.  

If I assume the ocelli did not form from immiscible liquids and instead are represented by 

the remaining liquids from the isentropic ascent from 1 GPa, some of the structures within the 

Philpotts (1972) column shows the bulk composition data for the ocelli and felsic units 
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sill can be explained. If the remaining liquid intrudes as a separate layer either below or above 

the host fourchite magma, then diapiric structures would form based on Rayleigh-Taylor 

instability (Philpotts and Ague, 2009). Either the more dense, host fourchite would sink into the 

less-dense, felsic ocelli or vice versa. However, the smaller globular ocelli found at both the 

upper and lower contacts of the sill could not be explained by this phenomenon. It is still of 

interest that the remaining liquid from the isentropic ascent from 1 GPa produced a liquid that is 

chemically similar to that of Philpotts (1972) ocelli composition. If the remaining liquid is truly 

the source for the ocelli rather than immiscible origin, then the volume proportions of the ocelli 

would be different than the proposed ocelli volume of 2% from Goldie (1972) and my 

calculations of 10% by volume. In the MC2 and MC10 trials, 39 wt. % and 41 wt. % of the 

liquids remain by the time they reach 300 bars, respectively.  

Figure 3.1: The image on the left shows an example of Rayleigh-Taylor instability. This shows the progressive stages of buoyantly 
rising domes of oil overlain with honey, which is of high density. Domes, such as the ones in the Sté Dorothée Sill are seen in the 
image on the right (Philpotts and Ague, 2009). 
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5.4.2 Crystallization of the Remaining Liquid After Adiabatic Ascent  

 After adiabatic ascent of the parent magma in both trials, there is 39 wt. % for MC2 and 

41 wt. % in MC10 of liquids remaining by the time the melts reach 300 bars. Minerals that 

precipitate from the remaining melts are mostly consistent with the minerals observed by 

Philpotts and Goldie. The feldspar predicted to crystallize out from the alphaMELTS trials in 

both trials are rich in alkalis, similar to the actual groundmass of the sill. The crystallization of 

more alkali feldspars after the isentropic trials suggests similarities in published research. As the 

melt crystallizes during the ascent, the residual liquid becomes more felsic. This leaves more 

alkalis in the remaining liquid, causing alkali feldspar to precipitate out. The residual liquids also 

produce 34.1 wt. % of leucite in the MC2 and 26.2 wt. % in the MC10 trials, which coincides 

with Goldie’s findings (Goldie, 1972). 

The presence of alkalis has proven to expand the field of liquid immiscibility in tholeiitic 

magmas (Charlier and Grove, 2012; Freestone, 1978), so the separation of immiscible liquids 

during the isobaric crystallization of the remaining melt does not come as a surprise. As the melt 

crystallizes, the remaining liquid evolves to become more felsic, similar to a tholeiitic magma, 

allowing the opportunity for immiscible liquids to separate from the parent magma.  

5.5 Significance of the Carbonate Liquids and the Oka Intrusion 

The Oka pluton is a Cretaceous intrusive complex which is part of the broader 

Monteregian Hill igneous province. This pluton lies close to the Ste. Dorothée Sill and is 

relevant for the calcium rich immiscible liquids calculated from the alphaMELTS during the 

crystallization of the remaining liquids from the isentropic model. AlphaMELTS is largely based 

on research papers that focus on the evolution of tholeiitic magmas. Compositions that produce 
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calcium rich magmas won’t necessarily produce results that mimic the mineralogy of the Oka 

pluton from the compositions calculated by the alphaMELTS program. 

One of the most accepted mechanisms proposed for the formation of magmas rich in 

carbonatites is silicate-carbonate liquid immiscibility (Potter et al., 2017). Minerals produced 

from the remaining melt after the isentropic trials align well with the mineralogy of the Oka 

pluton. Allan Treiman and Eric Essene describe the pluton as an aggregate of carbonatite rocks, 

alnoite, and alkaline silicate rocks (Treiman and Essene, 1985).  

 A different rock type observed in the Oka pluton is a melteigite-urtite series . Urtite is a 

rock where the composition is dominated by nepheline and augite. Both nepheline and a 

titanaugite is calculated to precipitate from the remaining liquid in large proportions (Table 4.6). 

Figure 5.2: Simplified map of the Oka pluton. Cross-cutting dikes are seen represented by the white lines. (Lentz et 
al. 2006) 
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Seen in Figure 5.2, the Oka pluton is dominated by the Okaite series and the Melteigite-urite 

series. If I assume the remaining liquid over a larger scale represents the Oka pluton, then the 

remaining melt after the isentropic trials can represented by this geologic feature. * 

 Further evidence for this assumption is also seen in the Okaite series. Okaite type rocks 

are dominated by silicates, usually melilite, nepheline, and hauyne (Potter et al., 2017). Potter 

equated the hauyne to an altered nepheline. If Potter’s assumption is correct, then the okaite 

series is also represented by the mineralogy calculated from the remaining liquid.  

 Furthermore, the immiscible liquids from both the isobaric and isentropic models offer 

some similarities to the rock types found in the Oka Pluton. Liquid 1 from both the MC2 and 

MC10 isentropic trials and Liquid 1 from the isobaric trials have high proportions of calcium and 

phosphorous oxides initially, but as temperature decreases, these liquids become rich in 𝐶𝑂# and 

𝑆𝑖𝑂#. The interactions between these oxide groups might imply that calcite minerals will 

precipitate out, which correspond to the Sovite group seen in Figure 5.1. While the compositions 

of the liquids do not entirely match that of the Oka Pluton, it provides information that suggests 

carbonate magmas can separate immiscibly from alkalic magmas.  

5.6 Future Work  

 In order to definitively defend Philpott’s (1972) hypothesis or refute the possibility for 

liquid immiscibility in the Sté Dorothée Sill, viscosity measurements between the host fourchite 

and the ocelli would be needed. Viscosity measurements would be helpful in deciding if the 

remaining liquids, discussed in Section 5.4.1, would deform in the way they are seen in the sill. 

If the host fourchite is already crystallized, then the viscosity measurements would determine if 

this liquid could deform the partially crystallized fourchite. Recent studies have suggested that 

Rayleigh-Taylor instability is observed in partially crystallized magmas (Seropian et al., 2018). 
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Considering the remaining liquid composition after the isentropic ascent from 1 GPa, viscosity 

measurements at various points during crystallization of the host fourchite could determine if the 

diapiric structures observed in the sill are the result of this instability.  
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6 CONCLUSION 

 Liquid immiscibility is a common occurrence, mostly observed in thin section analysis of 

quenched magmas. However, large scale immiscible liquids are only hypothesized in many cases 

due to the complete separation from their respective parental magmas. Viewing such large scale 

processes become difficult as the separation of these liquids occur either deep in the crust or in 

the mantle. The immiscible liquids hypothesized by Philpotts (1972) in the Sté Dorothée Sill 

offer potential evidence for small scale immiscible structures within a small intrusion. 

 Results from this research suggest that the ocelli seen in the Sté Dorothée sill are not of 

immiscible origin. Any immiscible liquids to separate out from either the isobaric or isentropic 

trials did not match that of Philpotts (1972) or Goldie’s (1972) chemical compositions. The 

immiscible liquids calculated using alphaMELTS in both the isobaric and isentropic models can 

be described as iron-rich silicate liquids, calcium phosphates, or carbonate liquids. Despite the 

lack of evidence to support the immiscible liquid hypothesis, I was able to produce a 

mineralogical composition from the alphaMELTS program that is similar to the minerals found 

within the Sté Dorothée Sill.   

One major caveat in this thesis is the lack of published research on liquid immiscibility in 

alkaline magmas. Extensive research has been conducted on liquid immiscibility in tholeiitic 

magmas (Charlier and Grove, 2012) and is currently the only accepted hypothesis for the 

differentiation of carbonate magmas (Potter et al., 2017; Treiman and Essene, 1985). Few 

researchers have been able to definitely prove liquid immiscibility in alkaline magmas.  

 The remaining liquids after adiabatic ascent in the isentropic model suggest a different 

origin for the ocelli in the Sté Dorothée Sill. The bulk composition data from the remaining 

liquid has stark similarity to Philpotts (1972) bulk compositions data of the ocelli. Given that the 
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isentropic model is an attempt to replicate realistic conditions of emplacement, it is likely that the 

ocelli did not originate from immiscible origin. Rather, the ocelli may have been the result of 

fractional crystallization as the entire parental magma ascended from depth. More research is 

needed to strengthen this hypothesis because it cannot accurately describe all of the ocelli 

structures seen in the sill.  
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APPENDIX A: EQUATIONS 

 
Figure 1.1: Equation governing the line that defines the boundary between the subalkaline series 
and the alkaline series. 

𝑆𝑖𝑂# = 		−3.3539	 ×	10N: 	×	𝐴7 + 1.2030	 ×	10N# 	×	𝐴@ 
																	−1.5188	 ×	10NC 	×	𝐴: + 8.6096	 ×	10NC 	×	𝐴% 

−2.1111	 ×	𝐴# + 3.9492	 × 	𝐴 + 39.0 
 
Figure 1.3: Equation governing the distinction between alkaline and subalkaline rocks on a 
ternary plot. 

𝑁𝑒S = 𝑁𝑒 + %
@
𝐴𝑏, 	𝑄S = 𝑄 + #

@
𝐴𝑏 + C

:
𝑂𝑝𝑥,	and 𝑂𝑙S = 	𝑂𝑙 + %

:
𝑂𝑝𝑥  

 
Figure 1.5: (Irvine and Baragar, 1971) 
 

Symbols used: 
  Ol = olivine, cation norm 
  An = Anorthite 
  Ab = Albite 
  CI = Color IndexP  = 100 An/(An + Ab), cation norm 

        (Irvine and Baragar, 1971) 
Section 1.7 Stokes Law 
  Stokes Law used for the velocity measurements of the ocelli within the fourchite. 

  
XY
XZ
= 	 #[∆]^

_

`a
 

Fig. 1.5 A 

Fig. 1.5 B 
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APPENDIX B: MELTS FILES 

Environment File for alphaMELTS. The highlighted areas indicate the functions that are turned 
on and off during the data analysis. Exclamation marks indicate that the function is turned on. 
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