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Abstract 
Mascot Mine was opened in Gorham, New Hampshire in 1881 and closed in 1885. The 

lead mine was briefly opened for less than a year in 1906 marking the final closing of the mine. 

However the mining impacts can still be seen today. The purpose of this study was to investigate 

the environmental impacts the lead mine had on the surrounding environment. A sediment core 

as well as water samples were gathered in fall 2019 at Mascot Pond which sits directly below the 

mine in contact with the mines tailings piles. The sediment core gathered was 47 cm long, 

containing sediments corelating to pre-mine operation. From 47cm to 40cm the sediment had an 

average lead concentration value of 26.3 ± 20.05 mg/kg. Given the known baseline lead 

concentrations for the Appalachian region of 15.3±17.5 mg/kg this section of the sediment core 

was classified as “pre-mining” (>1881). Following lead concentrations significantly increased to 

the maximum value of 3918 mg/kg at the 34 cm. Given the severity in the increase in 

concentrations it is clear that anthropogenic mining was involved. Water samples from Mascot 

Pond had an average pH value of 5.03 verses a nearby stream having a pH value of 6.70. Eight 

other metals were examined throughout the entirety of the sediment core. These metal 

concentrations all showed baseline levels at the bottom of the sediment core than a significant 

increase to non-natural levels around 35  2 cm. The processes seen at Mascot Pond can be 

attributed to chemical weathering of the material associated with the mine. The relative acidic 

water of the pond as well as extremely high metal concentrations are indicative of a dissociation 

processes. The overall scale of mining at the Mascot Mine is relatively small compared to some 

mines across the world, however a clear impact can be seen on the local environment.
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Introduction 

1.1 Overview 

 For centuries, the use of lead has played a prominent role in human civilization. Lead is a 

soft ductile durable material. Lead is also a poor conductor and resistant to corrosion. Therefore 

lead is commonly seen in the manufacturing of batteries, ammunition, cable sheathing, older 

piping and older paint. Lead is also a biproduct of many sources of industrial techniques such as 

mining, coal burning and manufacturing processes. Unlike previous decades, it is relatively well 

known among a majority of the population that exposure to lead and lead products can cause 

serious health effects. Unfortunately humans are commonly unaware of exposure that exists 

within their daily lives. In the United States fourteen percent of children have troubling amounts 

of lead within their blood systems (Dennis, 2016). Other populations around the world 

experience similar negative effects from lead exposure. Locations near lead mining in particular 

are concerning. Living within close proximity to a lead mine can cause detrimental health effects 

(Lar et al., 2013).  

Mascot Mine is an abandoned lead mine in New Hampshire. The mine is relatively small 

and was open for less than a decade. Currently no humans inhabit the area, however during mine 

operation a small cluster of buildings were located at the base of the mine in what looks like a 

relatively pristine wooded area. Mascot Pond is a small body of water that sits directly below the 

mine’s tailings pile. This study aims to look at the effect of Mascot Mine on the surrounding 

environment. Though no humans currently live within close proximity of the study site, the area 

is a common destination of hikers, tourists and summer camps. This project aims to provide a 

report of the health of the area as well as explore the history of metal deposition from the 

adjacent mine.  

1.2 Location of Study Site 

The study location for this report, Mascot Pond and Mascot Mine, are located in Gorham 

New Hampshire (fig 1.1) in the Lead Mine State Forest. Mascot Pond is in close proximity to 

exposed bedrock immediately adjacent to the mine (fig 1.1).  Mascot Mine is located on the side 

of Mount Hayes. Mount Hayes has a summit elevation of 2,555 ft and the surface water of 
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Mascot Pond sits at an altitude of 1,089 ft (fig 1.1). The base of the mine’s tailings pile and 

ponds northeastern border have the coordinates of N 44.40097° W71.17899°.  

 Images taken of the mine are also included below (fig 1.2) (fig 1.3). These images were 

taken from the first day from field work on September 18 2019 as well as spring of 2019.  

 

Figure 2.1: Study site location map. Left: aerial photo with the study site location in red. Right: 

Hill shade imagery of study site showing topographical features. Mascot Pond’s water 

boundary, Mascot Mine’s tailings pile and mine entrances are also displayed. 
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1.2 Image of Mascot Pond. This image was taken on the base of the tailings pile. This image 

displays nearly all of the pond. A backpack seen in the center of the image can be used for scale. 

 

 

 
Figure 1.3: Images of Mascot Pond and Mascot Mine. Left Image taken from a canoe in the 

middle of Mascot Pond showing the mine and tailings pile on the side of Mount Hayes. Middle: 

Image taken from the mine entrance looking down on tailings pile. Left Image taken from base of 

tailings pile, looking up at mine entrance. This image is was taken at the same altitude as the 

ponds surface water 

1.3 Regional Structural Geology  

Bedrock geology consists of mainly schists from the Devonian and Silurian time period, 

that were metamorphized during the Acadian orogeny (Cox, 1970). Later the schist present was 

intruded by syntectonic granite rocks during the New Hampshire Plutonic series (Cox, 1970). 

The granitic rocks are from the White Mountain Plutonic Series of the Devonian. This plutonic 

series occurred at the climax of the Acadian period and can be characterized as cross cutting 

intrusions with dike like mannerism, which indicate that the formation was influenced by the 

flow and movement of magma (Billings, 1980 p. 146). The intrusion of these igneous rocks 
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likely occurred at the end of the Acadia orogeny, as uplift had occurred and open space was 

available for intrusion of the New Hampshire Plutonic material. Environments for mineral 

crystallization likely existed flowing the crystallization of the intrusive plutons from the White 

Mountain Plutonic Series (Cox, 1970). See figure 1.4 for complete bedrock map of region.  

 

Figure 1.4: Bedrock Map of region from Billings,1980. Left: Close up image of section in which 

Mascot Pond is located. Red circle highlights the ponds location. Right: Overall bedrock map. 

1.4 Structural Geology of Mascot Mine 

The Mascot Mine entrance is located on an exposed cliff approximately (fig 1.1). Mascot 

mine was developed on a breccia vein cutting though the surrounding rocks. The breccia vein 

strikes NE 40° and has a dip of 70°(fig 1.5) . The vein ranges from 10 feet to 20 feet wide and 

contains granitic rocks and interstitial quartz as well as manganosiderite (Cox, 1970). There is 

also an visible aphanitic dike that has been shifted 24 feet by three faults broken into three 

individual sections (fig 1.5). The formation of highly valued minerals occurred within small 

sections of the overall vein. These minerals were subject to extraction for economic purposes. 

A diagram (fig 1.5) below displays a geological sketch of the mine from a birds-eye cross 

section perspective. Worthy of note in the  diagram is the scale. Also the aphanitic dike is 
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represented and faulting motion can be seen. The diagram produced by Cox, 1970 is the only 

know published geological work done on the site of the mine.  

 

Figure 1.5: Geologic feature diagram of Mascot Mine and respective components present. 

Diagram from: Cox 1970. 

1.5 Mineralogy of Mascot Mine 

Two main types of rock exists at Mascot Mine and over 28 different minerals have been 

identified in the tailings pile (Janules, 2012). The first group is a mix massive sulfide ore 

minerals cemented together with quartz The second is group is dominated by the mineral siderite 

(FeCO3) (Janules, 2012). Galena (PbS) is the main ore mineral present at Mascot Mine. It has 

been recorded that Mascot Mine also has a silver content ranging from 0.02 to 0.5 percent within 

minable ore (Cox, 1970).Sphalerite (Zn,Fe)S and chalcopyrite (CuFeS2) have both been 

identified as a minor constuent of the ore present (Cox, 1970). The main gangue minerals that 
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can be commonly found in tailings are milky coarsely crystalline quartz, carbonate minerals 

manganosiderite and pyrite  (Cox, 1970). The dike rocks present have been altered by sericite, 

chlorite and carbonite minerals but show signs of plagioclase and mafic minerals (Cox, 1970). 

The prized galena within the vein was present in four inch to ten inch bands. Three bands are 

reported to have been together forming a 22 inch thick section (Cox, 1970).  

1.6 Operation History of Mascot Mine 

The operation history of Mascot Mine is relatively short with respect to other mines 

around the world. Timothy Harden Hutchinson who was a successful millwright, engineer and 

businessman built a bride crossing the Androscoggin River in 1877 later known as Lead Mine 

Bridge (Reuben, 2012). Dr. N. T Rowe used the established bridge to explore the side of Mount 

Hayes where he found lead ore near Mascot Pond. Thomas Culhane soon after found the large 

breccia vein and the Mascot Mining Co. was formed (Reuben, 2012.) From 1881 to 1885 adit-

drift mining occurred on the breccia vein where 50,000 tons of vein material was extracted (Cox, 

1970). The mine was processing 1.5-3.5 tons of mater concentrate per day. This processing rate 

resulted in 30 tons of concentrate (pulverized bedrock) containing 70-82 percent lead and 28 

ounces of silver per ton to be extracted for commercialization (Cox, 1970). Later in 1906 the 

mine was briefly opened as an attempt to fully exhaust the financial opportunity the mine 

withholds. At this time 70, tons of lead and 174 ounces of silver per ton were extracted (Cox, 

1970). Though the life of the mine was short-lived, at one point it was reported that there was 

enough wealth to be extracted to cure the national debt at the time being two million dollars 

(Reuben, 2012). This statement was false and the mine closed sooner than anticipated.  

1.7 Mining of sulfide minerals 

Galena mining for the production of lead materials existed regionally within New 

Hampshire, however also is present globally. Galena is commonly present in small bands such as 

the bands mined at Mascot Mine. To properly extract the thin bands of galena large amounts of 

waste piles are produced. Exposure to elements associated with lead mining such as arsenic, 

cadmium, copper, chromium, iron, magnesium, nickel, lead and zinc which are released from 

ores from mining and are of great concern to humans within close proximity (Lar et al., 2013). 

The extraction of lead from galena is as follows: galena ore is mined and crushed to a size of 

0.1mm. The crushed ore is the added to water and a series of oils at different densities bring the 
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ore to the bottom of container. This process extracts light products associated with the heaver 

metals, ultimately increasing the quality of the ore. The ore is then headed to a temperature of 

2500°F which oxidizes the impurities. Throughout this process there is room for significant 

amounts of contamination to the surrounding environment.  

1.8 Acid Mine Drainage 

 Acid mine drainage is produced when sulfide bearing materials are exposed to oxygen 

and water (Akcil and Koldas, 2006). Acid mine drainage commonly occurs in iron sulfide- 

aggregated rocks. Acid mine drainage processes can occur naturally, however mining practices 

commonly promote the process (Akcil and Koldas, 2006). Sites where acid mine drainage have 

occurred are commonly characterized by having low pH, high specific conductivity and high 

metal concentrations (Akcil and Koldas, 2006). Pyrite is one of the most common sulfide 

minerals and is also present at Mascot Mine. The reaction for pyrite is the oxidation of the 

sulfide mineral into dissolved iron, sulfate and hydrogen.  

FeS2 + 7/2 O2 + H2O → Fe2+ + 2SO42− + 2H+ 

 Due to the oxidation process acidic waters are commonly a byproduct. The factors that 

control the rate of acid generation are pH, temperature, oxygen content, degree of saturation, 

surface area of exposed metal sulfide and bacterial activity (Akcil and Koldas, 2006). Waste 

piles associated with mines contain sulfides have the potential to lower the pH of surrounding 

waters to extreme lows however carbonate minerals may neutralize the low pH (Akcil and 

Koldas, 2006). It is important to recognize that Mascot Mine has sulfide minerals as well as 

carbonate minerals (Cox, 1970). The consequential effects of acid mine drainage can cause long 

lasting damage. Sulfide bearing rock from mines can contaminate the surrounding area for 

centuries after the mine has closed (Candeias et. al, 2015). 

 Today mining generates 5x109 tons of tailings per year worldwide (Lu and Wang, 2012). 

Sulfide tailings are the main source of heavy metal contamination. Globally, developing 

countries are vulnerable to extreme metal contamination, because environmental remediation 

policies have not been implemented (Lu and Wang, 2012). It is important to recognize that heavy 

metal contamination is a threat to populations all around the world. It is also crucial to 

understand the consequences associated with mines  
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1.9 Lead toxicity  

It is well known that exposure to lead can cause negative consequences to humans, with 

increased severity in harmful effects to fetus’s and youth. (Thomason et al. 2019). Until recent 

decades many populations were exposed to high levels of lead and were not aware. Living within 

close proximity to mining fields exposes residents to health issues that can alter bodily function 

forever (Lar et al., 2013). Through the physical process of extracting ore, lead poisoning can 

occur through atmospheric deposition, hand to mouth contact, contaminated drinking water and 

food sources. In June, 2010 in Zamfara, northwestern Nigeria ingestion of lead from mining 

caused the death of at least 400 people which consisted of mostly children between the ages of 5 

and 11 years (Lar et al., 2013). Similar in Lavrio a Greek city, mining waste tailing piles and 

low-grade ore were deposited around where 10,000 residents inhabited. Lavrio later revealed that  

95% of children had lead levels in blood exceed the tolerable limit of 100 mg l−1 suggested by 

the World Health (Pappa et al., 2018). Lead contamination from mining exists globally and the 

impacts are detrimental. This report will explore the effects of lead mining on Mascot Mine to 

hopefully prevent any lead poisoning within the study area in the future.  

 

Methods 
 

2.1 Field Methods 

Mascot Pond is located 1.71 miles north-east of Gorham New Hampshire (fig 1.1). There 

is no vehicle access to the study site. A canoe and coring equipment were carried in multiple 

phases to Mascot Pond to obtain sediment cores and other samples on September 18, 2019. On 

November 13, 2019 additional water samples were collected. In total from the two sampling 

days, three sediment cores, six water samples and 10 kg of rock samples were gathered.  

The sediment cores location were targeted in two spot of the pond (fig 2.1). First the 

deepest section of the lake was targeted to obtain a maximum sediment record. Two cores were 

taken here (MP-01-19 and MP-02-19) (fig 2.1) to ensure maximum redundancy. The third 

sediment core (MP-03-19) was taken near the ponds outflow (fig 2.1). For the sake of this study 

MP-02-19 was analyzed, however the two other cores were archived for future analysis.  

Five water samples were taken at Mascot Pond fully, extending along the length of the 

pond for a complete data set (fig 2.1). A sixth water sample (MPWS-06-19) was taken in a 
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nearby stream which has no input or output relation with Mascot Pond (fig 2.1). Tailings samples 

were taken on tailings pile throughout the full extent of the pile.  

 

 

Figure 2.1: Sample location map of Mascot Pond showing water samples and core locations. 

2.1.1 Sediment cores 

The sediment cores were taken for content analysis of sediment and soil including metal 

concentrations. The sediment cores were taken using a universal coring apparatus provided by 

the Bates College Geology department. The universal coring device operates with a two-way 

valve at the top of a 5cm diameter 1.2 m long clear plastic tube. As the collection tube and coring 
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device are lowered to the sediment water flows through the two-way valve. The coring device is 

dropped to the sediment water interface and a weight was applied in a hammer motion which 

drives the collection tube into the sediment. When the collection tube and coring device are 

pulled out of the sediment, the two-way valve seals against gravity acting as a vacuum trapping 

the sediment and water within the collection tube. After collection the plastic tubes were cut just 

above the sediment water interface and capped for transportation. All three cores had positive 

sediment water interface, allowing for the sediment interface to not be disturbed. The tubes were 

held vertically during the process of transporting them to a car. They remained vertical in the car 

ride back to Bates College until they were opened in the laboratory. See table 2.1 for specific 

core location as well as core length. 

 

Sample: Date of 

Sampling:  

Latitude: Longitude: Water 

Depth: 

Core Length 

Wet: 

Core 

Length Dry: 

MP-01-19 9-18-19 N 44.40031° W 71.18040° 5.4m 45cm Not Opened 

Mp-02-19 9-18-19 N 44.40035° W 71.18048° 5.4m 53cm 47cm 

MP-03-19 9-18-19 N 44.39954° W 71.17922° 50cm  55cm Not Opened 

Table 2.1: Table of sediment core samples collected at Mascot Pond. Dates of sampling is 

displayed for all samples.  Latitude, longitude water, core length wet and core length dry are 

included. 

2.1.2 Water Samples: 

Two water samples MPWS-01-19 and MPWS-02-19 were taken at Mascot Pond on 

September 18, 2019. The first was taken near coring location MP-03-19 and the second located 

near the beach below the tailings pile (fig 2.1). The water samples on were gathered in one liter 

bottles in undisturbed areas of the pond. Only water was collected. The one liter bottles were 

fully submerged but rather angled alongside the water interface. Therefore the water collected 

can be classified as surface water. 

Four more water samples MPWS-03-19, MPWS-04-19, MPWS-05-19 and MPWS-06-19 

were taken on November 13, 2019. Three of these samples were collect at Mascot Pond itself 

(fig 2.1). The fourth was collected at a proximal stream (fig 2.1). These samples were taken in 

100 ml bottles. A hydrolab was used to record temperature, specific conductivity, dissolved 

oxygen and pH, at each sampling location for samples MPWS-03-19, MPWS-04-19, MPWS-05-

19 and MPWS-06-19. An effort was made to avoid collecting organic material such as leaves or 
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pollen in the bottles. Water samples were taken for metal concentration analysis. See table 2.2 

for date of sampling, specific location of each water sample and water depth at which the sample 

was taken.  

Sample ID: Date of 

Sampling: 

Latitude: Longitude: Water 

Depth: 

MPWS-01-19 9-18-19 N 44.39954° W 71.17922° 50cm 

MPWS-02-19 9-18-19 N 44.40057° W 71.17869° 10cm 

MPWS-03-19 11-13-19 N 44.40049° W 71.17913° 40cm 

MPWS-04-19 11-13-19 N 44.39946° W 71.17776° 20cm 

MPWS-05-19 11-13-19 N 44.40087 W 71.18100° 60cm 

MPWS-06-19 11-13-19 N 44.40179° W 71.18435° 10cm 

(Tailings samples)Beach 9-18-19 N 44.40057° W 71.17869° N/A 

(Tailings samples) Base of 

Tailings  

9-18-19 N 44.40066° W 71.17853° N/A 

Table 2.2: Table of water and tailings samples at Mascot Pond. Dates of sampling is displayed 

for all samples. Latitude and longitude are displayed for all samples. Water depth is displayed 

for where the water samples were taken. However water samples were taken at the surface. 

2.1.3 Tailings Pile 

For the last sampling phase, approximately 10 kg of rock samples were gathered ranging 

from fine grained sand to cobble size samples. One liter of beach sand was collected at the base 

of the tailings pile and pond boundary. Other rock samples were collected from the tailings pile. 

Rock samples ranged in size from a few millimeters to 75 centimeters (fig 2.2). An effort was 

made to collect a broad range of rock types. The collection of rock samples was done for 

potential future analysis of mineral content. 
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Figure 2.2: Tailings samples from Mascot Pond. Left two images display larger samples. Middle 

image displays tailings pile. Right image displays tailings from beach. 

2.2 Core Analysis 

Upon returning to the environmental geochemistry laboratory of Bates College, the cores 

were stored at four degrees Celsius for 3 days. All three cores obtained had very high amounts of 

water and therefore underwent a four day dewatering process so that the cores would maintain 

some integrity during the core opening, split and subsampling. For the dewatering process, the 

cores were placed vertically and paper towels were placed at the top of the core to act as a 

wicking device. Small slits were cut along the core tube approximately every eight centimeters. 

Sediment was not able to penetrate the slits. Initial wet core length was noted as well as the 

length post dewatering (table 2.1) 

Core MP-02-19 was designated as the core to be sampled because it was located at the 

deepest known part of the pond and was the longest core obtained. A dremel tool was used to cut 

the plastic tube in half while trying to cause limited disturbance to the sediment. The core was 

split into two sections A and B, using wire. Observations of Munsell color and texture were 

made. Each split of the core was distinguished and used for different methods. MP-02-19B was 

used to gather data surrounding percent water, bulk density and loss on ignition. After methods 

were performed on MP-02-19B the samples were achieved for future isotopic analysis. Because 
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the samples were so organic rich, the entire split A (MP-02-19A) was subsampled into one 

centimeter semi-circle cut-outs for digestion and metal analysis.  

2.2.1 Percent Water and Bulk Density Calculations 

 For percent water and bulk density calculations, the MP-02-19B core material was 

extracted using a one cubic centimeter sample size for every centimeter for the first 25 cm. From 

25 cm to 37 cm the core was sampled ever two centimeters. From 37 cm to 47 cm the core was 

sampled every one centimeter. The one cubic sediment samples were weighed (wet weight). The 

samples were then heated in an oven at 60°C for 24 hours. After cooling, the samples were 

reweighed to determine dry weight. Percent water and bulk density calculations can be seen 

bellow: 

Percent water: 

(
𝑀𝑎𝑠𝑠 𝑤𝑒𝑡 − 𝑀𝑎𝑠𝑠 𝑑𝑟𝑦

𝑚𝑎𝑠𝑠 𝑊𝑒𝑡
) ∗ 100 

Dry Bulk Density (percent): 

(
𝑀𝑎𝑠𝑠 𝑑𝑟𝑦

𝑂𝑛𝑒 𝑐𝑚^3
) ∗ 100 

 

 
 

2.2.2 Loss on Ignition (LOI) 

To determine LOI, the one cubic centimeter samples were heated to 550°C for four hours 

to volatize organic matter. The samples were then cooled to room temperature and reweighed 

which yielded the ashed weight. Below are the specific calculations for LOI.  

Loss on Ignition (percent): 

(
𝑀𝑎𝑠𝑠 𝐷𝑟𝑦 − 𝑀𝑎𝑠𝑠 𝐴𝑠ℎ𝑒𝑑 𝑆𝑒𝑑

𝑀𝑎𝑠𝑠 𝐷𝑟𝑦
) ∗ 100 

 

2.2.3 Magnetic Susceptibility 

Magnetic susceptibility analysis was performed on MP-02-19 in one centimeter 

increments for the entirety of the core. The first measurement was taken at the first centimeter 

from the top of the core. The analysis was done using a Bartington MS2E sensor in the sediment 

laboratory at Bates College. This sensor is a surface sensor, therefore a single layer of plastic 
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wrap was applied to the surface of the core to prevent contamination of the sediment material 

downcore. A calibration for drift was performed after analysis was complete. This process 

accounts for any disruptive aspects within the environment where testing was occurred. The 

magnetic susceptibility method is an undisruptive technique and did not alter sediment material 

or composition of the core half MP-02-19. 

2.3 Inductively Coupled Plasma - Optical Emission Spectrometer (ICP-OES) Sediment 

Sample Preparation 

The samples from MP-02-19A were freeze dried to remove all water. The samples were 

then were microwave digested using the EPA method 3051A. Approximately 0.5 gram of 

sediments were put into a fluorocarbon polymer vessel with 10 ml of concentrated trace metal 

grade nitric acid. Each sediment sample was placed into induvial pressure cylinders and heated 

to 175°F for 5.5 minutes. Once the cylinder reached the temperature of 175°F they were kept 

there for 4.5 minutes. The samples were then cooled for 24 hours to ensure safe handling of the 

pressurized nitric acid. After cooling the samples were transferred and diluted into 50ml 

volumetric flasks with E-pure. 10 ml of the diluted solution was transferred into 15 ml plastic 

test tubes for analysis using an inductively coupled plasma - optical emission spectrometer.  

 2.4 Inductively Coupled Plasma - Optical Emission Spectrometer (ICP-OES) 

The instrument used for ICP-OES analysis was an iCAP6300 spectrometer. The method 

used consisted of seven standards. A calibration curve was made for each the seven standards 

and run prior to every analysis to ensure accuracy. Refer to table 2.3 for specific standards used. 

The ICP-OES recorded the element concentration (ppm) from 26 different elements with 36 total 

wavelengths. A calculation was made for metal content taking into account the known 

concentration of 50 ml used. For this study nine elements were analyzed. The following includes 

all nine elements and corresponding wavelength displayed in nanometers: As189.0, Cd226.5, 

Cu324.7, Cr283.5 Fe259.9, Mg279.5, Ni221.6 Pb220.3 and Zn213.8. The metal concentrations 

were also converted to mg metals/kg sediment. Bellow displays the mathematical calculations 

used for converting the concentrations to mg/kg, taking into account the known 50ml volume.    

(
Element concentration (mg/L) ∗ 0.05 (L)] 

(𝑚𝑎𝑠𝑠 𝑜𝑓 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡(𝑔)∗(𝑘𝑔)=1000(𝑔)
) =Element concentration (mg/kg) 
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Standards: Blank 

(2%HNO3) 

ICS2 

0.01 ppm 

ICS2 0.1 

ppm 

ICS2 1.0 

ppm 

ICS2 

10.0 ppm 

0.1 Sc 

std 

1.0 Sc 

std 

Table 2.3: Calibration standards used for ICP-OES for duration of project including all runs. 

These calibration standards were used for both sediment samples and water samples. 

2.5 Water Samples 

Six water samples MPWS-01-19 - MPWS-06-19 were taken for this study. Prior to ICP-

OES analysis all water sampled had nitric acid added to them ultimately lowering the initial pH 

to two. This was done to ensure all metals are fully dissolved before analysis using ICP-OES 

analysis in all six water samples. The water samples were then processed with the ICP-OES and 

converted to mg metals/kg sediment following the same calculation above.  

Results 

3.1 Core Description  

The stratigraphy of MP-02-19 was relatively homogeneous (fig 3.1). The entirety of the 

core was rich in organic matter and only showed few changes in color throughout. The first unit 

was a loosely packed, rich brown color classified as 10 yr 2/2, that extended from 0-37.1cm 

(boundary A, fig 3.1). Between 37.1 cm and 38.5 cm thin grey bands with a color classification 

of GLE yr 1-5, N were present within the same material for the previous section (boundary B, fig 

3.1). Sediments between 37.1 cm and 38.5 were packed slightly more densely. From 38.5 cm to 

39 cm there was a distinct continuous grey layer with the color classification of GLE yr 1-5, N 

(boundary C, fig 3.1). This material in this five millimeter band was the densest material seen in 

core MP-02-19. From 39 cm to 47 cm a deep red layer was present classified as 10 yr-2.5/1. The 

layer from 39 cm to 47 cm was rich in color and had a distinct change from previous layers in 

color. The material has a slim discontinuous layer that was orange classified as 10 yr 5/6. This 

material was very lose and did not hold its shape well. See figure X for images of the core and 

figure X for an interpretative diagram.  
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Figure 3.1: Photos of core MP-02-19. Four photos are present left to right of the core in 20 cm 

increments. The overall core can been seen in the bottom image. 

3.2 Loss on Ignition (LOI) (fig 3.2) 

 The highest LOI values were between 42 cm and 46 cm with values of 61, 59 and 62 

respectively. The lowest value was at 38 cm with an LOI of 32%. Worthy of note is LOI values 

change along the lines of material changes previously described. GLE yr 1-5,N gray layer was 

located from 38.5 cm to 39 cm. This layer was the densest material noted in the core and where 

significant decrease occurred in LOI. The overall trend of the LOI data revealed relatively 

consistent values between 0 and 38 cm.  

3.3 Water Content (fig 3.2) 

The percent water for MP-02-19 had consistently high values throughout the core. The 

maximum water content in the core was 94  percent, at centimeter 44 in the core.  It is worth 

noting that the orange 10 yr-5/6 discontinuous layer seen in the core was within close proximity 

to the maximum water content. The orange material was the previously noted as the least dense 

material in the core.  
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 The minimum water content value was at the 38 cm with a percent water value of 89 

percent. It is worth noting that the GLE yr 1/5, gray layer was located from 38.5 cm to 39 cm. 

This layer was the densest material noted in the core.  

3.4 Magnetic Susceptibility (fig 3.2) 

 The maximum value seen for magnetic susceptibility was located at 30 cm and had a 

value of -0.3 SU. The lowest values seen throughout the core had a value of -2.6 SU, seen at 4 

cm and 5cm. Values were within similar ranges from 47 cm to 36 cm. A substantial spike 

occurred from 36 cm to 37 cm with values of -1.3 SU and -0.7 SU respectively. Values remained 

high until 31 cm where a decreasing trend occurred to the lowest values located near the top 10 

cm of the core.  

3.5 Bulk Density (fig 3.2) 

The maximum bulk density values seen were at 39 and 28cm with a value of 0.0973 

g/cm3 of 0.0965 g/cm3 respectively. The minimum value seen for the core was located at sample 

46 cm with a value of 0.0496 g/cm3. The bulk density displayed wavering trends for the bottom 

half of core (26 cm to 47cm). The upper half of core (0 cm to 26 cm) had values with a smaller 

overall range. 
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3.6 Lead Analysis  

The maximum value seen for lead concentration in the sediment core was 3918 mg/kg at 

the 34 cm. There were two other peaks close to the maximum with values of 3793 mg/kg and 

3755mg/kg at the 35 cm and 37 cm respectively. The minimum value seen was 8 mg/kg at the 

46th centimeter. From 41 cm to 47 cm the values did not increase above 62 mg/kg.  

 At the top of the sediment core, the lead concentration were around 2000 mg/kg 

increasing down towards the lower 30 cm section of the core where the peak values were seen. 

There was a rapid decrease starting at the 37 cm. The values decreased from 3755 mg/kg, 1076 

mg/kg 274 mg/kg 274mg/kg and 20 mg/kg from the 37th centimeter to 41st centimeter 

respectively. After the drastic decrease the values remained low for the remainder of the core.   

 

Figure 3.3: Plot of lead concentration. The Y-axis is core depth in centimeters. The X-axis 

represents lead 220 concertation in core MP-02-19. 
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3.7 Nine Potential Toxic Elements   

Given the goal of analyzing the environmental impact that the Mascot Mine had on 

Mascot Pond and its surrounding environment, eight other metal concentrations are reported. The 

total of nine metals reported on are all potential toxic elements depending on concentration and 

element itself. Below is the concentration graphs for As, Cd, Cr, Cu, Fe, Mg, Ni, Pb and Zn (fig 

3.4).  Looking at all metals there are peaks in concentrations at 35  2 cm. All metals show 

consistently low concentrations from 47cm to 40cm. Above 33 cm concentrations remain higher 

then seen from 47cm to 40cm, however are lower than peak concentrations. The values from 35 

 2 cm to 0 cm follow a slight decreasing trend. Refer to appendix A for specific concentrations 

values. These metals are elements that make up the major minerals seen at Mascot Mine and 

were targeted for extraction. When looking at the scale (fig 3.4) these metals increasing from 

values two orders of magnitude smaller than they were at their peak. The influence of mining 

practice must examined.  
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Figure 3.4 
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 3.8 Water Sample Field Results 

Water samples MPWS-03-19, MPWS-04-19 and MPWS-05-19 all were taken from the 

waters of Mascot Pond and display similar results with regards to temperature and specific 

conductivity (table 3.1). The highest temperature was MPWS-03-19 with 1.61 degrees Celsius. 

The lowest was .82 degrees Celsius taken at the far end of the pond (MPWS-04-19).  

The maximum specific conductivity value was .036 μS/m and the minimum was .024 

μS/m. The specific conductivity values (SpC) were low and had similar values. The range of the 

data was .012 μS/m. MPWS-06-19 taken from the nearby stream had a specific conductivity 

value of .028 μS/m, in between the maximum and minimum of Mascot Pond.  

The maximum dissolved oxygen value was 25.92 mg/L taken at MPWS-03-19, near the 

beach of the pond. The minimum value was seen at the entrance end of the pond with a value of 

17.01mg/L. MPWS-06-19 had a value in between the maximum and minimum for Mascot 

Pond’s values. The results for dissolved oxygen may be flawed as they are higher than 

anticipated. Potentially the calibration was improperly done for the dissolved oxygen component 

of the hydrolab.  

The pH measurements were relatively similar. The highest value seen was at the nearby 

stream with a pH of 6.70. The pH values of the three samples from Mascot pond were lower with 

a maximum of 5.39. The minimum pH value was 4.70. The range among values for Mascot pond 

was 0.69.  

Sample: Water 

Depth: 

Temp (°C): SpC (μS/m): DO (mg/L): pH 

MPWS-03-19 40cm 1.61 .027 25.92 5.00 

MPWS-04-19 20cm .82 .036 19.56 4.70 

MPWS-05-19 60cm .89 .024 17.01 5.39 

MPWS-06-19 10cm -.15 .028 18.42 6.70 

Table 3.1 Hydrolab data from Mascot Pond. Temperature, specific conductivity, dissolved 

oxygen and pH are displayed with sample they were taken from. The water depth at the sample 

location is also displayed. 

3.9 Water Sample Laboratory Results   

Nine Elements are reported for the respective concretion seen within all six water 

samples. Arsenic, Cadmium, Chromium, Copper, Iron, Magnesium Nickel  and Lead all had non 

detectable (N-D) concentrations for all six water samples. The only element with detectable 
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amounts was Zinc. Zinc concentration were only seen within the five water samples from Mascot 

Pond. There was no amount detected for MPWS-06-19 taken at the nearby stream. The 

maximum value (0.463 ppm) was seen at MPWS-03-19 at the tailing beach and the minimum 

value (0.173 ppm) was seen at MPWS-01-19  

 

PTE   As Cd Cr Cu Fe Mg Ni Pb Zn 

MPWS-
01-19 

(N-D) (N-D) (N-D) (N-D) (N-D) (N-D) (N-D) (N-D) 
0.173 

MPWS-
02-19 

(N-D) (N-D) (N-D) (N-D) (N-D) (N-D) (N-D) (N-D) 
0.325 

MPWS-
03-19 

(N-D) (N-D) (N-D) (N-D) (N-D) (N-D) (N-D) (N-D) 
0.463 

MPWS-
04-19 

(N-D) (N-D) (N-D) (N-D) (N-D) (N-D) (N-D) (N-D) 
0.358 

MPWS-
05-19 

(N-D) (N-D) (N-D) (N-D) (N-D) (N-D) (N-D) (N-D) 
0.425 

MPWS-
06-19 

(N-D) (N-D) (N-D) (N-D) (N-D) (N-D) (N-D) (N-D) (N-D) 

Table 3.2: Results from ICP-OES metal concentration analysis for all six water samples. Note 

“N-D” represents non detectable values. 

Discussion 

4.1 Baseline Lead Deposition From the Watershed 

The bottom section of the sediment core MP-02-19 contains lead concentrations that 

represent natural occurring levels within the geologic region. Based on 11,316 soil samples, pre-

industrial soils in the Appalachian geological region have an average lead concentration value of 

15.3±17.5 mg/kg (Saint-Laurent et al, 2010). Mascot Pond resides within the Appalachian region 

in which 15.3±17.5 mg/kg is the natural lead level. Sections 40-47 cm in core MP-02-19 have an 

average lead concentration value of 26.3 ± 20.05 mg/kg.  

The last sample section of the core at 47 centimeters has a lead concentration value of 

62.7 mg/kg which is significantly higher than any of the previous concentrations in the six 

centimeters above. The mean value of samples from 41-46 cm is 20.3 mg/kg, whereas including 

the 47 cm sample the average value is 26.3 mg/kg. The high value at 47 cm may be a result of a 

natural unloading process into the watershed. For an example it is possible that more lead was 

mobilized from a forest fire event. 
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It is important to recognize that the pre-industrial average lead value for the Appalachian 

region (15.3±17.5 mg/kg) and average lead concentration for the bottom seven centimeters of the 

core at Mascot Pond (26.3 ± 20.05 mg/kg) are within one standard deviation of each other. This 

suggests there is statistically no difference between the lead concentration at the bottom of the 

core for Mascot Pond and the established baseline lead concentration for the region. A 

conclusion can be made that the bottom seven centimeters of the core represent natural lead 

concentrations.  

A marked increase in lead concentrations begins at 40cm. The first non-baseline lead 

concentration is 274.6 mg/kg for both 40cm and 39cm. The 38 cm section has a lead 

concentration of 1076.5 mg/kg. The peak lead concentration is 3918.91 mg/kg at the 35 cm. 

These abrupt changes in lead concentrations in a relatively short distance are not natural 

occurring lead concentrations for this region. This data suggests that there was some sort of 

anthropogenic influence on the area because they cannot be classified as natural. The start of 

mining is attributed to this significant increase.  

4.2 Age Model 

The lead levels seen from 47cm to 40 cm are classified as natural levels. Due to the rapid 

increase in lead concentrations after 40cm, samples above correspond to a time period after the 

opening of the lead mine in 1881. The top of the sediment core (0 cm) is assigned to year 2019 

when the core was sampled. From the interpreted change in natural lead concentration and the 

known opening of the mine a calculated sedimentation rate can be determined. Assuming 40 cm 

represents the beginning of mining at Mascot Mine (1881), the calculated sedimentation rate for 

Mascot Pond is 40cm/138 years or 0.30 cm/yr. 

A nearby pond is recorded to have a similar sedimentation rate as the one calculated for 

Mascot Pond. Sessions Pond is located in Drummer, New Hampshire approximately 30 miles 

north of Mascot Pond (fig 4.1). Sessions Pond is located slightly west of the Androscoggin river. 

Through lead 210 activity in the soil, the constant rate of supply model was utilized and a 

sedimentation rate was determined for Sessions pond. In 1998 the established Sessions Pond’s 

sedimentation rate was 0.35 cm/yr (Kamman et. al, 2002). Sessions Pond displays relatively 

similar bathymetrical make up to Mascot Pond (fig 4.2, fig 1.1). Sessions Pond has a watershed 

area of 378 ac and surface area of 43 ac. The resulting watershed to surface area ratio is 1-8.79 

ac. Mascot Pond has a watershed are of 92 ac and a surface are of 12 ac. Mascot Pond’s resulting 
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watershed to surface area ratio is 1-7.67 ac. Though Sessions Pond is larger than Mascot Pond, 

both display similar watershed to surface area ratios. Given the similarity in sedimentation rate 

and relatively close proximity to Mascot Pond the established sedimentation rates at Sessions 

Pond supports the findings for the sedimentation rate at Mascot Pond.  

 

Figure 4.1: Map displaying relationship of Sessions Pond to Mascot Pond. Map was generated 

using "Caltopo". 
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Figure 4.2: Map of Sessions Pond in Drummer New Hampshire displaying topographical make up. Map from New Hampshire 

Fish and Game depth maps of selected NH lakes and ponds database. 

4.3 Mascot Pond was Likely Dammed and is Spring Fed 

Mascot Pond was likely dammed. This conclusion can be attributed to the visible feature 

in the lidar data, displayed in a hill shade map of Mascot Pond and surrounding area (fig 4.3). A 

dam was also found during field collection days in fall 2019 (fig 4.3). Mascot Pond is also likely 

spring fed. This conclusion can be made from not being able to see any surface inputs when 

analyzing the hill shade imagery. Also while exploring Mascot Pond in the fall of 2019 there was 

no visible tributary sources found. Worthy of note, the hill shade imagery revealed an alluvial 

fan (fig 3.3). However after field analysis, it is clear that the alluvial fan ends in a wetland that is 

situated in a topographical low not associated with Mascot Pond and ultimately drains to a 

nearby stream. The water sources from the alluvial fan are not inputs to Mascot Pond. Therefore 

Mascot Pond is spring fed.  
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Figure 4.3 Image showing hill shade imagery and dam found on field collection days. Note the 

red circle is the dam on hill shade imagery. Pictures of dam at the outflow of Mascot Pond are 

on right. Pictures were taken on November 13th 2019 the second day of field work. Left image 

shows dam feature from shore of pond. Right image was taken on dam feature showing width. 

The bottom of the alluvial fan can be seen directly above sample MPWS-05-19. 

 

4.4 Chemical Weathering of Minerals at Mascot Mine 

From the mining process that started in 1881 (Reuben, 2012) a large amount of bedrock 

material was pulverized and stored in tailings piles. Pulverizing the bedrock increases the surface 

area of the previous unaltered bedrock as well as exposes material to the atmosphere and 

precipitation. As water comes into contact with the tailings pile at Mascot Mine, dissociation 

occurs. Given the large quantities of sulfide rock containing minerals such as galena (PbS), 

sphalerite ((Zn,Fe),S), chalcopyrite (CuFeS2) and pyrite (FeSs) (Cox, 1970) oxidation of sulfides 

gives rise to the mobilization and migration of trace metals from the mining waste into the 

environment (Candeias et. al 2015) (fig 4.4). As the dissociation process occurs heavy metals are 

released as well as acidic byproducts (fig 4.4). 

The result from when dissociation occurs is acidic waters rich in metals. This is evident at 

Mascot Pond. There are two supporting trends within the data collected for dissociation 

occurring at Mascot Pond. The first, a significant increase can been seen in all nine metals (fig 

3.4) when the mining period started (40cm). Secondly, Mascot Pond has a relative acidic pH 

compared to nearby water sources (table 3.1). 

Significance of pH at Mascot Pond 

Scavenging of metals such as the nine reported on are pH dependent. Specifically heavy 

metals are pH dependent like zinc, lead and cadmium (Stumm et. al, 1996). The measured pH at 

Mascot Pond can reflect the dissociation process occurring. As water comes into contact with 

sulfur bearing minerals a chemical reaction occurs (example fig 4.4). The results of this chemical 
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reaction includes metal ions as well as hydrogen atoms. Hydrogen atoms are mixed with the 

water of Mascot Pond, resulting in an increase in acidity. The pH at Mascot Pond has an average 

pH value of 5.03. The values can be classified as relative acidic for the nature of the pond. When 

looking at the neighboring stream’s pH (sample MPWS-06-19) of 6.70 the, low pH of Mascot 

Pond must be attributed to dissociation processes. In contaminated waters such as Mascot Pond, 

containing highly dissolved sulfate from sulfide bearing rocks, such as those associated with acid 

mine drainage, free Pb2+ is the dominant species seen where the body of water is below a pH of 

about seven (“National”, 2017). So ultimately the lowered pH at Mascot Pond supports the high 

concentrations of metals seen in the sediment. There is an overall relationship that can be seen 

between the pulverized sulfide bearing rocks, local precipitation, the water’s pH levels at Mascot 

Pond and the metals seen in the sediment (fig 4.4).  

4.5 Uptake of Metals by Particulate Matter 

 When metals are introduced to a natural body of water they interact with solutes as well 

as inorganic and organic (phytoplankton) particles (Stumm and Morgan, 1996). The way in 

which the particles settle within the water is from the affinity of the reactive metals and the 

qualities of the water body. This may determine the relative residence time of the elements in the 

water (Stumm and Morgan,1996). As the heavy metals such as Pb 2+ are transported to the water 

they bond with particulate matter because the particulates are negatively charged and the metals 

are positively charged (fig 4.4). Both organic particles (algae) and inorganic particles have a role 

in binding, assimilation and transport of reactive elements (Stumm et. al, 1996). The 

overwhelming influence of metals from the source (tailings piles) results in a large uptake of the 

metals by particulates like organic material. The process is clearly evident at Mascot Pond (fig 

4.4). 

Lower concentrations of metals and smaller flux rates will display a relative small impact 

on the water column and sediment. This is due to the efficiency of settling, absorbing, 

scavenging and assimilating particles (Stumm and Morgan, 1996). Larger amounts of metals 

inputs will change the water column and concentration within the sediment because there is an 

overload on the system. At Mascot Pond there is an overwhelming spike in metal concentrations 

in the sediments differing from baseline natural concentrations for the area. This is because the 

mine caused an overload. Based off of the composition of the bedrock material there was the 
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opportunity for the dissociation process to occur and products then bond with particulates in 

Mascot Pond (fig 4.4).  

 

 

 

Figure 4.4: Dissociation and bonding process for metals in Mascot Pond. Left to right. Bedrock 

is exposed through mining. Precipitation and exposed minerals create opportunity for 

dissociation. Resulting particles are transported though ground water sources. Heavy positively 

charged metals bond with negatively charged particulates. Particulates bonded with metals fall 

and form sediment record. 

 

4.6 Periodic Timeline of Mascot Pond 

Figure 4.6 displays an interpretive timeline of Mascot Pond. Section A illustrates what 

pre-human impact on Mascot Pond and Mount Hayes would look like (pre 1881). Note the water 

level is lower than post-human impact (sections B, C, D) and no mining on Mount Hayes is 

visible. Section B represents the post 1881 era when the mining had started at Mascot Mine. 

Note that audit mining occurring exposing inner bedrock to air and precipitation. Also note the 

water depth increases due to the damming of the outflow of the pond. Section B also displays the 

inflow of water into the pond with lower acidity and heavy metal transport. Tailings are also 
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visible. Section C represents the time period after the mines closing to present day. Note the 

minerals continue to dissociate and allow for metals to enter Mascot Pond. The water remains 

acidic. Note metal accumulation is occurring in the sediment at the bottom of the pond. Sulfide 

rich minerals are known for creating acid mine waste for years after mines have closed (Candeias 

et. al, 2015). The environmental impact from this process can be damaging as well prevalent for 

decades after mine operations end. With exposed tailings piles the opportunity for this process is 

still present. Section D represents present day where the highest amount of accumulation of 

heavy metals would have occurred. Even though mining ended 138 years ago the residual 

minerals are still exposed continuing the chemical weathering process.  
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4.7 Relative Severity of Metal Concentrations Seen at Mascot Pond 

Metals such as copper, chromium, iron, magnesium, nickel, and zinc are essential 

nutrients for human biological function (Tchounwou et. al 2012). Inadequate supply of these 

metals can cause deficiencies and health effects. Overdose of these metals can also cause health 

problems. Other metals tested for in this study such as arsenic, cadmium and lead are not needed 

for biological processes and are toxic. In biological systems metals in high concentrations or 

toxic metals can affect and alter cell membrane, mitochondrial, lysosome, endoplasmic 

reticulum, nuclei, and some enzymes involved in metabolism, detoxification and damage repair 

processes (Tchounwou et. al 2012).  

It is important to recognize the full extent that the Mascot Mine had on the area. The 

following is a table showing nine metals displaying the maximum concentration, minimum 

concentration and current (surface) concentration. The EPA public health goal for water 

contamination is also included as well as the EPA regional screening level for superfund sites in 

residential soils.  

Though there was significant impact and change from the natural environment from 

Mascot Mine, most metal concentration values are not worry for concern. For all five water 

samples taken from Mascot Pond, the only detectable metal was zinc. The mean value of all five 

zinc samples was .3488 mg/kg (ppm). This value is lower than the EPA public health goal water 

quality standards for zinc at 5.0 ppm. Therefore the actual water of Mascot Pond does not 

contain any of the nine potentially toxic elements at dangerous concentrations.  

 The sediment of Mascot Pond has high metal concentrations that are a result of Mascot 

Mine. This may be cause for concern. Once metals from mines are dispersed within the local 

environment toxic effects are often observed (Candeias et. al, 2015). The metals that exceed 

recommended levels are arsenic, cadmium and lead. This is based off of the surface values for 

these metals being higher than the recommended EPA regional screening level for superfund 

sites in residential soils. It is important to recognize that that no humans inhabit the area and the 

sediments are contained at the bottom of the pond.  
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Table 4.1 EPA Public health goal water quality standards (mg/l) (ppm), EPA regional Screening 

level for superfund Sites, Residential Soil (ppm), Minimum Value Seen (mg/kg) (ppm), Maximum 

Value Seen (mg/kg) (ppm) and Surface Value 2019 (mg/kg) (ppm) for all nine potential toxic 

elements reported on. 

 

4.8 Conclusion and Future Work 

 The goal of this study was to examine the impact that Mascot Mine had on Mascot Pond. 

In concluding with this project it is evident that Mascot Mine undoubtedly changed Mascot Pond 

and its surrounding environment. Mascot Pond has not gone back to its relative natural state and 

may never return. Mascot Pond is altered by having high metals concentrations and relatively 

acidic waters. Mascot Mine can be used as a small scale model of how larger mines impact their 

environment. Future work may include analysis of the two other sediment cores taken at Mascot 

Pond. Future work may also entail analysis of ground water. Lastly future work could entail  

performing detailed isotope reconstruction on the sediments from Mascot Pond.  
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Appendix A: Average Concentration Values for Nine Reported Metals: 
Appendix A is a complete table of the average metal concentration analysis for the nine reported 

metals in this report with respect to core depth. 

  

Core Depth As1890 Cd2265 Cu3247 Cr2835 Fe2599 Mg2795 Ni2216 Pb2203 Zn2138
1 7.78 70.59 245.12 8.21 6784.78 571.27 12.25 1914.64 4021.54
2 5.92 81.63 250.15 8.53 6149.59 559.59 12.20 2064.63 4542.98
3 13.57 76.08 234.45 8.05 5144.96 554.16 11.06 1923.70 4577.21
4 11.15 75.39 232.13 7.63 4866.12 563.02 10.87 1904.57 4368.83
5 14.09 91.30 268.47 9.21 5391.58 648.28 13.03 2248.84 4712.10
6 12.93 96.67 284.68 9.56 5608.01 709.68 14.20 2377.69 4716.13
7 10.39 86.29 251.26 8.19 4854.04 599.36 12.34 2061.61 4599.36
8 13.78 84.45 246.83 8.32 4644.65 618.99 12.19 2085.77 4624.52
9 13.62 89.05 246.12 8.14 4658.75 578.62 11.71 2158.24 4733.24

10 14.32 94.06 249.25 8.61 5151.00 616.87 13.06 2222.67 4780.55
11 13.56 90.89 243.00 8.72 5155.02 593.92 11.98 2203.54 4754.38
12 13.16 77.97 243.55 8.77 5123.96 647.63 12.81 2046.33 4298.92
13 15.01 90.26 262.45 8.86 5693.96 654.24 13.84 2148.95 4392.40
14 15.98 85.30 250.66 8.80 7109.33 625.48 14.47 2132.70 4625.08
15 14.65 75.02 239.59 9.22 7150.99 649.56 13.29 1969.11 4331.44
16 17.04 81.62 265.90 10.62 8144.69 751.37 24.30 2279.01 4469.62
17 15.14 80.16 238.67 8.86 7459.87 629.95 13.03 2052.43 4466.57
18 20.54 112.48 325.75 12.53 10312.94 851.55 17.74 2708.80 4904.49
19 15.63 86.93 249.75 9.47 7929.28 658.00 12.95 2121.52 4585.45
20 16.04 86.89 255.64 9.44 7728.10 678.11 12.59 2166.23 4631.17
21 15.94 89.67 256.25 9.72 7712.86 668.66 13.68 2155.05 4652.51
22 18.14 98.33 279.21 10.54 8557.20 745.07 14.04 2309.49 4692.14
23 16.57 93.68 258.38 10.35 8010.57 718.96 14.10 2257.67 4816.09
24 16.85 98.35 275.45 10.17 8263.56 715.10 13.65 2327.78 4727.70
25 19.26 113.19 296.79 11.12 9361.92 736.94 13.86 2423.29 4924.81
26 23.89 143.47 370.76 13.84 11400.12 900.22 17.59 3045.11 5270.27
27 20.99 129.45 319.45 12.33 10312.94 828.79 16.46 2717.94 5240.80
28 24.54 153.93 380.92 14.49 12233.29 949.10 18.00 3135.54 5483.64
29 21.72 140.72 344.75 12.88 11125.79 844.14 16.11 2811.42 5329.20
30 21.78 159.42 375.43 13.30 12050.40 855.01 16.12 3014.63 5658.40
31 20.04 145.70 340.68 13.05 11857.35 801.26 14.94 2764.68 5490.75
32 21.22 188.58 380.11 13.29 13127.41 792.62 15.10 2995.33 6091.24
33 22.90 202.80 386.81 12.71 11796.38 764.07 14.62 3001.42 6364.56
34 33.41 254.72 507.93 17.29 16195.90 1017.07 19.27 3918.92 6880.72
35 36.06 252.93 520.46 19.46 18034.53 1129.82 23.96 3793.43 6709.66
36 26.23 174.16 379.13 12.33 12257.51 773.50 12.94 2970.58 5969.94
37 34.97 110.21 470.26 9.35 10298.44 736.09 8.25 3755.06 5082.07
38 13.23 12.63 128.22 4.85 4788.96 525.69 3.45 1076.53 2359.84
39 4.60 3.70 45.65 4.26 2505.86 551.27 8.72 274.67 1106.37
40 3.94 2.31 47.45 3.27 2118.95 490.73 3.28 274.57 850.14
41 1.75 -0.87 17.69 2.52 1885.53 547.32 5.34 20.05 196.12
42 1.74 -0.54 21.39 3.70 1926.03 572.27 4.23 16.94 250.48
43 2.08 1.07 27.42 3.42 1921.77 595.18 5.15 44.82 603.18
44 1.34 -0.45 17.70 2.71 1548.71 501.39 3.95 21.64 318.27
45 1.73 -1.01 17.64 3.13 1759.75 544.23 2.72 10.03 303.99
46 1.23 -1.31 16.53 2.80 1612.66 526.33 4.46 8.10 398.10
47 1.84 0.18 23.82 3.04 1774.67 521.53 3.24 62.72 724.05
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Appendix B: Values for Core MP-02-19: Loss on Ignition, Percent water, Bulk 

Density and Magnetic Susceptibility  
Appendix B is a complete table of the values for Loss on Ignition, Percent water, Bulk Density 

and Magnetic Susceptibility with respect to core depth. 

 

Core Depth Loss on Ignition Percent Water Bulk density (g/cm^3) Magnetic Susceptibility
1 48.01 91.52 0.0854 -1.6
2 45.86 91.66 0.0689 -2.4
3 43.43 92.14 0.07 -2.5
4 43.48 92.37 0.0713 -2.6
5 41.10 92.73 0.0725 -2.6
6 43.18 92.97 0.0718 -2.2
7 41.58 93.03 0.0659 -2.2
8 40.92 92.89 0.0699 -2
9 40.79 92.88 0.0657 -2.2

10 42.61 93.12 0.0643 -2.1
11 40.81 92.69 0.0566 -2.1
12 40.61 92.84 0.0623 -1.9
13 40.16 92.84 0.064 -2.2
14 40.59 92.33 0.0648 -2.3
15 38.84 92.37 0.0654 -2.2
16 40.73 92.82 0.0626 -2.1
17 37.97 92.33 0.0669 -1.8
18 38.04 92.41 0.0757 -1.8
19 39.06 92.15 0.0681 -1.6
20 38.89 92.26 0.0738 -1.7
21 -1.6
22 38.97 92.05 0.0716 -1.4
23 -1.2
24 37.61 91.73 0.0763 -1.4
25 -0.9
26 37.19 91.10 0.0761 -0.8
27 -0.6
28 36.79 90.59 0.0973 -0.6
29 -0.9
30 37.66 91.20 0.0539 -0.3
31 -0.4
32 36.31 91.07 0.0851 -0.6
33 -0.5
34 33.69 89.55 0.0846 -0.4
35 -0.7
36 34.79 89.71 0.0779 -1.3
37 37.72 90.39 0.0851 -1.7
38 32.81 89.39 0.089 -1.9
39 38.96 91.33 0.0965 -1.7
40 49.93 92.98 0.0761 -1.9
41 -1.4
42 61.66 93.59 0.0553 -1.3
43 -1.7
44 59.01 94.19 0.0583 -1.4
45 -1.3
46 62.10 93.96 0.0496 -1.5
47 58.91 93.73 0.0645 -1.6
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