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Abstract	47	

The	dynamics	of	annual	species	are	strongly	tied	to	their	capacity	for	recruitment	48	

each	year.	We	examined	how	competition	and	propagule	availability	influence	recruitment	49	

and	appearance	and	tracked	survivorship	of	an	annual	species	of	marine	macroalgae,	the	50	

bull	kelp	(Nereocystis	luetkeana),	which	serves	as	major	biogenic	habitat	in	the	Salish	Sea	of	51	

Washington	State.	We	hypothesized	that	1)	juvenile	N.	luetkeana	would	exhibit	a	seasonal	52	

appearance	as	a	cohort	in	the	spring	and	2)	competition	for	space	would	be	more	limiting	53	

than	propagules	(spores)	to	recruitment	at	sites	adjacent	to	established	N.	luetkeana	beds.	54	

We	tagged	N.	luetkeana	recruits	in	the	field	to	track	appearance	and	survivorship	across	55	

seasons	(spring,	summer,	fall,	and	winter),	using	a	two-factor	crossed	design	to	assess	56	

effects	of	competition	and	propagule	availability	on	appearance	of	new	N.	luetkeana	57	

sporophytes.	Survivorship	of	N.	luetkeana	recruits	was	low	and,	while	most	new	58	

individuals	arose	in	the	spring,	some	appeared	in	every	season.	New	N.	luetkeana	recruits	59	

also	appeared	the	earliest	(median	8	weeks	vs.	>20	weeks)	after	experimental	“seeding”	in	60	

the	spring	as	compared	to	other	seasons.	Eliminating	macroalgal	competitors	(“clearing”)	61	

influenced	the	appearance	of	recruits	more	than	enhancement	of	propagules	in	the	spring.	62	

An	improved	understanding	of	factors	regulating	the	seasonal	appearance	of	new	N.	63	

luetkeana	sporophytes	furthers	our	understanding	of	this	crucial	foundation	species’	64	

appearance	and	persistence	across	seasons,	which	is	increasingly	important	as	global	65	

ocean	conditions	change,	and	highlights	the	importance	of	studying	organisms	with	66	

complex	life	histories	across	multiple	stages	and	geographical	regions.	67	

Key	index	words:	clearing;	kelp	forest;	propagule	enhancement;	nearshore	subtidal;	Salish	68	

Sea		69	



Introduction	70	

The	population	dynamics	of	annual	species	are	strongly	tied	to	their	capacity	for	71	

recruitment	each	year.	Many	annual	species	have	ruderal	life	history	types,	characterized	72	

by	high	reproductive	rates	and	long	dispersal	distances;	instead	of	competing	with	other	73	

species,	ruderals	persist	by	exploiting	different,	recently-disturbed	areas,	each	for	a	limited	74	

period	of	time	(Grime	1977).	Some	annual	or	semelparous	species	may	actually	generate	75	

their	own	disturbances	that	provide	suitable	free	space	or	resources	for	the	next	76	

generation	(Foster	1977,	Paine	1979).		77	

In	the	temperate	nearshore	subtidal	zone,	kelp	forests	are	ecologically	important	78	

because	they	provide	structure	for	a	variety	of	other	organisms	and	contribute	a	source	of	79	

primary	production	to	food	webs	within	and	below	the	photic	zone	(Dayton	1985,	Duggins	80	

et	al.	1989,	Siddon	et	al.	2008,	Krumhansl	and	Scheibling	2012,	Teagle	et	al.	2017).	Kelps	81	

(order	Laminariales)	have	a	heteromorphic	life	history	consisting	of	a	macroscopic	82	

sporophyte	that	makes	patches	of	fertile	tissue.		These	sori	release	swimming	zoospores,	83	

which	settle	and	grow	into	the	microscopic	gametophyte	stage	(John	1994).	Gametophytes	84	

germinate	from	swimming	zoospores,	which	are	the	primary	dispersive	stage	as	they	are	85	

carried	in	sori	on	detached	blades	and/or	swim	as	single-celled	spores.	Following	86	

settlement	and	germination,	male	gametophytes	produce	swimming	gametes	that	fertilize	87	

females,	from	which	the	juvenile	sporophyte	grows	(Springer	et	al.	2010).	In	lab-grown	N.	88	

luetkeana	under	ideal	conditions	(10°C,	white	light	between	80-100	µE.m2.s-1),	zoospore	89	

settlement	and	germination	occurs	within	24	hours,	and	germ	tubes	begin	to	grow,	90	

branching	to	form	filamentous	gametophytes	that	can	become	reproductively	mature	91	



within	10-14	days.	After	21	days,	microscopic	sporophytes	(~1	mm	length)	are	visible	92	

(Merrill	and	Gillingham	1991).	93	

While	many	kelp	species	are	perennial,	there	are	annual	kelps	in	geographically	94	

disparate	areas,	such	Saccorhiza	polyschides	in	southern	Europe	as	well	as	Postelsia	95	

palmaeformis	and	Nereocystis	luekeana	in	the	northeast	Pacific.	These	kelps	often	occur	in	96	

wave	swept	areas	and	most	mature	sporophytes	that	have	already	reproduced	begin	to	97	

degrade	in	the	autumn	before	ultimately	being	detached	by	winter	storms	(Biskup	et	al.	98	

2014,	Blanchette	1996,	Springer	2010).	An	annual	species	such	as	the	bull	kelp,	Nereocystis	99	

luetkeana,	must	complete	its	lifecycle	within	a	single	growing	season	and	deposit	100	

propagules	locally	to	appear	in	the	same	location	from	year	to	year.	In	Alaska,	experimental	101	

removal	of	a	key	consumer	(sea	urchins)	led	to	colonization	by	N.	luetkeana	initially,	but	102	

this	annual	kelp	was	replaced	by	the	perennial	kelp	Laminaria	groenlandica	in	the	second	103	

growing	season;	in	this	system,	N.	luetkeana	is	considered	a	ruderal	species	that	will	104	

eventually	be	replaced	by	another	more	competitively	dominant	species	(Duggins	1980).	105	

However,	anecdotal	observations	suggest	that	N.	luetkeana	beds	in	certain	locations	can	106	

persist	for	multiple	growing	seasons,	even	if	the	individuals	themselves	only	persist	for	one	107	

year.	108	

Two	factors	typically	govern	plant	recruitment	–	propagule	(seed)	availability	and	109	

safe	sites	suitable	for	seeding	recruitment	(Harper	et	al.	1961,	Harper	et	al.	1965,	Grubb	110	

1977).	Populations	may	have	abundant	propagules	but	be	establishment-limited	or	seed-111	

limited,	with	unoccupied	safe	sites	(Duncan	et	al.	2009).	For	kelp	(Laminariales),	propagule	112	

availability	can	be	difficult	to	track	because	this	life	stage	is	microscopic	and	frequently	113	

found	on	the	benthos	at	depths	of	up	to	30	meters	(Springer	et	al.	2010).	Also,	many	114	



macroalgae	undergo	alternation	of	heteromorphic	generations	in	which	the	development	115	

and	gamete	production	by	a	microscopic	gametophyte	stage	occurs	between	successive	116	

generations	of	macroscopic	sporophytes.	However,	algal	propagule	availability	has	been	117	

studied	in	relation	to	the	spread	and	persistence	of	invasive	species.	Increasing	propagules	118	

in	disturbed	(cleared)	plots	greatly	increased	recruitment	of	the	invasive	brown	alga	119	

Sargassum	muticum,	indicating	that	propagule-supply	drives	appearance	of	this	alga	when	120	

space	is	available	(Britton-Simmons	and	Abbot	2008).	The	presence	of	the	subtidal	canopy	121	

kelp,	Eisenia	arborea	influences	which	macroalgal	propagules	can	settle	and	form	a	122	

macroalgal	understory	(Benes	and	Carpenter	2015).	123	

Another	important	factor	that	determines	where	macroalgae	recruit	each	year	is	124	

competition	for	space	and/or	light.		There	may	be	competition	among	different	kelps	even	125	

at	microscopic	life	stages,	as	Pterygophora	californica	spores	have	been	shown	to	inhibit	126	

the	recruitment	of	Macrocystis	pyrifera	by	eliminating	space	for	spore	settlement	(Reed	127	

1990).	At	larger	life	stages,	competition	via	light	availability	influences	macroalgal	128	

community	structure.	Perennial	canopy-forming	kelp	species,	such	as	M.	pyrifera	and	P.	129	

californica,	can	reduce	available	bottom	light	by	60%	and	75%	respectively,	as	compared	to	130	

levels	at	the	surface.	After	removal	of	these	canopy	species,	the	cover	of	an	annual	brown	131	

alga	(genus	Desmarestia)	increased	significantly	and	lowered	the	bottom	light	even	further	132	

to	~1%	of	ambient	light	(Clark	et	al.	2004).	Adult	sporophytes	of	Ecklonia	radiatia,	a	133	

habitat-forming	kelp	in	southern	Australia,	grow	up	to	2	meters	in	height	and	effectively	134	

block	light	for	understory	macroalgal	species.	However,	microscopic	E.	radiata	sporophytes	135	

also	cannot	grow	in	high	understory	algal	cover,	highlighting	the	importance	of	light	136	

availability	across	different	life	stages	(Tatsumi	and	Wright	2016).		137	



In	many	instances,	plant	and	macroalgal	recruitment	are	likely	influenced	by	a	138	

combination	of	both	propagule	availability	and	availability	of	space.	In	a	terrestrial	forested	139	

area,	experimentally	increasing	seed	supply	and	availability	of	safe	sites	increased	140	

recruitment	in	numerous	species	(Eriksson	and	Ehrlen	1992).	In	southern	California	kelp	141	

forests,	disturbance	from	storms	may	help	clear	substrate	for	settlement,	recruitment,	and	142	

growth	as	well	as	disperse	propagules	of	Macrocystis	pyrifera	and	Pterygophora	californica	143	

(Reed	1992).	Additionally,	seasons	are	likely	to	differ	in	propagule	and	space	availability.	In	144	

laboratory	experiments,	the	filamentous	kelp	gametophytes	of	numerous	kelp	species,	145	

including	Saccharina	latissima,	Laminaria	setchellii,	and	Laminaria	digitata,	survived	an	18	146	

month	period	of	darkness	at	low	temperatures	between	0°C	and	8°C	(tom	Dieck	1993).	147	

This	suggests	that	microscopic	propagules	may	have	lower	requirements	for	survival	than	148	

other	life	stages.	Even	if	propagules	are	dispersed	in	one	season,	they	may	not	begin	to	149	

produce	gametes	immediately,	waiting	for	enhanced	light	or	space	availability.	150	

Here	we	use	field	observations	and	experiments	to	examine	the	factors	influencing	151	

the	recruitment	of	an	annual	species	of	marine	macroalgae	serving	as	major	biogenic	152	

habitat	that	persists	in	the	same	(or	similar)	locations	from	year	to	year	in	this	particular	153	

system.	We	ask,	how	does	bull	kelp,	Nereocystis	luetkeana,	maintain	persistent	kelp	beds	154	

despite	is	annual	life	history?	We	investigated	recruitment	dynamics	of	N.	luetkeana	by	155	

tracking	the	natural	appearance	of	juveniles	and	manipulating	both	propagule	and	space	156	

availability.	We	hypothesized	that	1)	juvenile	N.	luetkeana	would	exhibit	a	seasonal	157	

appearance	as	a	cohort	in	the	spring	when	there	is	low	biomass	of	macroalgal	competitors	158	

and	2)	competition	for	space	would	be	more	limiting	than	propagules	(spores)	to	159	



recruitment	at	sites	adjacent	to	established	N.	luetkeana	beds	because	of	the	annual	life	160	

history	of	N.	luetkeana	as	well	as	the	close	proximity	of	reproductive	material.		161	

Methods	162	

Study	Species	163	

	 Bull	kelp,	Nereocystis	luetkeana,	is	an	annual	kelp	that	exhibits	alternation	of	164	

heteromorphic	generations.	It	occurs	on	the	Pacific	coast	of	North	America,	from	the	165	

Aleutian	Islands	to	central	California.	166	

One	demographic	study	of	Nereocystis	luetkeana	sporophytes	in	the	field	gives	an	167	

indication	of	the	timing	of	major	life	history	events	at	a	subtidal	site	in	southern	Salish	Sea,	168	

approximately	100	miles	south	of	our	study	sites	(Maxell	and	Miller	1996).	At	this	site,	169	

recognizable	juvenile	N.	luetkeana	first	appeared	in	March,	stipe	growth	reached	a	170	

maximum	in	late	June,	followed	by	an	increase	in	blade	growth,	and	the	first	reproductive	171	

individuals	were	observed	in	early	May.	This	timing	is	consistent	with	reproduction	172	

occurring	in	summer	of	one	year	that	results	in	appearance	of	juveniles	the	following	173	

spring.	In	between	these	events,	N.	luetkeana	goes	through	its	microscopic	benthic	174	

gametophyte	stage.		175	

Study	Sites		176	

	 To	track	seasonal	appearance	and	survivorship	of	juvenile	Nereocystis	luetkeana	177	

(stipe	<30	cm),	we	established	a	15	m	x	25	m	subtidal	site	in	February	2014	near	south	178	

Shaw	Island	in	the	San	Juan	Islands	of	Washington	State	(N	48.54706°,	W	122.95091°;	8	m	179	

max	depth;	hereafter,	South	Shaw	1),	marking	the	boundaries	with	sub-surface	floats	180	

attached	to	half-size	concrete	blocks.		We	chose	the	site	based	on	our	observations	of	a	181	

robust	kelp	bed	during	summer	2013	in	the	same	approximate	location,	although	only	a	182	



few	mature	individuals	remained	during	the	winter	when	we	established	the	site,	and	183	

those	individuals	did	not	persist	after	early	spring.	184	

	 One	site	for	subtidal	experimental	manipulation	of	competition	(hereafter,	185	

“clearing”)	and	propagule	abundance	(hereafter,	“seeding”)	was	located	approximately	25	186	

meters	from	South	Shaw	1,	further	offshore	toward	the	San	Juan	Channel	(N	48.54710°,	W	187	

122.95130°;	7-9	m	max	depth;	hereafter,	South	Shaw	2;	Fig.	S1A).	We	established	a	second	188	

site	for	clearing	and	seeding	near	Point	Caution	on	San	Juan	Island	(N	48.56323°,	W	189	

123.02555°;	8-10	meters	max	depth;	hereafter,	Point	Caution;	Fig.	S1B)	190	

All	three	sites	were	accessed	via	SCUBA.	All	divers	participating	in	monitoring	were	191	

trained	and	accompanied	by	the	lead	diver	(author)	to	enhance	accuracy	of	data	collection.	192	

Tagging	and	Tracking	Recruits	193	

Using	numbered	plastic	flagging	tape	(as	in	Maxell	and	Miller	1991),	we	tagged	all	of	194	

the	juvenile	bull	kelp	that	we	encountered	(stipe	length	<	30	cm)	between	June	2014	and	195	

January	2015	at	South	Shaw	1.	We	monitored	survivorship	of	these	recruits	every	two	196	

weeks	and	surveyed	for	appearance	of	new	N.	luetkeana	recruits	during	each	month	of	the	197	

year	(2014-2015).	Dive	length	was	consistent	(~50	minutes),	providing	a	means	of	198	

standardizing	the	seasonal	appearance	of	new	recruits.		199	

Manipulation	of	Competition	and	Propagule	Abundance	 	200	

A	two-factor	crossed	design	was	used	to	assess	the	effects	of	competition	(hereafter	201	

clearing)	and	propagule	availability	(hereafter	seeding)	on	appearance	of	new	Nereocystis	202	

luetkeana	sporophytes.	Subtidal	plots	were	marked	at	the	corners	with	bricks	and	flagging	203	

tape	while	the	edges	of	each	plot	were	delineated	with	yellow	polypropylene	ropes	204	

connecting	the	bricks.	Plot	size	was	2x2	m	and	five	replicate	plots	were	established	for	each	205	



of	the	four	treatments:	cleared	and	seeded,	cleared	and	unseeded,	uncleared	and	seeded,	206	

and	uncleared	and	unseeded.	We	established	new	manipulated	plots	(n=20	per	season,	207	

four	seasons,	for	a	total	of	80	plots)	across	four	seasons	at	South	Shaw	2:	spring	(April),	208	

summer	(August),	fall	(October)	2015,	and	winter	(February)	2016.	The	same	plot	setup	209	

(n=20	plots)	was	done	three	times	at	Point	Caution	in	two	seasons	for	a	total	of	60	plots:	210	

July	and	August	2016	(summer)	and	April	2017	(spring).	For	statistical	analysis,	we	211	

combined	the	July	and	August	plot	setup	and	manipulations	into	one	group	(“summer”)	212	

because	of	the	close	proximity	of	plots,	the	similarity	in	cleared	biomass,	and	short	(6-213	

week)	interval	between	setups.	214	

Treatments	were	assigned	to	plots	at	random;	plots	were	separated	by	no	less	than	215	

0.5	meters.	In	cleared	plots,	we	reduced	competition	by	clearing	attached	macroalgae	taller	216	

than	5	cm.	In	seeded	plots,	we	enhanced	propagule	availability	by	anchoring	fertile	sori	of	217	

Nereocystis	luetkeana	(five	per	plot,	collected	at	the	surface	prior	to	the	dive)	to	the	218	

substrate	in	the	center	of	the	plot	using	small	rocks	already	in	the	subtidal	environment.	219	

We	collected	the	cleared	macrophytes	from	0.3	m2	subsamples	within	each	cleared	4	m2	220	

plot;	subsampling,	using	a	haphazardly-placed	quadrat	to	minimize	sampling	bias,	was	221	

necessary	because	divers	could	not	swim	safely	while	transporting	the	large	total	amount	222	

of	kelp	biomass	in	each	plot.	We	dried	the	samples	in	a	drying	oven	for	24	hours	at	60°C	to	223	

allow	comparison	of	biomass	between	seasons	at	each	site.	We	monitored	manipulated	224	

plots	monthly	for	one	year	following	each	initiation,	counting	the	number	of	kelp	in	each	225	

plot	on	each	survey,	except	for	the	spring	initiation	at	Point	Caution,	which	was	monitored	226	

for	three	months.		227	

Data	Analysis	228	



We	tested	for	normality	of	residuals	using	a	Shapiro-Wilk	test	and	used	a	Bartlett	229	

test	to	test	for	homogeneity	of	variances.		230	

The	two-factor	design	was	analyzed	separately	for	each	site	and	each	season.	The	231	

response	variable	was	the	maximum	count	of	Nereocystis	luetkeana	observed	at	any	single	232	

time	in	a	particular	plot	to	account	for	the	fact	that	plots	were	monitored	monthly	and	an	233	

average	value	for	the	entire	study	period	would	overestimate	the	number	of	recruits	due	to	234	

turnover.	The	main	effects	were	clearing	and	seeding	and	their	interaction.	These	counts	235	

did	not	meet	the	assumptions	of	normality,	even	after	various	transformations,	and	also	236	

were	overdispersed	relative	to	Poisson	distribution,	so	we	used	a	resampling	approach	to	237	

determine	statistical	significance	of	the	main	effects	and	interactions	(a=0.05):	238	

PERMANOVA	with	Euclidean	distances	and	9,999	permutations.	239	

Across	seasons	at	each	site	we	compared	the	cleared	biomass	of	macroalgae	and	the	240	

magnitude	of	juvenile	Nereocystis	luetkeana	recruitment,	using	counts	of	new	recruits,	and	241	

the	time	to	appearance	of	the	first	N.	luetkeana	in	each	plot.	The	time	to	appearance	used	242	

only	plots	in	which	juvenile	recruits	appeared	because	new	bull	kelp	never	appeared	in	243	

many	plots.	Because	of	the	lack	of	normality	and	heteroskedastic	variances,	we	analyzed	244	

these	data	using	PERMANOVA	(as	described	above).	When	a	factor	was	significant,	we	used	245	

pairwise	PERMANOVA	to	compare	all	possible	combinations	and	Bonferroni-corrected	p-246	

values	as	the	threshold	for	significance.			247	

We	measured	the	macroalgal	biomass	only	in	cleared	plots	because	removing	248	

macroalgae	from	uncleared	plots	would	change	the	treatments.	The	dried	biomass	data	for	249	

South	Shaw	2	met	the	assumptions	of	normality	and	we	tested	for	seasonal	differences	250	

using	a	one-way	ANOVA	followed	by	a	Tukey	HSD	test.	Because	Point	Caution	biomass	data	251	



did	not	meet	the	assumptions	of	normality,	we	used	PERMANOVA	(as	described	above)	to	252	

compare	the	biomass	between	spring	and	summer	experiment	manipulations	at	Point	253	

Caution.		254	

All	data	analyses	were	performed	using	R	(R	Core	Team	2016).	For	PERMANOVA,	255	

we	used	the	“vegan”	package	(Oksanen	et	al.	2017).	256	

Results	257	

Tagging	and	Tracking	Recruits	258	

	 We	tagged	and	tracked	41	Nereocystis	luetkeana	recruits	in	the	spring/summer	and	259	

10	in	the	fall/winter	at	South	Shaw	1.	Survivorship	of	juvenile	bull	kelp	recruits	was	low	for	260	

individuals	tagged	in	both	seasons,	as	less	than	half	of	tagged	individuals	survived	the	261	

initial	two-week	observation	period	(Fig.	1A).	On	survey	dives,	we	observed	at	least	one	262	

new	juvenile	N.	luetkeana	recruit	(stipe	length	<	30	cm)	appearing	in	every	month	except	263	

February	(Fig.	1B).	264	

Manipulation	of	Competition	and	Propagule	Abundance	 	265	

Following	the	spring	initiation	at	South	Shaw	2,	clearing	increased	the	number	of	266	

new	juvenile	Nereocystis	luetkeana	(Fig.	2A;	Table	1);	the	cleared	plots	grew	more	267	

individuals	(mean	±	SE	=	23.5	±	7.2)	than	the	uncleared	plots	(mean	=	0.4	±	0.4).	Seeding	268	

did	not	influence	the	appearance	of	new	N.	luetkeana	and	the	interaction	between	clearing	269	

and	seeding	was	also	not	significant.	Clearing	made	no	difference	in	the	number	of	new	270	

individuals	in	plots	within	one	year	following	the	summer	(cleared	=	0.3	±	0.15,	uncleared	271	

=	0.3	±	0.2;	Fig.	2B),	fall	(cleared	=	0.8	±	0.33,	uncleared	=	0.3	±	0.15;	Fig.	2C),	and	winter	272	

(cleared	=	3.5	±	1.46,	uncleared	=	1.1	±	0.43;	Fig.	2D)	experiment	at	South	Shaw	2.	Seeding	273	

did	not	significantly	impact	appearance	of	new	N.	luetkeana	in	plots	established	in	summer,	274	



fall,	or	winter.	The	interaction	between	clearing	and	seeding	was	also	not	significant	in	275	

summer,	fall,	or	winter.	At	Point	Caution,	cleared	plots	had	more	N.	luetkeana	recruits	in	276	

the	spring	(Fig.	3A;	Table	2)	but	seeding	did	not	change	the	number	of	recruits	and	the	277	

interaction	between	clearing	and	seeding	was	also	not	significant.	In	the	summer,	the	278	

number	of	new	N.	luetkeana	was	greater	in	cleared	plots	(Fig.	3B)	but	did	not	differ	279	

between	plots	with	propagule	enhancement.	The	interaction	was	also	not	significant.		280	

Among	plots	in	which	new	recruits	appear	following	experimental	manipulations,	281	

the	time	to	appearance	(in	months)	at	South	Shaw	2	varied	by	season	(F3,30=25.4,	p<0.001;	282	

Fig	4;	Table	3).	New	Nereocystis	luetkeana	appeared	the	soonest	following	the	spring	283	

experiment	(mean	±	SE	=	1.6	±	0.16	months)	as	compared	to	the	summer	(7.3	±	2.27),	fall	284	

(8.5	±	0.52),	and	winter	(4.5	±	0.47)	manipulations	(i.e.	clearing	and	seeding).	New	kelp	285	

took	longer	to	appear	following	the	fall	manipulation	as	compared	to	the	winter	286	

manipulation,	while	the	time	to	appearance	of	new	kelp	was	statistically	indistinguishable	287	

for	summer	and	fall	as	well	as	summer	and	winter.		288	

The	number	of	new	individuals	also	varied	by	season	at	South	Shaw	2	(F3,76=6.09,	289	

p<0.001;	Fig.	5A;	Table	4).	The	number	of	juveniles	that	appeared	following	the	spring	290	

manipulation	(mean	±	SE	=	23.9	±	7.1)	was	greater	than	in	the	summer	(1	±	0.32)	or	fall	291	

(1.4	±	0.26).	The	number	that	grew	in	plots	following	the	winter	manipulation	was	greater	292	

than	in	the	summer	(3.75	±	1.1).	The	number	that	appeared	in	spring	was	not	statistically	293	

different	than	in	winter	initiations	nor	between	summer	and	fall	or	fall	and	winter.	At	Point	294	

Caution,	the	number	of	new	Nereocystis	luetkeana	recruits	did	not	vary	by	season	295	

(F1,57=1.2,	p=0.65;	Fig	5B).	296	



Understory	macroalgal	(potential	competitor)	biomass,	as	measured	at	the	time	of	297	

manipulation	(clearing	and	seeding),	varied	between	seasons	at	both	sites	(South	Shaw	2:	298	

F3,35=3.24,	p=0.03;	Fig.	6A	and	Point	Caution:	F1,28=8.4,	p=0.005;	Fig.	6B).	At	South	Shaw	2,	299	

the	cleared	biomass	of	plots	established	in	the	fall	was	greater	than	those	in	the	winter	300	

(p=0.02),	while	the	pair-wise	comparisons	of	cleared	biomass	from	the	plots	established	in	301	

spring,	summer,	and	fall	were	all	statistically	similar.	At	Point	Caution,	the	cleared	biomass	302	

was	lower	in	the	spring	initiation	than	the	summer	initiation	(p=0.005).		303	

Discussion	304	

Juvenile Nereocystis luetkeana represent a life stage whose success is crucial to the 305	

persistence of beds of this annual species from year to year. This kelp’s alternation of 306	

heteromorphic generations means that there is always an interval between sporophyte 307	

generations, in which the microscopic life stages occur. Our experimental removal of 308	

competitors and enhancement of propagule availability across multiple seasons suggests that N. 309	

luetkeana shows some seasonality in appearance, but that new individuals can begin to grow 310	

across seasons. Successful appearance of new sporophytes may be inhibited by competition from 311	

other macroalgae, which allows some “offseason” recruits to appear, potentially following a 312	

space-clearing disturbance event. Additionally, although disturbances may generate sites for 313	

recruitment in a propagule-rich system, especially since microscopic stages can likely persist for 314	

extended periods until conditions become favorable, high juvenile mortality also plays a role in 315	

determining where recruits persist and mature. 316	

Our results suggest that competition is an important driver of where juvenile bull kelp 317	

appear. In our subtidal experiment, more Nereocystis luetkeana recruits appeared in cleared plots 318	

in the spring at South Shaw and in both spring and summer at Point Caution, when 319	



environmental conditions (especially light) are expected to be otherwise favorable for kelp 320	

growth. We also quantified a seasonal difference in biomass of potential competitors (understory 321	

macroalgae) in keeping with an increase in biomass during the spring/summer growing season. 322	

Evidence suggests that the perennial giant kelp (Macrocystis pyrifera) may also begin to grow 323	

following experimental clearing of understory competitors, suggesting that this other canopy-324	

formers also benefit from the opening of gaps in existing understory to initiate growth (Dayton et 325	

al. 1984). The fact that new juvenile N. luetkeana can begin to grow in the same location, 326	

creating a seemingly persistent kelp bed for multiple years, may be a function of a high level of 327	

benthic disturbance in this system. The disturbance may serve to reduce interspecific competition 328	

to a low enough level to allow N. luetkeana to gain a “foothold” even in a field of perennial kelp 329	

species. 330	

The lack of influence of seeding in our manipulated (“seeded” vs. “unseeded”) plots 331	

indicates that propagule limitation may not be a major factor influencing where Nereocystis 332	

luetkeana recruit and begin to grow in this system. While we did add fertile sori to “seeded” 333	

plots, we did not measure total spore availability; while we did not quantify number or spores or 334	

motility in this study, we did achieve spore release from fertile sori followed by successful 335	

zoospore settlement in all seasons in the laboratory as part of a temperature growth experiment. 336	

Additionally, our plots at both sites were in some cases as close together as 0.5 meters, which 337	

may influence the independence of treatments, and were established adjacent (<5 m) to a known 338	

N. luetkeana beds. This close proximity likely contributes to a high natural availability of 339	

propagules in both seeded and unseeded plots. Working at a site more distant from adult N. 340	

luetkeana might have produced different results, as transport distances for N. luetkeana 341	

zoospores are not well documented but one study that analyzed numerous years of survey data 342	



suggested that although environmental factors may play a role, the abundance of bull kelp in one 343	

growing season is the crucial predictor of bull kelp presence in a location the following season 344	

(Pfister et al. 2018). Bull kelp zoospore dispersal may be similar to Macrocystis pyrifera (as are 345	

some other aspects of reproductive biology between these two canopy-formers); evidence 346	

suggests that M. pyrifera propagules can be transported long distances (<1000 m) to potentially 347	

maintain or restore populations even when an individual kelp bed disappears (Gaylord et al. 348	

2002, 2006). It is possible that the zoospores of bull kelp may disperse even further due to the 349	

manner in which the fertile sori detach from the blade at maturity (Walker 1980). However, 350	

Springer (2010) suggests that N. luetkeana spores may only move short distances less than 100 351	

meters, so clearly additional work is needed to quantify the dispersal distances of these 352	

zoospores in the field, ideally across different areas of the species’ large geographic range.  353	

Both our tagging/tracking study as well as our manipulated plots show that young 354	

sporophytes can appear during any season, which suggests that not all N. luetkeana begin to 355	

grow as a cohort in the spring as Maxell and Miller (1991) observed at sites further south in the 356	

Salish Sea. Although our results only come from one site (near South Shaw Island in the San 357	

Juan Islands of Washington State), the seasonal difference in time to the appearance of the first 358	

new bull kelp recruits between spring and other seasons suggests that microscopic N. luetkeana 359	

life stages can persist for an extended period of time, “waiting” for environmental conditions or 360	

competitor-free space to become more favorable. In laboratory experiments with low nutrient 361	

levels, Macrocystis pyrifera gametophytes remained vegetative, delaying reproduction for at 362	

least seven months with low nutrient levels before rapidly producing sporophytes after nutrients 363	

were added (Carney 2011). Gametophytes of another large, subtidal, annual brown alga 364	

Desmarestia ligulata var. ligulata can persist for up to 15 months in the field (Edwards 2000). 365	



However, it is also possible that some of the recruits that appeared after a long delay came from 366	

zoospores that settled after our propagule enhancements. The fact that clearing yielded more 367	

recruits following the summer experimental setup at Point Caution but not at South Shaw may 368	

indicate some subtle effect of site or temporal variation that may be acting on any one of the life 369	

stages. Other factors that we did not explore may influence where the microscopic stages of bull 370	

kelp settle and complete their life stage transitions; for example, the effects of sedimentation as 371	

well as the combination of increased temperature and salinity may negatively influence the 372	

settlement and survival of microscopic stages (Deiman et al. 2012; Lind and Konar 2017). 373	

This less regimented life cycle does not mean that Nereocystis luetkeana is not correctly 374	

classified as an annual species. A particular individual bull kelp still progresses through the life 375	

stages of sporophyte germination (following fusion of gametes) through growth to reproduction 376	

within an annual period; the primary difference suggested by our results is that 377	

germination/appearance can occur in any season, potentially allowing N. luetkeana recruits to 378	

take full advantage of any gaps in the perennial kelp canopy that appear. This is additionally 379	

supported by our anecdotal observations that bull kelp sporophytes of multiple size classes (from 380	

2 cm stipe length to 10 m stipe length) as well as mature sporophytes with fertile sori can be 381	

found throughout the year in the San Juan Islands of Washington state. 382	

An improved understanding of competition as an important factor governing the seasonal 383	

appearance of new Nereocystis luetkeana sporophytes in a propagule-rich system furthers our 384	

understanding of bull kelp bed appearance from year to year. However, observed low 385	

survivorship of N. luetkeana recruits indicates that appearance of new individuals does not 386	

necessarily lead to generation of a kelp bed due to post-recruitment effects such as herbivory and 387	

post-recruitment competition. Grazers like the snail Lacuna vincta can consume bull kelp, 388	



causing damage with their radula (Chenelot and Konar 2007). This type of damage potentially 389	

contributes to breakage, and therefore mortality, even when the damage appears very minor 390	

(Duggins et al. 2001). Experimentally caged juvenile bull kelp (stipe length < 30 cm) protected 391	

from large local consumers such as kelp crabs (genus Pugettia) and urchins (Strongylocentrotus 392	

sp.) increased in blade length and mass, while uncaged individuals decreased in both 393	

(Dobkowski 2017). Studies of other kelp species suggest that herbivory by urchins and 394	

competition from conspecifics or other kelp leads to extreme mortality of juvenile Macrocystis 395	

pyrifera (Dean et al. 1989) and Laminaria hyperborea (Sjotun et al. 2006). Therefore, propagule 396	

availability and appearance of juvenile sporophytes in a field of competitors is only the first step 397	

toward a thriving bull kelp bed each year; this connection to disturbance as well as large parental 398	

investment in quantity of offspring instead of the evolution of chemical or mechanical defenses 399	

to prevent juvenile mortality further suggests that N. luetkeana is correctly classified when 400	

described as a ruderal species. 401	

The intertwined realities of bull kelp’s complicated life cycle as well as competition, 402	

seasonal variation, and juvenile sporophyte survival all contribute to annual Nereocystis 403	

luetkeana bed appearance and maintenance. Our results highlight the importance of studying 404	

organisms with complex life histories across multiple life stages and in geographically disparate 405	

systems, as local populations may exhibit different responses to unique environmental 406	

characteristics that do not generalize across the broader geographic range of a species. 407	
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List of abbreviations 530	
 531	
Vs. = versus 532	

~ = approximately 533	

Mm = millimeter 534	

Cm = centimeter 535	

M = meter 536	

°C	=	degrees	Celcius	537	

Max = maximum 538	
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Statistical Results - Two-Factor Experiment - South Shaw 540	
 541	

 Season 
 

 Spring Summer Fall Winter 

Factor F1,16 p F1,16 p F1,16 p F1,16 P 
 

Clearing 11.3 0.002 0 0.99 2 0.17 2.2 0.15 
         
Propagule Enhancement 1.7 0.21 0.62 0.44 0.72 0.39 0.06 0.86 

 
Interaction 2.1 0.17 2.5 0.24 0.20 0.18 0.02 0.92 

 542	

Table 1: Clearing and propagule enhancement (main effects) and interactions (a=0.05)	results of 543	
two-factor experiment; Fnumerator df, denominator df and p-values from PERMANOVA (Euclidean 544	
distances; 9,999 permutations); statistically significant effects are shaded 545	
 546	
  547	



Statistical Results - Two-Factor Experiment - Point Caution 
 Season 

 
 Spring Summer 

 
Factor 
 

 
F1,16 

 
p 

 
F1,35 

 
p 

Clearing 4.1 0.03 5.3 0.03 
 

Propagule Enhancement 0.05 0.84 0.12 0.75 
 

Interaction 0.45 0.59 0.02 0.88 
 548	
Table 2: Clearing and propagule enhancement (main effects) and interactions (a=0.05)	results of 549	
two-factor experiment; Fnumerator df, denominator df and p-values from PERMANOVA (Euclidean 550	
distances; 9,999 permutations); statistically significant effects are shaded  551	
 552	
  553	



Pairwise Comparisons Between Seasons (Time to Appearance of New Recruits) 
 

 Spring (n=10) Summer (n=4) Fall (n=8) 
    

Summer (n=4) F1,12=27.5 p=0.007 - - - - 
 

Fall (n=8) F1,16=194.6 p<0.001 F1,10=0.02 p=0.93 - - 
 

Winter (n=12) F1,20=28.6 p<0.001 F1,14=8.6 p=0.02 F1,18=32.3 p<0.001 
 554	
 555	
Table 3: Test statistics and p-values for time to appearance of recruits in plots that grew kelp 556	
within one year at South Shaw; Fnumerator df, denominator df and p-values from PERMANOVA 557	
(Euclidean distances; 9,999 permutations); statistically significant effects are shaded (p<0.008 558	
with Bonferroni correction) 559	
 560	
 561	
	  562	



 Spring Summer Fall 
       
 F1,38 p F1,38 p F1,38 p 
       

Summer  7.0 <0.001 - - - - 
       
Fall  6.7 0.002 1.2 0.39 - - 
       
Winter  4.7 0.03 6.2 0.003 4.6 0.02 

 563	
Table 4: Test statistics and p-values for number of recruits that grew per seasonal experimental 564	
setup within one year at South Shaw; Fnumerator df, denominator df and p-values from PERMANOVA 565	
(Euclidean distances; 9,999 permutations); statistically significant effects are shaded (p<0.008 566	
with Bonferroni correction) 567	

 568	

 569	

 570	

	  571	



Figure Captions 572	

Fig. 1: A) Survivorship and B) Appearance of new bull kelp, N. luetkeana recruits at South Shaw 573	
Island, USA in 2014-2015; A) dashed line indicates recruits tagged in the spring/summer and 574	
tracked for 18 weeks; solid line indicates recruits tagged in the fall/winter and tracked for 8 575	
weeks B) new recruits were surveyed in every month except February; multiple points in a 576	
month indicate multiple surveys 577	
 578	
Fig. 2: Appearance of bull kelp (N. luetkeana) recruits in A) Spring B) Summer, C) Fall, and D) 579	
Winter at South Shaw Island, USA A) Spring - the number of new kelp that began to grow 580	
differed between cleared and uncleared plots (p=0.0018) but not between seeded and unseeded 581	
plots (p=0.21); the clearing * seeding interaction was also not significant B) Summer, C) Fall, D) 582	
Winter – neither clearing nor seeding significantly increased the appearance of new bull kelp and 583	
the interaction was not significant 584	
 585	
Fig. 3: Appearance of bull kelp (N. luetkeana) recruits in following seasonal setups in A) Spring 586	
and B) Summer at Point Caution, A) The number of recruits that appeared differed between 587	
cleared and uncleared plots (p=0.01) but not between seeded and unseeded plots (p=0.57); the 588	
interaction was also not significant (p=0.85) B) The number of recruits that appeared differed 589	
between cleared and uncleared plots established (p=0.04) but not between seeded and unseeded 590	
plots (p=0.37); the interaction was also not significant (p=0.36) 591	
 592	
Fig. 4: Time to appearance of bull kelp, N. luetkeana, recruits following experimental setup in 593	
four seasons at South Shaw Island. The time for new kelp at South Shaw to appear was the 594	
shortest in the spring (p<0.001), while the amount of time to first kelp was not distinguishable 595	
between summer and fall and summer and winter; fall and winter were also different (p=0.02). 596	
Letters indicate statistically significant differences. 597	
 598	
Fig. 5 Appearance of new bull kelp, N. luetkeana, recruits at A) Shaw Island and B) Point 599	
Caution, USA A) At South Shaw 2, the most new kelp grew following the spring setup 600	
(p<0.001), while the number of new kelp that appear following the summer and fall setup and the 601	
winter and fall setup did not differ. Letters indicate statistically significant differences. B) At 602	
Point Caution, there was no statistical difference in kelp that grew between seasons (p=0.65) 603	
 604	
Fig. 6: Understory macroalgal biomass across seasons at A) South Shaw 2, where the cleared, 605	
dried biomass was the same between spring, summer, and fall but different between fall and 606	
winter (p=0.02) and B) Point Caution, where cleared, dried biomass differed between spring and 607	
summer (p=0.005) 608	

Fig. S1: Site maps A) South Shaw 2; “block” indicates the location of the surface site marker 609	
and B) Point Caution; “log” indicates a pre-existing structure used in site navigation. In both A) 610	
and B), numbered blocks indicate 2x2 m plots.  611	
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