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Amherst, Massachusetts 01003, U.S.A.
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ABSTRACT

A new relative sea level curve for the Robeson Channel area contrasts with previously pub
lished curves for the area by inferring that rapid emergence may have commenced at
ca. 7400 BP, as much as 1200 yr earlier than previously predicted. Subsequently, uplift may
have occurred at much lower rates from ca. 6000 BP to present. A comparison of shell dates
used for the relative sea level curve and dates on disseminated total organic carbon (TOC)
fraction from lacustrine and marine sediments from sediment cores from emerged coastal
lakes shows wide discrepancies. Furthermore, several inifinite TOC dates (>27,750 to >40,600
BP) from glaciomarine sediments may imply that the region was ice-free during the last glacial
maximum, but the validity of the TOC dates from the sediment cores is questionable due
to variable contamination with redeposited detrital organic matter.

INTRODUCTION

Northeastern Ellesmere Island is separated from north
west Greenland by Robeson Channel, in places by as little
as 24 km (Figure 1). Thus, it is a critical location for
studying past interactions of Greenland and Ellesmere
Island ice masses and evaluating models of High Arctic
ice extent during the Last Glacial Maximum (LGM, ca.
18,000 BP). According to the "maximum" ice model, the
Canadian Arctic Archipelago was covered by the Innui
tian Ice Sheet at ca. 18,000 BP, and was confluent with
the Laurentide Ice Sheet to the south and the northwest
Greenland Ice Sheet over northern Nares Strait (Blake,

©1989 Regents of the University of Colorado

1970; Hughes et al., 1977; Denton and Hughes, 1981).
Conversely, the "minimum" ice extent model depicts a
more limited expansion of highland and plateau ice
masses separated by ice-free areas (cf. Dyke and Prest,
1987). In this model interior Ellesmere Island ice, part
of the Franklin Ice Complex, expanded only onto the
Hazen Plateau and to major fiordheads (England, 1976a,
1983)while northwest Greenland ice expanded into Hall
Basin (England, 1985) leaving an ice-free corridor as
much as 100km wide at the glacial maximum. In the iso
static downwarp between the two ice sheets, the "full-
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glacial sea" (England, 1983)transgressed into coastal low
land basins along Robeson Channel. Resulting marine
limit shorelines (at approximately 110 to 120 m asI) date
between 8000 and 11,000 BP (England, 1983; Retelle,
1986a). Holocene marine deposits overlie drift of a pre
vious glaciation tentatively associated with the advance
of Greenland ice onto Ellesmere Island. The age of this
advance was estimated to be :::: 80,000 BP (England et al.,
1978; Retelle, 1986a).

Cores of lacustrine and marine sediments from the
coastal zone in this area serve two purposes. First, a mini
mum estimate for the duration of marine sedimentation
in the ice-free corridor may be established by radiometric

dating of the basal portions of marine sediments in the
cores. Second, dating of the marine to lacustrine transi
tions in the cores (cf. Kaland et al., 1984; Svendsen and
Mangerud, 1987)allows comparisons to be made with the
isostatic uplift chronology determined from studies of
radiocarbon-dated raised marine features (England, 1982,
1983; England and Bednarski, 1986).

In this paper, we examine the relative sea level chron
ology along a section of Robeson Channel on northeast
ern Ellesmere Island, N.WT., by comparing radiocarbon
dates on shells from raised marine sediments with dates
from organic matter and shells in marine-to-lacustrine iso
lation sequences in sediments obtained by coring in three

Lincoln Sea

FIGURE 1. Location map of the field area on northeastern Ellesmere Island bordering Robeson Channel.
Shaded pattern denotes present glacier ice. Hatchured pattern denotes last glacial ice margins proposed
by England (1983).
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interconnected lake basins situated below the Holocene
marine limit. The primary result of this study is a new
relative sea level curve for the Robeson Channel area. The
new curve conflicts with the previously published emer
gence curve for the area (England, 1983) and suggests that
sea level may have been as much as 60 m lower at ca.
6000 BP than predicted by the previous study. A second
result of the study is a critique of radiocarbon dates on
the total organic carbon (TOC) fraction of lake sediments
obtained by coring emerged lakes. The TOC fraction of
the sediments yielded substantially older dates, relative
to shells contained within the sediments and correlative
dated raised marine sediments. We demonstrate that the
samples from the basin are, in part, contaminated by old
carbon and the TOC dates are suspect. However, several
samples of marine sediments from the base of the sedi
ment cores yielded infinite ages and imply that the area
may have been ice-free during the Last Glacial Maximum.

FIELD AREA

The study area is located on northeastern Ellesmere
Island along Robeson Channel (Figure I). Coastal embay
ments and fiords in this region are incised into the western
edge of the Hazen Plateau. The bedrock of the plateau
consists primarily of interbedded calcareous and dolo
mitic graywacke, siltstone, and shale of the lower Paleo
zoic Imina Formation (Trettin, 1971). Locally on the
plateau, generally flat-lying outliers of Tertiary-age
Eureka Sound Formation unconformably overlie the
steeply dipping lower Paleozoic rocks. These outliers are
nonmarine, poorly lithified sediments and consist prin
cipally of conglomerates, sandstones, siltstones, and

shales. Coal beds up to 6 m thick have been mapped in
this unit at Watercourse Bay, 10 km north of Lady
Franklin Bay (Miall, 1982) and up to 3 m thick in Tertiary
age sediments near Lake Hazen, approximately 90 km
to the west (Christie, 1976).

The dissected plateau upland is a sparsely vegetated
xeric environment, where thin, blocky till and felsenmeer
mantle the bedrock topography. Interior valleys are
floored with glaciofluvial and glaciolacustrine deposits
and are more vegetated than the bordering uplands. The
lowlands below the marine limit contain fossiliferous
marine sediments overlying till and bedrock.

Sediment coring was undertaken at three lakes below
the Holocene marine limit (116 m asl) in a coastal embay
ment along Robeson Channel (Figure 2). The three lakes,
informally referred to as Beaufort Lakes 1,2, and 3, are
located at 12,34, and 39 m asl, respectively. Lakes 2 and
3 appear to have emerged as one lake from the sea; a
prominent sill at 40 m asl surrounds the margins of both
lakes. One of several terraces, ranging in elevation from
13 to 20 m asl, may have served as the isolation threshold
for Lake I.

The three lakes range in size from approximately
0.5 km in length to a maximum of 1.5 km and are as
much as 30 m deep. Lake 2, the farthest inland, is the
largest and deepest and receives the major inflow into the
basin from two streams that are fed primarily by snow
melt from mid-June to early August. Lake 3 is the
smallest and shallowest (10 m) of the three lakes and has
no major inlet stream. Lake I receives the combined
inflow from Lakes 3 and 2.

Mt.
Beaufort

N

-1-
glaciomarine sediment

.~:

~=~~ glaciolacustrine sediment

r\n glaciofluvial sediment

o till- bedrock uplands

.t16m Holocene marine limit
8050± 120 B.P.; 8255±215B.P.

.213m glaciolacustrine beach
>33,000 B.P.

FIGURE 2. Map of the Beaufort
Lakes basin showing surficial
geology and location of Lakes
I, 2, and 3 at elevations of 12,
34, and 39 m asl, Triangles show
locations of dates on shells at
marine limit (116 m asl) and or
ganic material from inland pro
glacial lake (213 m asl),
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METHODS

Cores were removed from the lakes with a modified
Livingstone corer driven into the sediment with a chain
jack hoist. Consecutive core sections were recovered by
repeated drives through the same cased hole. The cores
were extruded in the field and wrapped in plastic film and
aluminum foil. Wrapped cores were placed in aluminum
troughs in insulated core boxes and stored at +4 0 C.

Samples for radiocarbon dating were cut from the cores
in 6- to 7-cm lengths. The outer few millimeters of sedi
ment were trimmed off to eliminate contamination by
smearing during coring or extrusion. The total organic
carbon (TOC) fraction of the sediment was dated at the
University of Saskatchewan and Smithsonian Institution
radiocarbon laboratories. Pretreatment of the sediment
samples included immersion in HCI to eliminate carbo
nate and boiling in 2070 NaOH. The NaOH-soluble frac
tion was removed and the fraction insoluble in NaOH

was retained for dating.
Shells from raised marine deposits were collected from

surface gravels on beaches and from silts below the
marine limit. Elevations of the lake basin thresholds were
determined by levelling survey. Shoreline and other raised
marine deposits were measured with a Paulin microaltim
eter and are hereafter noted in meters above sea level.
An average of three to five elevation measurements (pres
sure and temperature corrected) were obtained for each
sample station.

Three in situ shells from the core sediments were dated
at the National Science Foundation Tandem Accelerator
Mass Spectrometer (TAMS) radiocarbon dating facility
at the University of Arizona at Tucson and at the Uni
versity of Toronto Tandem Accelerator Laboratory
("Isotrace"). Samples were pretreated by immersion in
HCI (20% leach).

RELATIVE SEA LEVEL HISTORY

The Holocene isostatic emergence chronology for
northeastern Ellesmere Island has been studied by
England (1976b, 1983) and by England and Bednarski
(1986). England (1976a) originally constructed a series of
uplift curves that were corrected for eustatic sea level and
were similar in form to other "normal" uplift curves for
sites in the Canadian Arctic (Andrews, 1968, 1970). How
ever, England (1983) presented a new series of relative
sea level (RSL) curves that consist of three segments (Fig
ure 3, dashed curves CB and AL). Segment C of the
curves represents a period of stable relative sea level and,
by inference, isostatic and eustatic stability when the
Greenland and Ellesmere Island ice masses stood at their
last glacial limit. Segment B represents initial ice reces
sion with minor isostatic adjustment. During Segment A,
rapid emergence occurred at about 2 to 4 m 100 yr", as
a response to recession of the combined Ellesmere and
Greenland ice sheets.

The shape of the curves, and hence timing of emergence
periods, varies geographically due to proximity to the
dominant load of the Greenland Ice Sheet (curve CB,
Figure 3) versus the Ellesmere Island ice mass (curve AL,
Figure 3).

In this present study, a new relative sea level curve is
presented for the Robeson Channel area (Figure 3, solid
line RC). The upper portion of the curve is constrained
by radiocarbon dates on shells from raised marine sedi
ments. The portion of the curve below 40 m asl is con
trolled by three TAMS radiocarbon dates on marine shells
from isolation basin sediments. The new Robeson
Channel relative sea level curve is compared with the Cape
Baird (CB, Figure 3; one of a nest of similar-shaped
curves for the area around and south of Beaufort Lakes)
and Alert (AI, Figure 3) relative sea level curves presented
in England (1983).
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RAISED MARINE SEDIMENTS

Raised marine sediments occur in the inlets and valleys
of the field area up to the marine limit of 116 m (Eng
land, 1983; Retelle, 1986a). The marine limit shoreline
is defined by gravelly beach sediments that overlie the till
veneered bedrock of the valley sides in Beaufort Lakes,
South Basin, and the outer portions of Wrangel and
Lincoln bays (Figure 1) (Retelle, 1986a). In inner Wrangel
Bay, an undated delta complex probably graded to the
highest Holocene sea level. Inner Lincoln Bay was occu
pied by plateau ice until after sea level fell from marine
limit. After retreat of the plateau lobe, beaches were cut
into the ice-proximal faces of kame deltas that built into
an inland lake (Retelle, 1986a).

Discontinuous outcrops of fine-grained sediment flank
and fill the floors of the inlets and valleys up to marine
limit. The silts and fine sands are commonly overlain by
a gravel lag that represents an erosional concentrate and
in some cases distinct strandlines. Single and paired
mollusc shells occur on the surface lag; paired valves are
commonly found in growth position within the silt.

Several previously published dates (England, 1983) and
four new dates on shells from raised marine deposits
define the upper segment of the RSL curve. Glaciomarine
silts at 90 to 95 m, that grade upward to a gravelly wash
ing limit at 116 m asl at Beaufort Lakes contain in situ
shells dated at 8020± 120 (GSC-3041) and 8255 ± 215 BP
(S-1990). These dates were interpreted to represent the
age of the marine limit along Robeson Channel, equiva
lent to segment C of the "abnormal" relative sea level
curve presented for the area (England, 1983). In outer
Lincoln Bay, glaciomarine silts are exposed below 100 m
where a poorly defined gravel beach is overrun by soli
flucted till from the steep slope above. Silts at 91 m con
tained Bathyarca glacialis and Portlandia arctica in



growth position which dated 8600± 90 BP (SI-5551). The
sample most likely dates off-shore sedimentation when
the sea stood at the marine limit at or above 100 m.

Two shell samples from the South Basin which dated
7390 ± 90 BP (SI-5553) and 7490± 70 BP (SI-5554) are
from glaciomarine sediments that overlie the "old" till
topography. Sample SI-5553 was taken from a gravel
beach at III m, whereas SI-5554 was a collection of in
situ paired valves of Hiatella arctica, Mya truncata, and
Portlandia arctica found in silts at 65 m that are topo
graphically below a gravel beach at 110 m (Table 1).

Two samples from inner Lincoln Bay are different from
those cited above. The first collection (Portlandia arc
tica) was recovered from glaciomarine silt overlying ice-

contact stratified drift deposited in inner Lincoln Bay
from a spillover lobe of plateau ice (Retelle, 1986a). The
shells were in growth position in silt at 82 m asl below
a gravel beach platform (88 m) cut into the proximal, or
ice-contact, face of the delta and dated 7265± 215 BP
(SI-5552). Secondly, in situ shellsfrom silts at 78 m (below
a 90-m gravel beach) in a cirque basin 10 km north of
Lincoln Bay dated 7345± 75 BP (SI-5550). These sedi
ments overlie a moraine deposited by the same plateau
ice cap that spilled over into inner Lincoln Bay. Together,
the latter two samples show that the sea was excluded
from Lincoln Bay until plateau ice retreated from its
maximum extent at ca. 7300 to 7400 BP.
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FIGURE 3. Relative sea level curves for northern Ellesmere Island. Revised curve for Robeson Channel
area is solid line RC. Dashed lines are Cape Baird curve (CB) and Alert curve (AI) from England (1983).
Curve segments (A), (B), and (C) are after England (1983). Radiocarbon dates are numbered as in Tables
I and 2. Dates on shells from raised marine deposits are solid dots. Solid triangles are TAMS dates
on shells from Beaufort Lakes sediment cores. Solid squares are TOC dates from isolation horizons
in sediment cores. Rectangles drawn for dates (7, 8, 19, 6, 12) represent elevation range of terraces
that may have served as threshold for basin isolation. All dates are quoted with standard deviation
of I sigma except Geological Survey of Canada (GSC) dates which have 2 sigma. Dashed lines from
TOC date to curves represent correction factor applied by subtracting "apparent" surface age of sediment.

M. J. RETELLE ET AL. / 117



TABLE I
Radiocarbon dates on shells

Site Laboratory no.' Material Age BP Stratigraphy

Related
relative

sea level
(m)

I. Lincoln Bay
2. Lincoln Bay
3. Lincoln Bay
4. Beaufort Lakes'
5. Beaufort Lakes->
6. Beaufort Lakes"
7. Beaufort Lakes"
8. Beaufort Lakes
9. South Basin

10. South Basin

SI-5551
SI-5552
SI-5550
SI-1990

GSC-3041
TO-205
TO-206
AA-656
SI-5553
SI-5554

Shells
Shells
Shells
Shells
Shells
I paired valve
I paired valve
I paired valve
Shells
Shells

8600± 90
7265 ± 215
7345 ± 75
8255 ± 215
8450 ± 120
4150± 60
6280± 70
7060±670
7390± 90
749O± 70

Marine silt, 91 m
Marine silt, 82 m
Marine silt, 78 m
Marine silt, 90 m
Marine silt, 90 m
Marine silt from core (185 em)
Marine silt from core (210 em)
Marine silt from core (220 em)
Beach gravel, III m
Marine silt, 65 m

~IOO

88
90

:0; 116
:0; 116
~ 20
~ 40
~ 40

III
:0; 110

'Previously reported in England (1983).
bShell dates from Geological Survey of Canada and Isotrace Laboratory (University of Toronto) are here normalized to -25%,

similar to other dates which were not corrected.
cLllhoratory identification (for Tables I and 2). SI = Smithsonian Institution; GSC = Geological Survey of Canada; AA = Uni

versity of Arizona TAMS facility; TO = University of Toronto, Isotrace Accelerator Laboratory; S = University of Saskatchewan,
Saskatoon, Canada.

marine limit {8050i120
8255±215

CHANNEL

1
-lacustrine sediments

isolation sediments

.:(~:i marine sediments with
; ::~.:. mollusc shells

J8635±355
":':'.": 4150+60*
:.:::~. -
::~.:::
~:';' ~":' .:.:
::"0;':
;~:.> J13,925:!:1250

conventionol
t4C shell dates

* TAMS shell dates

J9730±330
?~it6280±70 *
:';/@': 7060± 660 *

;:'~:-:S:
-: .....:] > 38 500
I:'',,.. '
.:.~.

::.>:'":] > 40,600
'::";',':J > 27,750

2·2

12200.!185

4

3

o

2

(rn)

FIGURE 4. Radiocarbon dates on total organic fraction from sediment cores from Beaufort Lakes. Dates
with asterisk in cores 3-8 and I-I were done by TAMS method. Dates at 116 m are from shells in raised
marine sediments.
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TABLE 2
Radiocarbon dates on total organic carbon fraction of sediment from cores recoveredfrom the Beaufort Lakes

Relative
Interval sea level

Site Core (em) Lab no. Material Age BP Stratigraphy" (m)

11. Lake 1 1 6- 12 SI-5885 Clayey silt 4800± 195 L 12; :520
12. 1 177± 183 S-2339 Black sulfidic silt 8635 ± 355 L-M > 12; :520
13. 1 345-350 S-2340 Sandy silt 13925± 1250 M > 12
14. 3 182-188 S-2341 Black sulfidic silt 8065 ± 370 L-M > 12; :520

15. Lake 2 2 6- 12 SI-5886 Clayey silt 2200± 185 L >34
16. 2 426-432 S-2342 Black sulfidic silt 12340± 590 L-M >34
17. 2 475-480 S-2343 Sandy silt 23650± 3700 M 34

18. Lake 3 8 55- 56 S-2345 Organic silt 5120± 550 L >39
19. 8 198-205 S-2346 Black sulfidic silt 9730± 330 L-M 40
20. 8 297-305 SI- Sandy silt >38,500 M >39
21. 8 350-355 SI- Sandy silt >40,600 M >39
22. 8 391-395 S-2347 Sandy silt >27,500 M >39
23. 7 95-101 S-2344 Black sulfidic silt 13690± 815 L-M 40
24. 5 122-128 SI-5888 Black sulfidic silt 9150± 400 L-M 40

"L = lake sediment; L-M = lacustrine-marine transition; M = marine sediment.

ISOLATION BASIN SEDIMENTS
Each of the three lakes in the Beaufort Lakes embay

ment contains a sequence of glaciomarine sediments over
lain by lacustrine sediments (Figure 4). The two units are
separated by a distinctive isolation contact that marks the
isostatic emergence of the basin from the sea (Retelle,
1986b).

Glaciomarine sediments in the cores from each basin
are mottled and massive, sandy to clayey silt with occa
sional dropstones and marine molluscs. The nearshore
glaciomarine sediments were deposited in the coastal
embayment in water depths less than 100 m.

The glaciomarine sediments are overlain by a thin (4
to 6 em) unit of laminated to massive black sulfidic silt
which separates them from the lacustrine sediments above
(Figure 4). This transitional facies represents either
estuarine conditions with occasional exchange of fresh
and marine waters during emergence of the basin, or pos
sibly meromictic conditions as the threshold of the basin
prevented the outflow of marine water (Retelle, 1986b).

The upper, or lacustrine unit in the cores is a well
laminated clayey silt. These sediments, as well as the tran
sition and marine units, are relatively poor in organic
material and consist primarily of quartz, feldspar, cal
cite, and phyllosilicates.

DATING OF SEDIMENTS
Radiocarbon dates were obtained on the total organic

carbon (TOC) fraction from all three units recovered in
the sediment cores (Table 1, Figure 4). Although the
radiocarbon dates are internally consistent within the
cores, i.e., they increase in age downcore, several con
flicts are apparent. First, the isolation contact in three
cores from Lake 3 yielded two distinctly different ages
for the emergence of the basin. In cores 3-8 and 3-5, dates

of 9730 ± 330 (S-2346)and 9150± 400 BP (SI-5888) con
flict with a date of 13,690±815 (S-2344) from core 3-7.
Moreover, the isolation contact in Lake 2 (core 2-2),
which presumably emerged simultaneously with Lake 3,
dated 12,340 ± 590 BP (S-2342). Second, the entire suite
of TOe dates from the isolation contacts of the lakes,
whose basin thresholds are at 12 to 40 m asl, are at least
as old as dated shells from the marine limit (116 m) at
Beaufort Lakes which dated between 8000 and 8200 BP
resulting in a disparity between the TOe dates from the
sediment cores and the emergence curves derived from
shell dates from raised marine sediments (Figure 3).

To test whether the TOe samples were contaminated
by "old" carbon, several samples near the tops of the cores
were dated (Table 2, Figure 4). The 6 to 12 em levels in
cores from Lakes 1 and 2 gave ages of 4800± 195
(SI-5885) and 2200± 185 BP (SI-5886), respectively. (An
additional surface sediment sample [0 to 6 em] was sub
mitted from core 3-5, but it contained insufficient carbon
for analysis.) In core 3-8, at 55 to 56 ern, fibrous organic
matter dated 5120± 550 BP (S-2345).

Age-depth diagrams for cores from the three lakes
show that the apparent sedimentation rate decreases
abruptly in the upper few centimeters of the cores (Fig
ure 5). However, if the apparent ages of the surface sedi
ment are applied as calibration factors to the isolation
zone TOe dates (i.e., by subtracting the TOe date of the
surface sediments from the TOe date of the isolation
zone sediments) the corrected ages for Lakes 1 and 3 plot
close to the revised relative sea level curve for the area
(Figure 3). Thus, it is suggested that the TOe dates are
affected, to varying extents, by contamination with old
carbon.

The possible sources of contamination include inert dis
solved carbon from the local calcareous bedrock (hard-
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water effect) and redeposited detrital organic matter from
surficial sediments of various ages (cf. Nelson and Carter,
1987). Preliminary pollen analyses indicated that the per
centage of exotic grains in the core sediments ranges from
15 to 40010 (Backman, pers. comm., 1984). The assem
blage includes spruce and alder (species commonly attri
buted in arctic regions to airborne transport from tree
line (Short and Nichols, 1977) plus several temperate
hardwood species originally thought to be laboratory con
taminants. Subsequently, pollen analysis was conducted
on organic-rich beach sediments (dated > 33,000 BP;
S-2182) from the upland proglaciallake 5 km to the west
of Lake 2 (Retelle, 1986a). The assemblage from this site
(Table 3) includes primarily temperate hardwoods that
have also been found in outcrops of Tertiary-age coal at
various locations on northeastern Ellesmere Island
(Christie, 1964). Additionally, microscopic examination
of lake and marine sediments showed that charcoal com
prises a significant proportion of the detrital fraction
(Feyling-Hanssen, pers. comm., 1984). On this basis, we
believe that the TOC data are affected by old (isotopi
cally dead) carbon.

Three valves of the mollusc Portlandia arctica were

TABLE 3
Pollen analysis from upland proglacial lake shore

organic material, upper Beaufort Lakes basin

% % local % exotic

Local
Salix 4.2 7.6
Ericaceae 8.6 15.6
Ranunculaceae 1.6 2.9
Gramineae 12.0 21.8
Trilete spore 3.4 6.2
Monolete spore 25.4 45.9

100.0
Exotic

Juglans 4.4 11.6
Castanea 4.2 10.9
Picea 8.1 21.2
Pinus 8.4 21.9
Betula 3.6 9.6
Alnus 5.2 13.7
Corylus 3.1 8.2
Carya 1.0 2.7

100.0 100.0

13,925* 1250

)27,750

14C Years B.P x 103

5 10 15 20

14C Years B.P. x 103

o
o~

100 _

core 2·2

,:

Ii"~-.,:

200 ~:_~

300 .,:~
--..•..

/

" I I

20

...
"\'

\

14 3
C Years ap. x 10

5 10 15ocore H

FIGURE 5. Age-depth plot of dates on total organic fraction from sediment cores from Lakes I, 2, and
3. Apparent surface ages of sediments are determined by extrapolating from uppermost TOe date in
cores from each lake giving ages for surface sediment of 4700, 2200, and 3500 BP for Lakes 1, 2, and
3, respectively.

120/ ARCTIC AND ALPINE RESEARCH



dated by the tandem accelerator mass spectroscopy
(TAMS) method to provide an independent check on the
TOe dates. The samples selected from the cores for
dating were paired valves in growth position that retained
periostracum. The mollusc shells were sampled as close
as possible to the marine-to-lacustrine sediment contact.

Results of the TAMS dating are shown in Figures 3
and 4 and Table 1. Two shells were dated from core 3-8.
A paired valve from the 220-cm level dated 7060 ± 670
BP (AA-656), whereas another paired valve at the 21O-cm
level dated 6280 ± 70 BP (TO-206). These compare with
a date on the TOe fraction of sediments from the isola
tion horizon (198 t0200 em) of 9730 ± 330 BP. In core
1-1 (Figure 4), a shell at 185em dated 4150± 60 (TO-205),
whereas the TOe date from the associated isolation con
tact at 177 to 183 em was 8635 ± 355 BP (S-2339).

We recognize that the bivalves are shallow burrowers
and therefore live in older sediment. TOe dates should
therefore be somewhat older than TAMS dates on the

burrowing molluscs. However, the mollusc shells sub
mitted for TAMS dating in this study were selected as
close as possible to the marine to lacustrine isolation con
tact. The depth of two of the samples (TO-205; AA-656)
was only 2 and 8 em, respectively, below the isolation
contact. Therefore, unless an unconformity exists above
the horizon containing the mollusc, or the sedimentation
rate is very low, the TAMS dates are considered the most
reliable age estimates for the isostatic emergence of the
basin from sea level. Furthermore, the "corrected" ages
for TOe dates in cores 3-8 and 1-1 are very close to ages
from TAMS.

PALEOMAGNETIC INCLINATION

To test if any unconformities exist between the isolation
sediments and the dated molluscs, the paleomagnetic
stratigraphy of the core horizons was examined (Fig
ure 6). The magnetic latitude of this site is approximately
86.5°. Natural inclinations in sediments from this site are
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~ 80° except where the sediment has been deformed by
iceberg prodding or scouring, or where slumping of the
sediment has created folds or other unconformities. In
addition, because of the process of recovering sediments
with a Livingstone corer, where repeated thrusts are
required to obtain a continuous core of multiple 1.0- to
1.5-m segments in stiff sediment, deformation of sedi
ments at the core segment boundaries is common. The
deformation, shown schematically in the stratigraphic
column, is seen in a pronounced shallowing of the mag
netic inclination (Figure 6a). At several core segment
intersections inclination drops as low as 0°.

At 20 em depth in core 3-8, lacustrine sediment is over
turned in a recumbent fold as a result of slumping of a
portion of the lake floor. Inclination shallows from
approximately 80 to 10° in the lO-cmsection of the core.
Massive silt below the fold is also deformed, with the
inclination shallowing to 50°.

At 370em depth in the core, a lO-cmbed of contorted
laminae containing a pod of fine gravel also exhibits incli
nation shallowing to 40°. This coarse sediment and
inclination change may represent either an unconformity
or deformation produced by ice rafting or iceberg prod
ding. The remainder of the stratigraphy in the core
appears to be conformable. The shell samples dated by
the TAMS method are located in the middle of a section
of core where the inclination has remained stable (around
80°) for approximately 50 em and through the isolation
zone, implying that the sequence has remained conform
able through the emergence of the basin.

In core 1-2, the interpretation is not as clear (Fig
ure 6b). The accelerator-dated shell (TO-205; 4150±60
BP) was sampled within a zone of low inclination located

in the middle of a core segment. It is not clear whether
the deviation from high to low inclination through the
lower portion of the lacustrine to marine sections of the
core has resulted from coring deformation or natural pro
cesses; therefore, the magnetostratigraphy cannot be used
to qualify the accelerator dates as demonstrated in
Lake 3.

RELATIVE SEA LEVEL CURVE
A relative sea level curve constructed with conven

tionally dated shells from raised marine sediments and
TAMS-dated shells from lake sediment cores from the
Robeson Channel area is shown in Figure 3 (solid line
RC). The upper segment of the curve is gently sloping,
similar to segment B of the Cape Baird (CB) and Alert
(AL) curves of England (1983).

Approximately 5070 (6 m) of the total emergence
(116 m) takes place in the first 900 yr of emergence at
an an average rate of approximately 0.7 m 100yet. Sub
sequently, emergence occurred at a much faster rate from
ca. 7400 to 6200 BP (approximately 6 m 100yet). There
after, the rate of relative sea level change decreased from
approximately 6200 BP to the present.

The latter two stages of emergence differ from those
predicted for the area by the Cape Baird curve of England
(1983). The striking difference between the Cape Baird
curve and the curve presented in this study is the fast rate
of emergence after 7400 BP indicated by the Robeson
Channel curve. The new curve depicts initial emergence
of Beaufort Lake 3 (40 m asl) at ca. 6200 BP in contrast
to the Cape Baird curve which shows sea level at that time
still above 100 m.

DISCUSSION

This study addresses two important aspects of the late
Quaternary history of the Robeson Channel area: the
Holocene relative sea level history of the region, and the
extent of ice during the last glacial maximum.

RELATIVE SEA LEVEL HISTORY
The relative sea level curve shown here conflicts with

that presented by England (1983). The upper portion of
the Robeson Channel emergence curve suggests that slow
initial emergence occurred at a similar time and rate as
at Cape Baird (CB, Figure 3), but the transition to rapid
emergence in Robeson Channel occurred after the transi
tion at Alert but before the transition at Cape Baird (Fig
ure 3). This may be because the Robeson Channel area
was in a transitional zone between Greenland-controlled
and Ellesmere Island-controlled emergence (England,
1983)until 6000 BP. The new data suggest that the Beau
fort Lake basins in Robeson Channel emerged from 2000
to 3000 yr earlier than previously predicted. After 6000
BP emergence was apparently controlled by Ellesmere
Island ice recession.

Isobase maps for the area (England, 1982; England and
Bednarski, 1986)have shown that emergence from 8000
to 6000 BP along Robeson Channel is strongly controlled
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by the load of the Greenland Ice Sheet. The new data
from Beaufort Lakes suggests that the effects of the
Greenland ice load may not be as extensive over this area
of coastline as was previously suspected. The emergence
of Beaufort Lake 3 at 6000 BP implies that relative sea
level was 40 m asl at that time, comparable to sites at
Alert and Clements Markham Inlet (England and Bed
narski, 1986). The 6000 BP, 40-m isobase may therefore
mimic the coastline, or more correctly, the shape of the
Ellesmere ice load, at least as far south as the Beaufort
Lakes area. This would produce a steep gradient to the
south and east in the 60-, 80-, and 1oo-misobases, reflect
ing the combined ice loads but dominated by Greenland
ice. A second interpretation necessitates significant fault
ing sometime after 7400BP to accommodate the new data
from the Robeson Channel area in light of the existing
data for the region (England, 1983; England and Bed
narski, 1986). Although no evidence of faulting of Holo
cene deposits was observed while mapping in this area
(Retelle, 1986), recent research by England (1987) out
lines the growing need for understanding the link between
tectonics and geomorphic evolution of the Robeson
Channel area.



ICE EXTENT DURING THE LAST GLACIAL MAXIMUM
Radiocarbon dates on the TOC fraction of glacio

marine sediments from Beaufort Lake 3 span age esti
mates from >27,750 to >40,600 BP (Figure 4). Taken
at face value, these infinite dates imply that glaciomarine
sediments were deposited in the Beaufort Lakes embay
ment before and during the last glacial maximum. Several
studies over the past decade have documented geological
evidence for an ice-free corridor between interior Elles
mere Island and northwest Greenland ice during the last
glacial maximum (England, 1976a, 1983, 1985; England
and Bradley, 1978; England et al., 1978, 1981; Retelle,
1986a). Ifthe dates are valid, they place serious restric
tions on the opposing ice extent model that depicts a
maximum ice cover over northern Nares Strait at this time
(Blake, 1970; Hughes et al., 1977; Denton and Hughes,
1981). However, in recent years, several studies, including
this study, have demonstrated problems in radiocarbon
dating the total organic carbon fraction in sediments,
when compared to shell dates from the same time-strati
graphic unit (Fillon et al., 1981; Andrews et al., 1985).
The discrepancies in the dates have been attributed to the
type of laboratory pretreatment (Olsson, 1979), the avail
ability of contemporaneous organic material in the catch
ment (Bjorck and Hakansson, 1982), or the "hard-water
effect" (Shotton, 1972; Karrow and Anderson, 1975).

Several authors have expressed various problems deal
ing with dating the NaOH-insoluble or NaOH-soluble
fraction of the sediment (cf. Kaland et al., 1984). We felt
that dating the soluble fraction would yield dates that
were too young and perhaps contaminated by humic
acids. Additionally, since coal on the Hazen Plateau is
of sub-bituminous grade (Christie, 1976; Miall, 1982), the
NaOH pretreatment should remove any low grade coal
which might contaminate the lake sediments (Wittenberg,
pers. comm., 1984). It is possible, however, that not all
such coal was removed, leading to erroneously old age
estimates.

Tops of cores from Beaufort Lakes have low apparent
sedimentation rates, especially in Lakes 1 and 2. Although
the sedimentation rates may have decreased somewhat
due to late Holocene climatic cooling (cf. Fredskild, 1970,
1973), it is likely that the old dates reflect, to some extent,
contamination by old carbon. It also appears that the
amount of contamination or the supply of old carbon is
neither consistent between the three lakes, nor constant
over time in an individual basin. Instead, the amount of
contamination may have been affected by changes in the
morphometry, hydrology, and chemistry of the basins,
which have evolved from nearshore marine through
density-stratified lakes to freshwater lakes (Retelle,
1986b).

The environmental changes are most apparent in sedi
ments from Lake 2. While the difference between the
TOC date at the isolation contact and date of emergence

predicted by the new relative sea level curve are greatest
in the Lake 2 basin (Figure 4) the apparent age of the
surface sediment in Lake 2 is the youngest of the three
lakes (Figure 5). During marine submergence of the
basins, the shorelines developed on till and bedrock
uplands. Streams entering the basin redeposited "old"
sediments from earlier upland proglacial lakes. Upon
initial emergence of the basin from the sea, and subse
quent lowering of Lake 2 to its 35-m level, the fringing
lowlands began to contribute contemporaneous vegeta
tion. Lake 2, with a broad fringing lowland and greater
sediment influx, progressively received more modern
vegetation than the bedrock basins of Lakes 1 and 3. In
Lakes 1 and 3, however, the supply of old carbon has
apparently remained constant between emergence and the
present, as most of the modern vegetation is trapped in
'the larger Lake 2 basin.

If the amount of contamination by "old" carbon has
remained constant, then it may be possible to subtract
the apparent age of the surface sediments as a calibra
tion factor to the TOC dates on the isolation horizon in
Lakes 1 and 3. This method certainly does not apply to
Lake 2 where greater changes have occurred since initial
emergence of the basin. Consequently, a standard "cali
bration" of TOC dates determined by TAMS dating of
in situ molluscs may not be appropriate in lacustrine sys
tems where physical, chemical, and biological changes
influence the organic carbon accumulation in sediments
and hence the amount of possible contamination by older
carbon. Andrews et al. (1985) suggest that a relationship
exists between the TOC dates and shell dates such that
a constant correction factor can be applied to the TOC
date. However, this is probably not a universally appli
cable relationship and must be determined for each indi
vidual environmental study.

It is probably equally difficult to evaluate or calibrate
the infinite TOC dates from the lower sections of the
Beaufort Lake 3 core. Unfortunately, no mollusc shells
were located in lower sections of this core for TAMS
dating. Simple calibration of the TOC dates, by subtract
ing the estimated 3500 yr reservoir age for the sediments
(Figure 5) still places the age estimates within the time
frame of the last glacial maximum (late Wisconsinan);
however, as previously stated, it is uncertain to what
extent corrections of this type are valid. Linear extrapo
lation of sedimentation rates are also not valid downcore
due to an abrupt facies change in the lower meter of core
3-8. It has been speculated (Retelle, 1986b)that this facies
change, from barren silt (below 3.4 m) to fossiliferous
gravelly and sandy silt (above 3.4 m) may represent the
change from full glacial conditions with pervasive land
fast sea ice to a more climatically favorable time when
ice rafting and faunal occupation was prevalent (cf. Eng
land, 1983; Stewart and England, 1983).
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SUMMARY

A new relative sea level curve from the Robeson
Channel area demonstrates that rapid emergence began
at 7400 BP, approximately 1200 yr earlier than shown
by previous studies (England, 1983). Accordingly, at ca.
6000BP, relative sea levelmay have been as much as 60 m
lower than previously shown. This is similar to several
sites on the north coast of Ellesmere Island whose emer
gence history is controlled by recession of Ellesmere
Island ice caps (England and Bednarski, 1986). Alterna
tively, the major elevation differences between the
Robeson Channel area and region new Cape Baird to the
south may be the result of Holocene tectonic movement.

The results from this study indicate that although dates
on organic material from lake sediments may be reliable
in areas where modern vegetation is abundant, dates on
sediments containing low levels of organic material should
be regarded with caution. Because of environmental con
ditions, it may sometimes be difficult to interpret age
depth relations from sediment cores.

Infinite-age TOC dates from glaciomarine sediments
in Lake 3 suggestthat the coastal zone may have remained

ice-free during the last glacial maximum, but the validity
of these dates remains questionable.
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