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Introduction

0.1. Signals. The primary concern of this thesis will be the application of wavelet trans-

forms to the analysis of ecological signals. It makes sense, then, to first establish what we

mean by a signal. Consider the following non-mathematical definition:

sig¨nal n. A gesture, action, or sound that is used to convey information or instructions.

We characterize, model, and represent many phenomena—both naturally occuring and man-

made—with signals: an electrocardiogram is a discrete, finite length, one-dimensional signal

that represents a process occurring inside of a human body. Similarly, computer images are

our most familiar examples of finite length, discrete, two-dimensional signals.

Mathematically, a signal is simply a function. Though we will place certain restrictions

upon the functions we will allow as signals, the principal differentiating feature of signals—as

indicated by the non-mathematical definition given above—is the emphasis we place upon

the information content we associate with them. Signal processing, then, is the discipline

that attempts to mathematically define and extract this information from signals.

In general, we ask two kinds of questions about signals:

(1) What kind of information can we extract from a given signal?

(2) Does some (hopefully small) set of data uniquely characterize a given signal – or

differentiate it from other signals?

iv



INTRODUCTION v

Answers to the questions posed above often use frequency1 to classify signals. If we make

certain assumptions about the kinds of signals we’re working with, these questions given

above turn out to be fairly simple to resolve.

(a) fpxq “ sinp20πxq (b) gpxq “ cosp2πxq ` cosp4πxq

Figure 0.1

For example, suppose we want to tell someone about the signal shown in Fig. 0.1.(a).

We could, of course, send them a picture of the signal. It’s much more efficient, however, to

simply tell them the information we can glean from simple observation: it’s a 10 Hz signal

with peaks at one and negative one.

Signals like fpxq given in Fig. 0.1.(a). are called stationary signals; that is, these

signals do not change in frequency or amplitude over time. If we’re working with stationary

signals, then the Fourier transform—the classical technique of signal processing—can give

us information about a given signal that uniquely characterizes that signal. The Fourier

transform—whether continuous or discrete—is a function of functions: it takes a function

as its input and returns a new function as its output. The values of the output function

correspond to the magnitudes of the component frequencies contained within the input

function. In less mathematical terms, the information provided by the Fourier transform will

resemble the sentence I used previously to describe Fig. 0.1.(a); that is, the Fourier transform

tell us the frequencies and amplitudes contained within a stationary signal. Furthermore,

1Frequency is the rate at which a signal repeats itself. If a signal repeats itself once every second, then we
say it is a 1 Hz signal; the signal given by Fig. 0.1.(a). is a 10 Hz signal. The units, of course, don’t have
to be in seconds - in fact, they don’t even have to be units of time. Furthermore, a signal can have many
constituent frequencies – see Fig. 0.1.(b).
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the Fourier transform can tell us information about and let us mathematically manipulate

more complicated signals—like Fig. 0.1.(b)2.—or even noisy signals.

It turns out that we can safely assume that many signals are stationary: chemists and

physicists, for example, will recognize that spectroscopy relies upon the stationary electro-

magnetic signals emitted by excited atoms. For these reasons—and a number of other reasons

I’ve left unstated—the Fourier transform has been the ubiquitous analytical tool in science

and applied mathematics for more than a hundred years.

Yet it’s an imperfect assumption. It’s not hard to see that stationary signals make

up a fairly small subset of all mathematically possible signals: consider human speech,

population growth, and, in the two-dimensional case, images3. Let’s clarify the difference

between stationary and non-stationary signals and demonstrate some of the shortcomings of

Fourier analysis. Consider the following two signals, plotted in Figure 0.2:

(1) fpxq “ e´x
2
rsinp2πxq ` sinp20πxq ` sinp10πxqs

(2) gpxq “ e´px`1q2 sinp2πxq ` e´x
2

sinp20πxq ` e´px´1q2 sinp10πxq

Qualitatively, the graphs given by fpxq and gpxq do not resemble one another. Yet the

classical means of analyzing them—the Fourier transform4—cannot meaningfully differen-

tiate between them either qualitatively or, as it turns out, quantitatively. At least when

considering these two signals, the Fourier transform5 fails to adequately resolve the two cen-

tral questions of signal processing that I posed above. It’s clear, then, why we might need

a new technique for analyzing non-stationary signals. The main concern of the expository

section of this thesis will be a discussion of a recently developed technique called wavelet

analysis used to gather the information content of non-stationary signals.

2Note: we actually say that gpxq is a stationary signal, even though it is visually quite complex.
3Though it may not be obvious, an image is a finite two-dimensional signal; they can be analyzed with
techniques that are generalizations of the techniques used for one-dimensional signals.
4A note on how to interpret the graphs given by (c). and (d): the horizontal axes indicate the component
frequencies of fpxq and gpxq, respectively.
5For this thesis, I only refer to the discrete Fourier transform. There are different kinds of Fourier transforms,
and while they each serve a different purpose, they all have the same shortcomings with respect to non-
stationary signals.
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(a) fpxq (b) gpxq

(c) Discrete Fourier transform of fpxq (d) Discrete Fourier transform of gpxq

Figure 0.2. .

0.2. The Discrete Wavelet Transform. As we have just discussed, the wavelet trans-

form and the Fourier transform are techniques used to analyze the frequency content of

signals. The expository sections of this thesis will provide an introduction to the wavelet

transform with a focus on the discrete wavelet transform (DWT). However, for reasons that

I hope will become more clear shortly, it is important to define and articulate basics of the

Discrete Fourier transform (DFT) so that it may be used as an expository, analytical, and

computational tool.

There are plenty of conceptual reasons for introducing the DFT before the DWT; both

transforms decompose a signal into its component frequencies, but the DFT does this in a

much more intuitive and elementary way. For a reader unfamiliar with function transforma-

tions, the DFT will make the process of learning the DWT more palatable.
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Furthermore, as we begin to examine the DWT, the frequency content of a given signal

will become defined as the values registered by the DFT; we will use the DFT as an analytical

tool to construct and evaluate the wavelets used in the DWT. Finally, we will prove that we

can compute the DWT by computing of a series of convolutions. Those familiar with the

Fourier transform will know of the intimate relationship between the Fourier transform and

convolution; the use of the Fast Fourier transform (FFT) will allow us to quickly compute

the DWT.

Chapter 1 contains the background linear algebra necessary to understand the DFT; it

also contains the statistics necessary for later chapters. Within Chapter 2, I will introduce the

DFT and prove some important results that characterize the transform; in particular, I will

introduce the convolution operator and frame its relationship to the DFT. Finally, in Chapter

3, I will begin my introduction to the DWT; as highlight, I introduce two new statistical

significance tests for the Haar wavelet transform. Chapter 5 will include applications of these

significance tests to ecological signals.

As a final note, most of the definitions and proofs in these first chapters are adapted

from Michael Frazier’s text An Introduction to Wavelets Through Linear Algebra, although

I have expanded or corrected them when they are too terse or unclear. I will note when the

material does not come from Frazier’s text.

0.3. The Continuous Wavelet Transform. I want to explain why this thesis is more

disjointed than I would have hoped, and I also want provide a picture of what the field of

wavelet analysis really looks like. I would have greatly appreciated this kind of an outline of

wavelet theory before I began this thesis.

When I began this thesis, I knew that I would be applying the techniques I learned

to discrete signals; I assumed, therefore, that I should focus on the DFT and the DWT.

Surprisingly enough, I was looking at the wrong transforms - at least for the kind of signal

analysis that I would end up really focusing on. The DWT is a fantastic tool for certain

kinds of fast, technical processing - it’s good for image compression, pattern recognition, and

signal denoising - but it’s not good for what I wanted to focus on.
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The continuous and discrete wavelet transforms do not constitute the entirety of wavelet

analysis; in fact, there exists an entire field of wavelet analysis that relies upon a structure

called a multiresolution analysis. This field, though it uses continuous wavelet functions, is

actually most closely related to the DWT in its organization; in Fourier analysis, its closest

analogue is the Fourier series. It is also the most sophisticated and theoretically developed

field within wavelet analysis; its most prominent applications are in physics and in differential

equations.

Both the DWT and the multiresolution analysis-reliant wavelet transforms are concerned

with the orthogonal decomposition of a signal. While orthogonal decompositions have many

virtues, they are not always the best scientific tool. In ecological applications, our primary

concern is exactly locating events in time and frequency within a signal; it turns out that

orthogonal decompositions actually obfuscate this information by diffusing it across a fairly

small number of basis vectors6. We will use a discretely sampled continuous wavelet trans-

form (CWT) to analyze ecological signals; this will give us the most information possible

about a given signal. Thus, even though the CWT is the least sophisticated - and most

computationally intensive - of the wavelet transforms, it is the appropriate tool for the job.

The primary mathematical challenge of this thesis will be the construction and imple-

mentation of statistical tests. When we take the CWT of white noise7, we see apparently

cohesive structures - that is, structures that resemble the wavelet transforms of sinusoids or

other traditional functions. Thus, when we don’t a priori know the content of a signal, we

need statistical tests to identify white noise.

Chapter 4 will include an introduction to the CWT; we will also derive and alter estab-

lished statistical significance tests that use the CWT. Chapter 5 will include applications of

these significance tests to ecological signals.

6It’s hard to explain this in a non-technical way. For those who are familiar with this material, consider
what happens when we take the DFT of a signal whose component frequencies do not exactly match the
frequencies of the DFT basis vectors – the frequency will be “shared” by nearby vectors, and we won’t be
able to exactly determine the component frequencies of our original signal. (Actually, the problem is much
worse than that – it’s diffused across all of the basis vectors. We will discuss this problem in detail.)
7That is, a signal produced by randomness. We will define this more carefully later on.



CHAPTER 1

Background Linear Algebra and Statistical Concepts

1. Linear Algebra

The first three chapters of this thesis will introduce two discrete transforms. This section

aims to introduce the linear algebra requisite for understanding both the DFT and, later on,

the DWT.

In rough lay language, we say that the Fourier transform decomposes a function into

its component frequencies. In the more precise terminology of linear algebra, the Fourier

transform projects a function onto a set of orthogonal basis vectors whose properties we

understand in terms of frequency; the magnitude of the weights on these basis vectors cor-

responds to the presence of a certain frequency in a function. The goal of this chapter is to

introduce the mathematical background necessary to understand the concept of a projection

of a vector onto an orthogonal vector space; the Fourier transform will follow straightfor-

wardly from these concepts in Chapter 2.

1.1. Basic Structures and Definitions. This thesis will assume familiarity with the

properties of complex numbers and some basic facts of linear algebra. We begin by intro-

ducing the definition of a vector space; this will be the underlying structure of the Fourier

and wavelet transforms.

Definition 1. Let F be a field. A vector space V over F is a set with operations of

vector addition ` and scalar multiplication ¨ satisfying the following properties:

(1) For all u, v P V , u` v is defined and is an element of V . (Closure for addition)

(2) For all u, v P V , u` v “ v ` u. (Commutativity for addition)

(3) For all u, v, w P V , u` pv ` wq “ pu` vq ` w. (Associativity for addition)

1
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(4) There exists an element in V , denoted as 0, such that u ` 0 “ u for all u P V .

(Additive identity)

(5) For each u P V there exists an element in V , denoted ´u, such that u ` p´uq “ 0

(Additive inverse).

(6) For all α P F and u P V , α ¨ u is defined and is an element of V . (Closure for scalar

multiplication)

(7) For all u P V , 1 ¨ u “ u, where 1 is the multiplicative identity in F. (Scalar

multiplicative identity)

(8) For all α, β P F and u P V , α ¨ pβ ¨ uq “ pαβq ¨ u. (Associativity for scalar multipli-

cation)

(9) For all α P F and u, v P V , α ¨ pu` vq “ pα ¨uq` pα ¨ vq. (First distributive property)

(10) For all α, β P F and u P V , pα ` βq ¨ u “ pα ¨ uq ` pβ ¨ uq. (Second distributive

property)

The set of n-dimensional Euclidean vectors Rn is our most familiar example of a vector

space. However, we can apply the definition of a vector space to diverse sets of mathematical

objects.

Example 1. All of the following sets are vector spaces.

(1) The set of n´1 degree polynomials, Pn, under polynomial addition is a vector space.

(2) The set of mˆ n matrices, Rmˆn, under matrix addition is also vector space.

(3) The set of square-integrable functions under point-wise addition:

L2
pRq “

"

f : RÑ C :

ż 8

´8

|fpxq|2 ă 8

*

.

(4) The set of square-summable sequences under point-wise addition:

`2
pRq “

#

an : RÑ C :
8
ÿ

n“0

|an|
2
ă 8

+

.

For our purposes, the underlying field we will use for our vector spaces will be C, the set

of complex numbers.
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Definition 2. We define the vector space `2pZNq as

`2
pZNq “ tz “ pzp0q, zp1q, ..., zpN ´ 1qq : zpjq P C, 0 ď j ď N ´ 1u.

That is, `2pZNq is the set of complex valued functions from ZN .

The vector space `2pZNq will be the focus of this thesis. Although we have defined each

vector in `2pZNq as the ordered values of a function from ZN to C, we should note that, in

general, an element of `2pZNq will look and mathematically act like an element of CN . Yet

we should remember to interpret an element z P `2pZNq as a signal: in most applications,

the values of z will be discrete samples taken at some constant sampling rate.

While we often think of a function in `2pZNq as a finite length, we note that the domain

of `2pZNq is ZN , the set of integers modulo N . Later on, we will exploit this fact: a function

in `2pZNq is actually N -periodic.

Consider arbitrary vectors u, v, w P R2. If we can find some α, β P R such that u “

αv ` βw, then we say that u is a linear combination of v and w. We can also consider

the set of all linear combinations of v and w.

Definition 3. Let V be a vector space over a field F, and suppose U Ď V . The span of

U (denoted span U) is the set of all linear combinations of U . In particular, if U is a finite

set, say

U “ tu1, u2, ..., unu,

then

span U “

#

n
ÿ

j“1

αjuj : αj P F for all j “ 1, 2, ..., n

+

.

Example 2.

Let X be the set of all vectors in R2 lying on the line y “ x. Then

X “ span

$

&

%

¨

˝

1

1

˛

‚

,

.

-

.
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That is, when we consider all of the linear combinations of the vector p1, 1q in R2, we get

every vector lying on the line y “ x.

Example 3.

R2
“ span

$

&

%

¨

˝

1

0

˛

‚,

¨

˝

0

1

˛

‚

,

.

-

“ span

$

&

%

¨

˝

1

2

˛

‚,

¨

˝

0
?

3

˛

‚

,

.

-

Both sets of vectors given above span R2; that is, we can rewrite any vector in R2 as a

linear combination of the vectors in those sets. We can generalize this concept for arbitrary

vector spaces.

Definition 4. Let V be a vector space over a field F. A subset U of V is a basis for V

if U is a linearly independent set such that span U “ V .

Example 4. For Rn, the standard basis is given by teiu
n
i“1, where ei P Rn and ei “ 1

for its ith coordinate and 0 elsewhere.

As seen in Example 3, there can be different bases for a single given vector space; it

turns out that for an n dimensional vector space V , any set of n linearly independent vectors

tviu
n
i“1 P V will be a basis of V .

It may not be obvious why we want to find bases for a vector space; it may be even

less obvious why we might choose one basis over another. We are not yet ready to address

these concerns, but for now, note that, in general, we tend to choose bases in accordance

with the mathematical problems we are trying to solve. Although the reader has no reason

to understand what this might mean at this point, it should be noted that the difference

between Fourier analysis and wavelet analysis really comes down to a choice of basis.

For a given vector v P V , we can “locate” v with respect to our basis vectors.

Definition 5. Suppose V is a vector space over a field F and S “ tv1, v2, ..., vnu is a basis

for V . For any vector v P V , there exist unique α1, α2, ..., αn P F such that v “
řn
j“1 αjvj.

We say that rvsS is the coordinate vector of v with respect to S; we write rvsS as the
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vector in Fn with components α1, α2, ...., αn, that is,

rvsS “

¨

˚

˚

˚

˚

˚

˚

˚

˝

α1

α2

...

αn

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Example 5.

Let B “

$

&

%

¨

˝

3

1

˛

‚,

¨

˝

1

1

˛

‚

,

.

-

. It is straightforward to show that B is a basis for R2.

Then let v “

¨

˝

7

3

˛

‚. Then rvsB “

¨

˝

2

1

˛

‚.

1.2. Projection. For an arbitrary element v P V and a given basis B, how can we

determine rvsB? That is, how can we determine tαiu
n
i“1? It turns out that we generally

avoid answering this question for arbitrary bases; we restrict our analyses to orthogonal

bases. To understand what this means—and why we make this restriction—we first need to

introduce a few more definitions.

Definition 6. Let V be a vector space over C. A complex inner product is a map

〈¨, ¨〉 : V ˆ V Ñ C with the following properties:

(1) For all u, v, w P V , 〈u` v, w〉 “ 〈u,w〉` 〈v, w〉.

(2) For all α P C and all u, v P V , 〈αu, v〉 “ α 〈u, v〉.

(3) For all u, v P V , 〈u, v〉 “ 〈v, u〉.

(4) For all u P V , 〈u, u〉 ě 0, and 〈u, u〉 “ 0 if and only if u “ 0.

We call a vector space associated with a complex inner product a complex inner prod-

uct space.

Example 6. Let x, y P Cn. Let xi denote the ith element of x. Then the dot product

x ¨ y “
n
ÿ

i“1

xiyi



1. LINEAR ALGEBRA 6

is an inner product.

Recall the following identity:

x ¨ y “ ||x||||y|| cos θ,

where θ is the angle between x and y.

Consider x1, x2, y P R2 where ||x1|| “ ||x2|| “ 1. Suppose we want to write y as a linear

combination of x1 and x2; that is,

y “ αx1 ` βx2

for some α, β P R2. Since

x1 ¨ y “ ||y|| cos θ,

it’s straightforward to see that, geometrically (and trigonometrically1), the dot product mea-

sures “how much” of y points in the x1 direction.

We might think that we can just let α “ x1 ¨ y and β “ x2 ¨ y. Unfortunately, it usually

doesn’t work out that easily: in most cases, there’s a bit of “overlap” between x1 and x2—

that is, x1 ¨ x2 ‰ 0—and this makes the computation of α and β much more difficult2. It

turns out that we can let α “ x1 ¨ y and β “ x2 ¨ y only in the case that x1 ¨ x2 “ 0.

We can generalize (and prove) this whole process for an arbitrary inner product space.

Definition 7. Let V be a complex inner product space. Then we define the norm of

u P V as

||u|| “
a

〈u, u〉.

We now introduce the concept of orthogonality ; orthogonality generalizes the notion of

“overlap” (more exactly, a lack of “overlap”) between vectors.

1Try drawing a picture as an example.
2Again, try drawing a picture. Here’s the problem: if x1 ¨x2 ‰ 0, then x1 points at least a little bit in the x2
direction (or vice versa, depending on your perspective). Remember that x1 ¨ y tells us how much y points
in the x1 direction and x2 ¨ y tells us how much y points in the x2 direction. But since x1 ¨ x2 ‰ 0, x1 ¨ y also
tells us a little bit about how much x2 points in the y direction, which was supposed to be already accounted
for by x2 ¨ y.
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Definition 8. Suppose V is a complex inner product space. For u, v P V , we say that

u and v are orthogonal if 〈u, v〉 “ 0.

Example 7.

Let x “

¨

˝

1

0

˛

‚, and y “

¨

˝

0

1

˛

‚. Then since

x ¨ y “
2
ÿ

i“1

xiyi “ 1 ¨ 0` 0 ¨ 1 “ 0,

x and y are orthogonal vectors.

Definition 9. Suppose V is a complex inner product space. Let B be a collection of

vectors in V . We say that B is an orthogonal set if any two different elements of B are

orthogonal. Furthermore, B is an orthonormal set if B is an orthogonal set and ||v|| “ 1

for all v P B.

Example 8. For Rn, the standard basis is an orthonormal basis.

The following theorem exactly generalizes our previous discussion of vectors in R2.

Theorem 1.1. Suppose V is a complex inner product space. Let B “ tv1, v2, ..., vnu be

an orthogonal basis for V . Let u P V . Then

(1.1) u “
n
ÿ

i“1

〈u, vi〉
〈vi, vi〉

vi.

Furthermore, if B is an orthonormal basis for V , then

(1.2) u “
n
ÿ

i“1

〈u, vi〉 vi.

Proof. If u P V , then u P span B. Therefore, there exists a set of scalars tαiu
n
i“1 such

that

u “ α1v1 ` α2v2 ` . . .` αnvn.
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For each i, to determine αi, we take the inner product of both sides of the equation and vi.

That is,

〈u, vi〉 “ 〈α1v1 ` α2v2 ` . . .` αnvn, vi〉

“ 〈α1v1, vi〉` 〈α2v2, vi〉` . . .` 〈αnvn, vi〉

“ α1 〈v1, vi〉` α2 〈v2, vi〉` . . .` αn 〈vn, vi〉 .

But since B is an orthogonal basis, 〈vj, vk〉 “ 0 for j ‰ k. Therefore,

〈u, vi〉 “ αi 〈vi, vi〉 .

Solving for each αi yields the desired result.

Furthermore, if B is an orthonormal basis, then 〈vi, vi〉 “ 1; therefore, αi “ 〈u, vi〉. �

At this point, it’s not hard to see that if B is an orthonormal basis, then

rusB “

¨

˚

˚

˚

˚

˚

˚

˚

˝

〈u, v1〉

〈u, v2〉
...

〈u, vn〉

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

This is called the projection of a vector onto an orthogonal vector space; we’re going to

be using that terminology a lot, mostly because the word is so evocative of what’s actually

going on.

It’s important to consider the use of the definition of orthogonality in our proof. Math-

ematically, the fact that we used an orthogonal basis greatly simplified the computation of

rusB. Conceptually, however, we should consider that orthogonality implies that there is no

“overlap” between our basis vectors: if we project a vector u onto an orthogonal basis, then

we are finding exactly “how much” of each basis vector is contained within u.

We will finish this section with a theorem from linear algebra that will be useful for us

later; conceptually, it is relatively unimportant.
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Theorem 1.2. Suppose V is a complex inner product space. Suppose B is an orthogonal

set of vectors in V and 0 R B. Then B is a linearly independent set.

Proof. Suppose u1, u2, ..., uk P B and there exist scalars α1, α2, ..., αk such that

α1u1 ` α2u2 ` . . .` αkuk “ 0.

Take the inner product of both sides with uj for j P t1, 2, ..., ku. Since B is an orthogonal

set, 〈ui, uj〉 “ 0 for i ‰ j. Then

αj 〈uj, uj〉 “ 0.

But since uj ‰ 0 by assumption, 〈uj, uj〉 ‰ 0. Therefore, αj “ 0. Since j is arbitrary, this

proves that B is a linearly independent set. �

2. Statistical Concepts

We will need some fairly sophisticated statistical tools for the later sections of this thesis;

this section will act as a review for those who have a basic knowledge of probability. In

particular, we will assume an understanding of random variables and independence of

random variables. These definitions and theorems in this section are taken from [5]. Though

this chapter should be used as a reference for the rest of the thesis, some concepts and

theorems are introduced ad hoc throughout the thesis for clarity.

In general, we will use the common “ „ ” convention for denoting the probability den-

sity of a random variable; for example, if X is a random variable from a standard normal

distribution, we will write

X „ Np0, 1q.

Furthermore, when we talk about random variables, we’ll always use capital letters: e.g.,

we’ll say that X or Y is a random variable. However, if we’re talking about an observed

value of a random variable, we’ll use lower-case letters: e.g., the random variable X took on

the value x “ 2.
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As a final note, we haven’t proved a lot of the theorems in the upcoming sections,

especially theorems about functions of random variables. Proofs of these theorems require

moment-generating functions, but they also require facts from analysis about the relationship

between moment-generating functions and their associated probability density functions. We

had to cut things off at some point; here’s where we drew the line.

2.1. Important Probability Densities.

Definition 10. A random variable X has a normal distribution if its probability

density is given by

Npx;µ, σq “
1

σ
?

2π
e´

1
2p

x´µ
σ q

2

for ´8 ă x ă 8,

where σ ą 0.

We call a random variable with probability density function Npx; 0, 1q a standard nor-

mal distribution.

Example 9. Let X be a random variable with density function Npx; 0, 1q. What’s the

probability that X takes a value between ´1 and 1?

Those familiar with continuous random variables should know that we answer this kind

of question by integrating the probability density function between the values of interest.

That is,

P p´1 ă X ă 1q “

ż 1

´1

1

σ
?

2π
e´

1
2
pxq2

« 0.682.

Note that there isn’t an analytic solution to the integral of the normal distribution - we

calculate the integral numerically.

Definition 11. We denote a white noise signal by W P `2pZNq. For i “ 0, 1, ..., N ´ 1,

W piq has the following properties:

(1) The random variable W piq is normally distributed; that is, W piq „ Npµ, σq.

(2) For all i ‰ j, W piq and W pjq are independent.
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Definition 12. A random variable X has a chi-square distribution if its probability

density is given by

fpxq “

$

’

’

&

’

’

%

1
2ν{2Γpν{2q

x
ν´2
2 e´

x
2 for x ą 0

0 elsewhere,

where Γ is the Gamma function and ν P N is the degrees of freedom of X. We denote

a random variable with a χ2 distribution with ν degrees of freedom by X „ χ2
ν .

Those unfamiliar with the Gamma function need not worry - like the normal distribution

above, we will only work with the chi-square distribution numerically.

2.2. Moments of Random Variables. We use moments of random variables to quan-

tify the kinds of values we expect to see from them.

Definition 13. If X is a continuous random variable and fpxq is the value of its prob-

ability density at x, the expected value of X is

ErXs “

ż 8

´8

xfpxqdx.

Theorem 1.3. Let g be a continuous function. If X is a continuous random variable

and fpxq is the value of its probability density at x, the expected value of gpXq is given by

ErgpXqs “

ż 8

´8

gpxqfpxqdx.

Theorem 1.4. For a, b P C,

EraX ` bs “ aErXs ` b.

Proof. The theorem demonstrates that expected value is a linear operator; the proof

of the theorem follows directly from the definition of expected value, Theorem 1.3, and the

fact that integration is a linear operator. �
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Definition 14. The rth moment about the origin of a random variable X, denoted

by µ1r, is the expected value of Xr; that is, for r “ 0, 1, 2, ...,

µ1r “ ErXr
s “

ż 8

´8

xrfpxqdx.

where fpxq is the probability density function of X. We call µ11 the mean of X; we often

denote the mean with µ.

Definition 15. The rth moment about the mean of a random variable X, denoted

by µr, is the expected value of pX ´ µqr; that is, for r “ 0, 1, 2, ...,

µr “ ErpX ´ µqrs “

ż 8

´8

px´ µqrfpxqdx.

where fpxq is the probability density function of X. We call µ2 the variance of X; we often

denote the variance with σ2 or by VarrXs. Furthermore, we call the positive square root of

the variance the standard deviation of X; we denote the standard deviation with σ.

Theorem 1.5. Let X have a normal distribution with probability density Npx;µ, σq.

Then X has mean µ and variance σ2.

Theorem 1.6. Let X be a random variable with a χ2
ν distribution. Then X has mean

µ “ ν and variance σ2 “ 2ν.

For most applications, we’re concerned with only three different moments of a given

random variable: the mean, µ, the variance σ2, and the second moment about the origin,

µ12. Our interest in the second moment stems from the following theorem.

Theorem 1.7.

σ2
“ µ12 ´ µ

2
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Proof.

σ2
“ ErpX ´ µq2s

“ ErX2
´ 2Xµ` µ2

s

“ ErX2
s ´ 2µErXs ` µ2

“ ErX2
s ´ 2µ2

` µ2

“ µ12 ´ µ
2.

�

Often, it’s easier for us to compute µ12 and µ2 than to compute σ2 directly; furthermore,

when µ “ 0, σ2 “ µ12.

2.3. Functions of Random Variables. The following theorems will be invaluable for

us later on.

Theorem 1.8. If X has a standard normal distribution, then X2 has a chi-square dis-

tribution with ν “ 1 degrees of freedom.

Theorem 1.9. If X1, X2, ..., Xn are independent random variables having standard nor-

mal distributions, then

Y “
n
ÿ

i“1

X2
i

has a chi-square distribution with ν “ n degrees of freedom.

Theorem 1.10. Let X1, X2, ...Xn be independent random variables; let Y “
řn
i“1 aiXi.

Then

VarrY s “
n
ÿ

i“1

aiVarrXis.

Definition 16. If X1, X2, ..., Xn are independent and identically distributed random

variables, we say that they constitute a random sample from the infinite population given

by their common distribution.
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This is the standard way of describing a random sample, but the “identically distributed”

part isn’t straightforward to interpret. We say that the Xi’s are identically distributed if

their corresponding probability density functions fipxq are equal for all i. We’ll talk about

this more in the next section, but this is a pretty big assumption to make.

Definition 17. Let X1, X2, ..., Xn be a random sample. Then we define the sample

mean as

X “
1

n

n
ÿ

i“1

Xi

and the sample variance as

S2
“

řn
i“1pXi ´Xq

2

n´ 1
.

As sums of random variables, both X and S2 themselves are random variables; their

distribution depends upon the distribution of the Xi’s
3. However, we can calculate important

statistical moments associated with X and S2 without knowing their probability density

functions; these moments demonstrate their utility.

Theorem 1.11. Let X1, X2, ..., Xn be a random sample. Then

ErXs “ µ,

and

ErS2
s “ σ2.

When we substitute xi for Xi, x is what we usually think of as the “average” of a data

set, where each xi is an observation - e.g., xi is the grade that the ith student received on

an exam.

We can standardize any normally distributed random variable. If X is normally dis-

tributed with mean µ and variance σ2, then

Z “
X ´ µ

σ

3When n is large, X is well approximated by a normal distribution; see the Central Limit Theorem.
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has a standard normal distribution. In many cases, we don’t know µ and σ2. However, if

X1, X2, ..., Xn constitute a random sample of normally distributed random variables, then

we normalize Xi such that

Zi “
Xi ´X

S

is approximately normally distributed for all i.

Procedure 1. Normalization. Let x P `2pZNq. Then we normalize x with the follow-

ing procedure:

(1) Compute x, the sample mean of x.

(2) Find s2, the sample variance of x.

(3) For all i, define z P `2pZNq as

zpiq “
xpiq ´ x

s

for i “ 0, 1, ..., N ´ 1.

We will need this procedure for our tests later on.

2.4. Hypothesis Testing. In statistics, we often want to make claims about data sets

produced by random variables (or, importantly, to claim that a data set isn’t produced by

a random variable; that is, the data set is produced deterministically). Unfortunately, it’s

hard to get a grasp on how to appropriately frame these kinds of decisions. I want to provide

an example to clarify and motivate the need for the kind of decision-making structures we’re

going to introduce shortly.

Suppose you work for a company that produces 12 oz. cans of soda4. Your boss has

asked you to carefully construct a statistical test to ensure that the company’s factory is

working perfectly. Before we can discuss hypothesis testing, we have to define what “working

perfectly” might even mean.

4That is, aluminum cans with soda in them. Ignore the weight of the can. Just use 12 oz.
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If a given soda can weighs more than 12 oz, then you’re wasting soda; if it weighs less, then

you’re ripping off your customers. Your boss knows there are certain inevitable variations in

soda can weight - machines and people aren’t perfect, and a given soda can probably won’t

weigh exactly 12 oz. - but we won’t say that the existence of these errors means that there’s

something wrong with the factory. In fact, we might even find that the average weight of

all the soda cans ever produced by the factory isn’t exactly 12 oz - even if the factory is

“working perfectly”. What does “working perfectly” mean, then?

Let’s say that the weight of the ith soda produced by your factory is governed by a

random variable Xi. We assume that the Xi’s are identically distributed, although this

actually assumes a lot about your factory5. With that assumption out of the way, we’ll start

referring to a random variable X, which has the same distribution as all the Xi’s - our X

will be a representative soda can weight.

What your boss really means by the factory “working perfectly” is that X has mean

µ “ 12 oz6. In essence, hypothesis testing is a framework for making decisions about whether

your factory is working perfectly or not; that is, when can we say with confidence that X

really has mean µ “ 12?

Let’s say you carefully take a random sample of n soda cans from your factory. We know

that if µ “ 12, then ErXs “ 12. But what should we conclude if the observed mean isn’t

equal to twelve? For example, what should we conclude if x “ 12.2? Should our conclusion

be different if x “ 12.5? At what point are the observed values so weird that we should

decide that there’s something wrong with the factory? That is, at what point should we

decide that µ ‰ 12? Given our assumptions about the situation, computing the answer

to these questions turns out to be trivial; conceptually, however, these are sophisticated

5Suppose there are two different sections of the factory that both produce soda cans. If one of the sections is
more sloppy about its production process than the other, then your assumption that the Xi’s are identically
distributed populations is false. Nevertheless, if, in this example, we’re working with the same kinds of
machines over a fairly short period of time, then the assumption isn’t a bad one.
6Your boss, if she’s a smart boss, should also care about the variance σ2 of X. If the variance is large, as
the word evokes, there will be a lot of variation in soda can weight, even if the mean µ of X is equal to 12
exactly.
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and hard-to-answer questions. To appropriately frame the question, we need to define a

statistical hypothesis.

Definition 18. A statistical hypothesis is an assertion about the distribution of one

or more random variables. If a statistical hypothesis completely specifies the distribution, it

is called a simple hypothesis; otherwise, it is called a composite hypothesis.

Example 10. The following are all examples of statistical hypotheses.

(1) The random variable X has a normal distribution with mean µ “ 0 and variance

σ2 “ 1. (simple hypothesis)

(2) The random variable Y has a normal distribution. (composite hypothesis)

(3) The random variable Y does not have a normal distribution. (composite hypothesis)

We often compare two differing hypotheses. We often call a hypothesis that is widely

accepted, or the current view, the null hypothesis or H0; a more radical alternative claim

is called the alternative hypothesis or HA. If these definitions sound shaky to you, you’re

right. But in an applied context, it’s usually clear what the null and alternative hypotheses

actually are7. In the soda can factory example provided above, our null hypothesis is that X

is normally distributed with mean µ “ 12; our alternative hypothesis is that X is normally

distributed with mean µ ‰ 12.

Let’s make a decision about our soda can factory based upon a single sample - we’re just

going to randomly pick and weigh a single soda can. Let’s say that you decided before you

picked your sample that you were going to reject your null hypothesis that µ “ 12 if and

only if your sample weighs less than 11 oz. or more than 13 oz.

Definition 19. We identify the two error types associated with statistical decision mak-

ing.

7We shouldn’t think of the alternative hypothesis as the hypothesis that advances research: we try to stay
objective with our language; also, in the example given above about the factory, we may hope that the null
hypothesis is true - we don’t want there to be something wrong with the factory.



2. STATISTICAL CONCEPTS 18

(1) If we reject the null hypothesis, H0, in favor of the alternative hypothesis HA when

the null hypothesis is, in fact, true, then we say that we have made a Type I error.

We say that α is the probability of committing a Type I error.

(2) If we fail to reject the null hypothesis, H0 when, in fact, the alternative hypothesis,

HA, is true, then we have made a Type II error. We say that β is the probability

of committing a Type II error.

Example 11. In the factory example provided above, what’s the probability of com-

mitting a Type I error? Note, of course, that to compute α we have to first identify the

rejection region - the values of X that will cause us to reject the null hypothesis. In our

example, we reject the null hypothesis when X ą 13 or X ă 11.

α “ 1´ P p11 ă X ă 13|µ “ 12q “ 1´

ż 13

11

1
?

2π
e´

1
2
px´12q2

« .3173

This means that when we make decisions based upon the identified rejection region, we’re

going to mistakenly reject the null hypothesis about 32% of the time - even though it is true.

In the example above, we first identified the rejection region; we then identified the

probability of committing a Type I error. We can also identify a good α first, and then

compute an appropriate rejection region8.

Example 12. Suppose X is a random variable. We want to test the null hypothesis

that X is chi-square distributed with 2 degrees of freedom against the alternative hypothesis

that X isn’t chi-square distributed with 2 degrees of freedom9. If we let α “ .05, then what

should our rejection region be?

We’re looking for values of X that are unlikely to be seen from a chi-square distribution

- we’re looking to identify a rejection region. That is, we’re looking for a k such that:

P pX ě k|X „ χ2
2q “ α.

8Note: there are infinitely many rejection regions corresponding to a single α. However, there are common-
sense ways of choosing the appropriate rejection region based upon the claims you’re trying to prove.
9Note: it’s really hard to calculate β in this case. This is a huge problem with this kind of test.
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This is equivalent to solving the following equation for k:

1´

ż k

0

1

2Γp1q
e´

x
2 dx “ α.

With a little help from a numerical integrator and a equation solver, we find that k « 5.99.

Again, we should be careful to interpret this rejection region appropriately: it means that

95% of the time, a chi-square random variable with two degrees of freedom will take on values

less than 5.99. Therefore, if we observe a random variable X take on a value greater than or

equal to 5.99, then we can claim, with 95% confidence, that X isn’t chi-square distributed

with two degrees of freedom.



CHAPTER 2

Fourier Analysis

Chapter 1 introduced the projection of a vector onto an orthogonal basis. The goal of

this chapter is to demonstrate that the Fourier transform is a projection of a certain kind of

vector onto a certain kind of basis—and that we can interpret this basis in terms of frequency.

1. The Discrete Fourier Transform

The Discrete Fourier transform (DFT) projects discrete, finite length functions onto a

discrete, finite length trigonometric basis. With this in mind, we now introduce the vector

space with which we will be working for the remainder of this thesis.

Theorem 2.1. For u, v P `2pZNq, we define an inner product on `2pZnq by

〈u, v〉 “
N´1
ÿ

k“0

upkqvpkq.

It is straightforward to show that this is an inner product; from a computational per-

spective, this inner product is identical to the dot product on CN .

The DFT projects an arbitrary signal z P `2pZNq onto an orthonormal basis; again, the

process is identical to the process of projecting a vector onto a basis that we introduced in

Chapter 1. We now introduce the set of orthonormal basis vectors for `2pZNq that we will

need for the DFT.1

1As we will soon see, we will ultimately alter the weights on these basis vectors slightly so that the set is
orthogonal but not orthonormal.

20
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Definition 20. We define E0, E1, ..., EN´1 P `
2pZNq as

E0 “
1
?
N

for n “ 0, 1, ..., N ´ 1;

E1 “
1
?
N
e2πin{N for n “ 0, 1, ..., N ´ 1;

E2 “
1
?
N
e2πi2n{N for n “ 0, 1, ..., N ´ 1;

...

EN´1 “
1
?
N
e2πipN´1qn{N for n “ 0, 1, ..., N ´ 1.

Theorem 2.2. The set tE0, ..., EN´1u is an orthonormal basis for `2pZNq.

Proof. We first need to show that tE0, ..., EN´1u is an orthogonal set. Suppose j, k P

t0, 1, ..., N ´ 1u. Then

〈Ej, Ek〉 “
N´1
ÿ

n“0

EjpnqEkpnq

“

N´1
ÿ

n“0

1
?
N
e2πijn{N 1

?
N
e2πikn{N

“
1

N

N´1
ÿ

n“0

e2πijn{Ne´2πikn{N

“
1

N

N´1
ÿ

n“0

e2πipj´kqn{N

“
1

N

N´1
ÿ

n“0

`

ep2πipj´kq{Nq
˘n
.

If j “ k, then 〈Ej, Ek〉 “ 1
N

řN´1
n“0 1 “ 1. Therefore, ||Ej|| “ 1 for all j. If j ‰ k, then

1

N

N´1
ÿ

n“0

`

ep2πipj´kq{Nq
˘n
“

1´
`

e2πipj´kq{N
˘N

1´ e2πipj´kq{N
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since the sum is a partial sum of a geometric series. Then

pe2πipj´kq{N
q
N
“ e2πipj´kq

“ 1

since j, k P Z. Thus, 〈Ej, Ek〉 “ 0 for j ‰ k. Therefore, tE0, ..., EN´1u is an orthonormal

set. From Theorem 1.2, we know that an orthonormal set is linearly independent. We know

that dim `2pZNq “ dimtE0, ..., EN´1u “ N . Then (though we did not mention this fact in

Chapter 1) since the dimension of the basis is the same as the dimension of the vector space,

tE0, ..., EN´1u is an orthonormal basis for `2pZNq. �

From Euler’s formula, we know that

eiθ “ cos θ ` i sin θ.

Then for an arbitrary m,

Empnq “ cos

ˆ

2πmn

N

˙

` i sin

ˆ

2πmn

N

˙

.

That is, Empnq is the sum of two sinusoids of frequency m{N that are evenly sampled at

values from 0 to N´1
N

.

We now define the Discrete Fourier transform (DFT) and the Inverse Discrete Fourier

transform (IDFT)2.

Definition 21. Suppose z “ pzp0q, ..., zpN´1qq P `2pZNq. For m “ 0, 1, ..., N´1, define

(2.1) Fpzqpmq “
N´1
ÿ

n“0

zpnqe´2πimn{N .

Let Fpzq “ pFpzqp0q,Fpzqp1q, ...,FpzqpN ´ 1qq; therefore, Fpzq P `2pZNq. This mapping

from `2pZNq Ñ `2pZNq is called the Discrete Fourier transform.

We should identify the linear algebra concepts that led us to this point; in particular,

note that

2For computational reasons, we don’t actually compute the DFT with the set tE0, ..., EN´1u: we drop the
1
N multiplier.
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(a) Time-Amplitude Plot (b) Frequency-Amplitude Plot

Figure 2.1. Plots of cosp2πxq ` cosp4πxq

Fpzqpmq “
?
N 〈z, Em〉

and

Fpzq “
?
N rzsEm .

Definition 22. Let w “ pwp0q, ..., wpN ´ 1qq P `2pZNq. Then for n “ 0, 1, ..., N ´ 1,

define

(2.2) F´1
pwqpnq “

1

N

N´1
ÿ

m“0

wpmqe2πimn{N .

Then F´1pwq “ pF´1pwqp0q,F´1pwqp1q, ...,F´1pwqpN´1qq. This mapping from `2pZNq Ñ

`2pZNq is called the Inverse Discrete Fourier transform.

Theorem 2.3. Let z P `2pZNq. Then F´1pFpzqqpnq “ zpnq.
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Proof. By definition and using Theorem 1.1,

F´1
pFpzqqpkq “ 1

N

N´1
ÿ

m“0

Fpzqpmq ¨ e2πimk{N

“
1

N

N´1
ÿ

m“0

´?
N 〈z, Em〉

¯

e2πimk{N

“
1

N

N´1
ÿ

m“0

´?
N 〈z, Em〉

¯´?
NEmpkq

¯

“

N´1
ÿ

m“0

〈z, Em〉Empkq

“ zpkq.

�

The IDFT allows us to reconstruct a signal from its Fourier transform. However, we can

also use the IDFT to construct a signal with the frequency content that we want; we will

use this property in Chapter 3 to construct wavelets.

As a terminological note, for w P `2pZNq, we call say Fpwq is a function in the frequency

domain; in fact, we will refer to any function in `2pZNq whose values we interpret as mag-

nitudes of frequencies as a function in the frequency domain. Similarly, for z P `2pZNq, we

say that F´1pzq is a function in the time domain; we will refer to any function in `2pZNq

whose values we interpret as magnitudes of a signal at a given time as a function in the time

domain. Of course, both w and z are functions in `2pZNq; the real difference between the

frequency and the time domains is the way that we interpret functions. In later chapters,

we will construct signals in the frequency domain; when we take the IDFT of these signals,

we will have a signal in the time-domain with the desired frequency properties.

1.1. Resolution and the Basic Properties of the DFT. We will now discuss spatial

and frequency resolution of bases of `2pZNq. Consider the standard or Euclidean basis for

`2pZNq that we introduced earlier. If we project a signal onto the standard basis, then - since
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the projection will just be the original signal - we will know all of the spatial properties of

our original signal: we know the exact value of zpnq for all n.

Definition 23. For any z P `2pZNq, define the mapping from I : `2pZNq Ñ `2pZNq given

by Ipzq “ z the standard transform. We say that Ipzq has perfect spatial resolution

on z.

The Fourier transform projects a signal onto pure sinusoids. Since sinusoids are the basic

unit of frequency, it makes sense to define the frequency content of a signal as the Fourier

transform of a signal.

Definition 24. For any z P `2pZNq, we say that Fpzq has perfect frequency resolu-

tion on z.

For a given z, we should expect that the standard basis will tell us nothing about the

frequency content of z; we can prove this mathematically.

Theorem 2.4. Let tejpnqu
N´1
j“0 be the standard basis for `2pZNq. Then for all j,

|Fpejqpmq| “ 1 for m “ 0, 1, ..., N ´ 1.

Proof. By definition,

Fpeiqpmq “
N´1
ÿ

n“0

ejpnqe
´2πimn{N

“ e´2πimj{N .

Since |e´2πimj{N | “ 1, this is the desired result.

�

That is, each vector in the standard basis “contains” all frequencies evenly.

We now want to examine the spatial resolution of the Fourier transform. We will do this

by examining how the Fourier transform responds to a shifted signal. We will show that



1. THE DISCRETE FOURIER TRANSFORM 26

the Fourier transform can only reveal phasing3 information about a signal – we will examine

how the Fourier transform responds to a shifted signal.

Definition 25. Suppose z P `2pZNq and k P Z. Define

pRkzqpnq “ zppn´ kq mod Nqq

for n P Z.

Example 13.

Suppose

z “ r1, 2, 3, 4s.

Then

R2z “ r3, 4, 1, 2s.

Theorem 2.5. Suppose z P `2pZq and k P Z. Then for any m P Z,

FpRkzqpmq “ e´2πimn{NFpzqpmq.

Then

|FpRkzqpmq| “ |Fpzqpmq|.

That is, the Fourier transform is translation-invariant.

Proof. By definition,

FpRkzqpmq “
N´1
ÿ

n“0

pRkzqpnqe
´2πimn{N

“

N´1
ÿ

n“0

zpn´ kqe´2πimn{N .

We now change variables by letting ` “ n´ k. Then we have

FpRkzqpmq “
N´k´1
ÿ

`“´k

zp`qe´2πimp``kq{N
“ e´2πimk{N

N´k´1
ÿ

`“´k

zp`qe´2πimp`q{N .

3The word “phase” actually does refer to the location of a signal, but only with respect to a sine or cosine
function.
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We must now show that

N´k´1
ÿ

`“´k

zp`qe´2πimp`q{N
“ Fpzqpmq.

Remember that zp`q and e´2πim`{N are periodic functions with period N . Then split up

the summation:

N´k´1
ÿ

`“´k

zp`qe´2πimp`q{N
“

´1
ÿ

`“´k

zp``Nqe´2πimp``Nq{N
`

N´k´1
ÿ

`“0

pzq`e´2πim`{N .

If we let n “ ``N in the first sum and n “ ` in the second sum, then

N´k´1
ÿ

`“´k

zp`qe´2πimp`q{N
“

N´1
ÿ

n“N´k

zpnqe´2πimn{N
`

N´k´1
ÿ

n“0

zpnqe´2πimn{N

“

N´1
ÿ

n“0

zpnqe´2πimn{N .

�

(a) Time-Amplitude Plot (b) Frequency-Amplitude Plots

Figure 2.2. Time Shifted Signals

It’s hard to overemphasize the importance of this result: the DFT cannot differentiate a

signal from a shifted version of itself - see Figure 2.2. In many ways, this is a good thing:

the frequency content of a signal should not depend upon its phase. However, this property

also clearly limits our ability to analyze the local properties of a signal.



1. THE DISCRETE FOURIER TRANSFORM 28

It turns out that there are fundamental limits on our ability to mathematically spatially

locate a given frequency - this limit is actually given by the Heisenberg uncertainty principle,

a well known result from quantum mechanics. Though we will not discuss the uncertainty

principle in detail, we will roughly state its main result: the more spatial information we

know, the less frequency information we can know, and vice versa. Conceptually, the wavelet

transform allows us to navigate this limit stipulated by the Heisenberg uncertainty principle

by allowing us to know some frequency information and some time information simultane-

ously. As I mentioned earlier, it turns out that the wavelet transform is a projection onto

a new orthogonal basis. Unlike the standard basis - which has no frequency resolution -

and the Fourier basis - which has no spatial resolution - the wavelet basis will have some

frequency and spatial resolution simultaneously.

1.2. A Brief Note on Aliasing. We need to consider a technical problem that we

have completely avoided up until this point. In discrete signal processing, aliasing arises as

a result of the discrete sampling of sinusoids; when we sample a high-frequency signal too

infrequently, our sampled signal will look like a low-frequency signal.

This problem arises when we examine the Discrete Fourier transform. All of the graphs

labeled “Frequency-Amplitude Plots” in this thesis have been truncated plots; I have only

plotted half of the values. Figure 2.3 shows a full plot of the DFT of cosp6πxq plotted on

r0, 1s and sampled 1000 times:

(a) T-A Plot (b) F-A Plot

Figure 2.3. Full DFT of cosp6πxq
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A full plot of the DFT will always be symmetric about the midpoint of the horizontal

axis. Why does this happen? Consider the following two sinusoids at frequencies 0
N

and N
N

;

the projection of a signal onto these sinusoids should be plotted at the opposite ends of the

DFT:

sin

ˆ

2πp0qn

N

˙

“ 0

and

sin

ˆ

2πpNqn

N

˙

“ sin p2πnq .

Considered as continuous functions—i.e., n P R—these two sinusoids look totally dif-

ferent. However, when n P N, these signals are indistinguishable. And this problem exists

across the frequency spectrum: a 1
N

frequency signal will look exactly like a N´1
N

frequency

signal when sampled discretely, a 2
N

frequency signal will look like a N´2
N

frequency signal,

and so on.

From now on, we say that a given sampling rate can only support a certain range of

frequencies. In fact, the Nyquist frequency, named after Harry Nyquist, of a signal is

defined as one-half of the sampling frequency of that signal4 and is the maximum frequency

it can support.

In summary, we mention aliasing because it will affect many of our later constructions—

in the frequency domain, a low-frequency signal will actually appear to contain low and very

high frequencies.

1.3. Convolution. Most high-quality speaker systems have knobs or sliders with the

labels “low”, “mid”, and “high”. As users adjust these knobs, the speaker system augments

or attenuates the low, middle, or high-range frequencies of the music playing through the

system.

4Fun fact: the average human being can only perceive sound up to about 22 MHz; the conventional audio
sampling rate is about 44 MHz. Coincidence?
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Electrical engineers design the filters5 contained within speaker systems; the action of

these electronic filters on an input signal can be described mathematically by the convolution

operator. Though a speaker system is actually a continuous system, the same principles of

filtration apply to discrete systems6. Though it will not be clear now, it turns out that the

discrete wavelet transform can be characterized as an iterative filtration problem.

In this chapter, we will introduce the convolution operator and some of its important

theorems; as a highlight of the chapter, we will reveal the intimate relationship between the

Fourier transform and convolution.

Definition 26. Let z, w P `2pZNq. For m “ 0, 1, ..., N ´ 1, define

(2.3) pz ˚ wqpmq “
N´1
ÿ

n“0

zpm´ nqwpnq.

Let z ˚ w “ ppz ˚ wqp0q, pz ˚ wqp1q, ..., pz ˚ wqpN ´ 1qq; then pz ˚ wq P `2pZNq. This mapping

from `2pZNq Ñ `2pZNq is called the convolution of z with w.

Example 14.

Let z, w P `2pZ3q, where z “ r1, 2, 3s and w “ r1, 1, 1s. Then

pz ˚ wqp0q “ zp0´ 0qwp0q ` zp0´ 1qwp1q ` zp0´ 2qwp2q “ 1 ¨ 1` 3 ¨ 1` 2 ¨ 1 “ 6

pz ˚ wqp1q “ zp1´ 0qwp0q ` zp1´ 1qwp1q ` zp1´ 2qwp2q “ 2 ¨ 1` 1 ¨ 1` 3 ¨ 1 “ 6

pz ˚ wqp2q “ zp2´ 0qwp0q ` zp2´ 1qwp1q ` zp2´ 2qwp2q “ 3 ¨ 1` 2 ¨ 1` 1 ¨ 1 “ 6

Then z ˚ w “ r6, 6, 6s.

5By filtration, we only mean the attenuation or augmentation of frequencies. The field of signal processing
considers all kinds of other “filters” like delays or phasers—think of the effects produced by a guitar pedal.
These “filters”, while interesting, aren’t related to convolution, and they aren’t relevant to this thesis.
6A linear time-invariant system, like the filters within speaker system (and the speaker system itself), is
characterized by its impulse response. The response of a filter to a signal is given by the convolution of
the signal with the filter’s impulse response.
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With a simple change of variables, it can be proved that convolution is a commutative

operator; that is,

z ˚ w “ w ˚ z.

1.4. Properties of the Convolution Operator. The definition of convolution doesn’t

tell us much about how z filters w or vice versa; it’s not a particularly intuitive definition7.

However, the following theorem—often called “The Convolution Theorem”8—will reveal how

convolution acts on the frequency content of z and w. The convolution theorem will be a

central theorem in this thesis; it demonstrates the fundamental relationship between convo-

lution and the Fourier transform.

Theorem 2.6. The Convolution Theorem. Suppose z, w P `2pZNq. Then for each

m,

(2.4) Fpz ˚ wqpmq “ FpzqpmqFpwqpmq

or

(2.5) Fpz ˚ wq “ FpzqFpwq.

7Sometimes texts will say that the convolution operator is a “reverse, shift, and sum” operator—a graphical
description of what the operator is doing. There are plenty of diagrams online that demonstrate this process;
they give some intuition about how the convolved signal z ˚w is a mix of both z and w. However, they don’t
give too many hints about relationship between the frequency content of z ˚w, z, and w - this is what we’re
really interested in.
8The theorem below will be numbered like the rest of the theorems in this thesis. However, I will continue
to refer to it as ”the convolution theorem” because it will make the text easier to read.
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Proof. By definition,

Fpz ˚ wqpmq “
N´1
ÿ

n“0

pz ˚ wqpnqe´2πimn{N

“

N´1
ÿ

n“0

N´1
ÿ

k“0

zpn´ kqwpkqe´2πimn{N

“

N´1
ÿ

n“0

N´1
ÿ

k“0

zpn´ kqwpkqe´2πimpn´kq{Ne´2πimk{N

“

˜

N´1
ÿ

k“0

wpkqe´2πimk{N

¸˜

N´1
ÿ

n“0

zpn´ kqe´2πimpn´kq{N

¸

.

In the second sum, we change index to let ` “ n´ k so that

N´1
ÿ

n“0

zpn´ kqe´2πimpn´kq{N
“

N´1´k
ÿ

`“´k

zp`qe´2πim`{N

“

N´1
ÿ

`“0

zp`qe´2πim`{N

since zp`q and e´2πim`{N are N -periodic. Then

Fpz ˚ wqpmq “

˜

N´1
ÿ

k“0

wpkqe´2πimk{N

¸˜

N´1
ÿ

`“0

zp`qe´2πim`{N

¸

“ FpzqpmqFpwqpmq.

�

In words, the convolution theorem states that the frequency content of two convolved

functions equals the product of the frequency content of the original functions; examine

Figure 2.4 carefully to see how this process works out.

The convolution theorem also reveals how we can construct a filter to augment or atten-

uate frequencies in another signal: if we construct a function in the frequency domain with

the desired frequency properties, the IDFT of our function will have the desired frequency
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(a) T-A Plot of Sample Signal (b) F-A Plot of Sample Signal

(c) T-A Plot of High-Pass Filter (d) F-A Plot of High-Pass Filter

(e) T-A Plot of Signal After Convolution (f) F-A Plot of Signal After Convolution

Figure 2.4. Convolution of Sample Signal with High-Pass Filter

properties. When convolved with a signal, our constructed function will filter that signal in

accordance with the shape of its frequency-domain.

We have names for particular kinds of filters:
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‚ A high-pass filter will attenuate low frequencies and leave high frequencies un-

changed.

‚ A low-pass filter will attenuate high frequencies and leave low frequencies un-

changed.

Depending upon the functional shape of the filter in the frequency domain, a high- or

low-pass filter may be imperfect9—it may filter frequencies unevenly or allow some unwanted

frequencies.

2. Convolution and Projection

It turns out that convolution can also be interpreted as the projection of a signal onto a

certain kind of basis. For w P `2pZNq, consider the set W “ tRkwu
N´1
k“0 ; we say that w is the

generator of W and that W is the set generated by w. Depending on what w is, W can

be a basis for `2pZNq.

Example 15. Consider e0, the first vector in the standard basis of `2pZNq. Then the set

generated by e0, tRke0u
N´1
k“0 , will be the entire standard basis.

We will now show that convolution can project a signal onto a basis of this form.

Definition 27. For any w P `2pZNq, define w̃ P `2pZNq by

w̃pnq “ wp´nq “ wpN ´ nq.

We call w̃ the conjugate reflection of w.

As we should expect, the Fourier transform of the conjugate reflection of a signal is closely

related to the original signal; the following theorem will be important for future proofs.

Theorem 2.7. Let z P `2pZNq. Then

Fpz̃q “ Fpzq.

9Continuous filters are always imperfect.
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Proof. Let z P `2pZNq. First note that zp´nq “ zpN ´ nq. Then

Fpz̃qpkq “
N´1
ÿ

k“0

z̃e´2πikn{N

“

N´1
ÿ

k“0

zpN ´ nqe´2πikn{N

“

N´1
ÿ

k“0

zpN ´ nqe´2πikpN´nq{N

“ Fpzqpkq

�

Equally important, however, is the following theorem.

Theorem 2.8. Suppose z, w P `2pZNq. For any k P Z,

(2.6) pz ˚ w̃qpkq “ 〈z,Rkw〉

Proof. By definition,

〈z,Rkw〉 “
N´1
ÿ

n“0

zpnqRkwpnq

“

N´1
ÿ

n“0

zpnqw̃pk ´ nq

“ pw̃ ˚ zqpkq

“ pz ˚ w̃qpkq

�

Furthermore, suppose that w P `2pZNq and W “ tRkwu
N´1
k“0 is an orthonormal basis for

`2pZNq. Then,
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(2.7) z ˚ w̃ “ rzsW .

In words, the convolution of the conjugate reflection of a function w and another function

z is the projection of z onto the basis generated by w. Looking ahead to the next chapter,

it turns out that the wavelet basis will be a basis of exactly this form; we will compute the

wavelet transform of a function by convolving it with a wavelet basis vector.

2.1. Power Spectrum Estimation. In general, we want to be more careful about how

we interpret the information given to us by the Fourier transform. Though the raw Fourier

transform is useful for many applications - especially those that require an orthogonal basis

for `2pZNq - it does not always accurately reflect the frequency content of an underlying

signal; we will clarify what we mean by this in the upcoming discussion.

Before we begin, however, we want to introduce two theorems that, together, mathemat-

ically demonstrate the relationship between the power of a signal and its Fourier transform.

Definition 28. Let z P `2pZNq. Then the power of z is given by

||z||2 “ 〈z, z〉 .

The power of a signal (or of a Fourier transformed signal) consolidates the information

given by its real and complex components.

Theorem 2.9. Parseval’s Relation. Let z, w P `2pZNq. Then

〈z, w〉 “ 1

N
〈Fpzq,Fpwq〉 .

Proof. First, we know from Theorem 1.1 that

z “
N´1
ÿ

i“0

〈z, Ei〉Ei



2. CONVOLUTION AND PROJECTION 37

and

w “
N´1
ÿ

i“0

〈w,Ei〉Ei

since tEiu
N´1
i“0 is an orthonormal basis. Then

〈z, w〉 “

〈
N´1
ÿ

i“0

〈z, Ei〉Ei,
N´1
ÿ

j“0

〈w,Ej〉Ej

〉

“

N´1
ÿ

i“0

〈z, Ei〉
N´1
ÿ

j“0

〈Ei, 〈w,Ej〉Ej〉

“

N´1
ÿ

i“0

〈z, Ei〉
N´1
ÿ

j“0

〈w,Ej〉 〈Ei, Ej〉

using the linearity properties of inner products. Since

〈Ei, Ej〉 “

$

’

’

&

’

’

%

1 i “ j

0 i ‰ j

we see that 〈z, w〉 “
řN´1
i“0 〈z, Ei〉 〈w,Ej〉. But we know that Fpzqpmq “

?
N 〈z, Em〉,

therefore

〈z, w〉 “
N´1
ÿ

i“0

1
?
N
Fpzqpiq 1

?
N
Fpwqpiq

“
1

N
〈Fpzq,Fpwq〉 .

�
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Note that the validity of Parserval’s relation relies only on the orthogonality of the

Fourier basis – very similar theorems will hold true for other orthogonal and orthonormal

bases, including wavelet bases.

Theorem 2.10. Plancherel’s formula. Let z, w P `2pZNq. Then

||z||2 “
1

N
||Fpzq||2.

Proof. Plancherel’s formula follows straightforwardly from Parseval’s relation by letting

w “ z. �

Let’s examine Plancherel’s formula more carefully. First, it states that the power of a

signal z is directly proportional to the power of its Fourier transform. Secondly, we can

re-write ||Fpzq||2 as a sum; that is,

||Fpzq||2 “
N´1
ÿ

i“0

|Fpzqpiq|2.

By examining |Fpzqpiq|2 for each i, it seems that we can immediately evaluate how

different frequencies10 contribute to the overall power of the original signal z. Unfortunately,

as we will see in the following discussion, the analysis of signal power spectra is a more messy

process than we might expect - see [1].

Let ω0, ω1, ..., ωN´1 be the frequencies measured “exactly” by the Fourier transform; that

is, from the definition of the Fourier transform, ωj “
2πj
N

for some j P t0, 1, ..., N ´ 1u. For

each ωj, define

yjpnq “ cospωjnq.

Then |Fpyjqpiq|2 will have a non-zero value only at m “ j (and, because of aliasing, at

i “ N ´ j).

However, if we consider

ypnq “ cospωnq

10The terms |Fpzqpiq|2 are often plotted; these plots are called periodograms.
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where ω ‰ ωj for all j, then, perhaps surprisingly, |Fpyqpiq|2 will be non-zero for all i. In

fact, for all j, the power of y will be diffused across Fourier coefficients aj and bj at a rate

proportional to 1{|ω´ ωj|; to re-emphasize, all of the Fourier coefficients will be affected by

a signal containing a frequency not measured exactly by the Fourier transform.

We call this phenomenon spectral leakage. For many applications, it is undesirable,

especially when we are trying to identify the frequency components of a signal.

It turns out that we can reduce this spectral leakage by filtering the Fourier transform

coefficients ai and bi. If we denote our filtered Fourier coefficients by Ai and Bi, then

Ai “ ´
1

4
ai´1 `

1

2
ai ´

1

4
ai`1

Bi “ ´
1

4
bi´1 `

1

2
bi ´

1

4
bi`1.

This kind of smoothing can be achieved by convolving the real and imaginary parts of

the Fourier transform with an appropriately designed filter.

Definition 29. We define the Hanning filter Hf P `
2pZNq for z P `2pZNq as follows.

Hf piq “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

´1
4

i “ 0

1
2

i “ 1

´1
4

i “ 2

0 elsewhere.

Definition 30. Let z P `2pZNq. Then for i “ 0, 1, ..., N´1, the Hanning filtered Fourier

coefficients of Frzs are given by

(2.8) Hf rFrzss “ Frzs ˚Hf

or, alternatively, using the convolution theorem,
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(2.9) Hf rFrzss “ F´1
rF rFrzssFrHf ss .

The Python code for implementing the Hanning filter can be found in the Appendix.

(a) fpxq “ sinp2πxq` sinp3πxq` sinp10πxq`
sinp 14πxq

(b) Fourier transform of Hanning filter

(c) FFT of fpxq without Hanning filter (d) FFT of fpxq with Hanning filter

Figure 2.5

Consider Figure 2.5. In particular, note the non-zero coefficients on either side of the

peak frequencies in Figure 2.5.(c).—this is the “spectral leakage”— and their absence in

Figure 2.5.(d).

Why does Hanning filtration work? Figure 2.5.b. shows the Fourier transform of the Han-

ning filter - note that the filter peaks at the highest frequencies (again, remember aliasing)

. Importantly, this means that the Hanning filter will only let sharp peaks in the Fourier
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coefficients pass; the non-zero coefficients around the peak frequencies are essentially low

frequency signals and are therefore attenuated by the Hanning filter.



CHAPTER 3

The Discrete Wavelet Transform

1. The Haar Wavelet

I hope that I have presented the material up until this point in a way that the upcoming

discussion will make the goals of and motivation for the wavelet transform fairly intuitive.

Nevertheless, I want to provide an example of the phenomenon introduced in Theorem 2.5—

that the Fourier transform does not respond to shifted signals. It will emphasize the aims

of the whole thesis and serve as a good mathematical transition to wavelets.

Example 16. Let N “ 4. Then consider the set tEku
3
k“0.

E0 “
1

2
p1, 1, 1, 1q

E1 “
1

2
p1, i,´1,´iq

E2 “
1

2
p1,´1, 1,´1q

E3 “
1

2
p1,´i, 1,´iq

Visually, it’s clear that these basis vectors have frequency properties; Chapter 2 artic-

ulated these properties and the DFT’s ability to exploit them. Yet the DFT is unable to

differentiate signals with localized time properties. Consider the signals u1, u2 P `
2pZ4q that

42
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represent simple localized oscillations:

u1 “

ˆ

?
2

2
,´

?
2

2
, 0, 0

˙

u2 “

ˆ

0, 0,

?
2

2
,´

?
2

2

˙

The DFT of u1, u2 should be similar1:

Fpu1q “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 1 1 1

1 ´i ´1 i

1 ´1 1 ´1

1 i ´1 ´i

˛

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˝

?
2

2

´
?

2
2

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

0
?

2
2
` i

?
2

2
?

2
?

2
2
´ i

?
2

2

˛

‹

‹

‹

‹

‹

‹

‹

‚

Fpu2q “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 1 1 1

1 ´i ´1 i

1 ´1 1 ´1

1 i ´1 ´i

˛

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˝

0

0
?

2
2

´
?

2
2

˛

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

0

´
?

2
2
´ i

?
2

2
?

2

´
?

2
2
` i

?
2

2

˛

‹

‹

‹

‹

‹

‹

‹

‚

In fact, as we proved in Chapter 2, the moduli of Fpu1q and Fpu2q should be identical:

|Fpu1q| “ |Fpu2q| “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0

1
?

2

1

˛

‹

‹

‹

‹

‹

‹

‹

‚

Again, this result is not unexpected: the frequency content of a signal should not depend

on the spatial location of the signal. Nevertheless, we lose all of the time information

contained within a signal when we compute its DFT—this information is important for

1We compute the Fourier transform of u1 and u2 as a matrix-vector product; it is equivalent to the DFT
presented earlier. Note, however, that your computer does not compute the Fourier transform this way:
developed by Tukey and Cooley in 1965, the Fast Fourier transform (FFT) reduces the computation time of
the Fourier transform from Opn2q—the usual computation time for a matrix-vector product— to Opn log nq
operations.
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analyzing transients. The central insight of the wavelet transform is that the best way

to analyze transients is to construct an orthogonal basis of transients with some wave-like

properties—rather than a basis of pure sinusoids. In fact, the first wavelet basis—the Haar

wavelet basis—is constructed in part by using u1 and u2 as basis vectors.

1.1. The Haar Wavelet transform. Like before, let’s only consider `2pZ4q for the

moment. Introduced by Alfred Haar in 1910, the Haar mother and father2 wavelets are an

orthonormal basis for `2pZ4q in the following sense.

Definition 31. We say that HM P `2pZ4q given by

HM “

ˆ

?
2

2
,´

?
2

2
, 0, 0

˙

is the mother Haar wavelet. We say that HF P `
2pZ4q given by

HF “

ˆ

?
2

2
,

?
2

2
, 0, 0

˙

is the father Haar wavelet.

Theorem 3.1. The set3

tR2kHMu
N{2´1
k“0 Y tR2kHF u

N{2´1
k“0

is an orthonormal basis for `2pZ4q.

Proof. The proof is elementary: it’s clear that 〈HM , HM〉 “ 〈HF , HF 〉 “ 1. Further-

more, because of their construction, it’s obvious that both HM and HF are orthogonal to

R2HM and R2HF . Finally,

〈HM , HF 〉 “
?

2

2
¨

?
2

2
`

?
2

2
¨ ´

?
2

2
` 0 ¨ 0` 0 ¨ 0 “ 0.

The remainder of the proof is left to the reader. �

2We will define these terms in general later on.
3This notation looks excessive and obfuscating for such a small set. Later on, we’ll use the same notation
for arbitrarily large sets of wavelets.
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What happens when we project a signal onto the Haar basis? Just as we had hoped, we

learn a little bit about the frequency properties of a signal and lose a little bit of information

about the spatial properties of a signal.

First, the Haar basis is somewhat spatially localized: if we project the standard basis

for `2pZ4q onto the Haar basis, then we can spatially differentiate between e0 and e2, but

not between e0 and e1. That is, e0 and e1 can be rewritten as sums of only the left-hand

members of the Haar basis—HM and HF . Similarly, e2 and e3 can be rewritten as sums of

only the right-hand members of the Haar basis—R2HM and R2HF .

Second, the Haar basis is localized in the frequency domain. Consider the Fourier trans-

forms of the basis vectors (we’ve already computed the Fourier transform of HM):

|FpHMq| “

´

0, 1,
?

2, 1
¯

|FpHF q| “

´?
2, 1, 0, 1

¯

.

In fact, HM and HF are high and low-pass filters, respectively4. When we project a signal

onto these basis vectors, we know from Equation 2.7 that we’re really convolving our signal

with a high and low-pass filters5.

Example 17. Consider the signal v P `2pZ4q such that

v “ p5, 4, 0, 0q.

Then 〈R2HM , v〉 “ 〈R2HF , v〉 “ 0. However,

4This might be hard to see. Keep two things in mind as you interpret them. First, remember that the
Fourier transform is symmetric—the highest frequencies are actually low frequencies. Second, note that the
Haar wavelets are pretty terrible filters.
5Note: this isn’t the whole story. Equation 2.7 is for bases of the form tRkwu

N´1
k“0 ; we have two bases of the

form tR2kwu
N{2´1
k“0 . We’ll be more careful about exactly what we’re doing here later on. For the moment,

it’s just important that we make this connection between wavelets, convolution, and bases.
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〈HF , v〉 “ 5 ¨

?
2

2
` 4 ¨

?
2

2
“

9
?

2

2

〈HM , v〉 “ 5 ¨

?
2

2
´ 4 ¨

?
2

2
“

?
2

2

If W “ tR2kHF u
N{2´1
k“0 Y tR2kHMu

N{2´1
k“0 , then

rvsW “

ˆ

9
?

2

2
, 0,

?
2

2
, 0

˙

.

This is the first-stage discrete Haar wavelet transform of v. The Appendix of this thesis

contains code for the complete Haar wavelet transform—we will explain what a “complete”

wavelet transform means in the upcoming sections.

1.2. Wavelet Transform Algorithm Outline. We now present an outline of the

Discrete Wavelet transform in general; this outline will serve as a guide for understanding

the aim of the mathematics we will soon present.

Suppose that a discrete signal z supports frequencies6 from 0 to p.

‚ First stage decomposition.

– Use a high-pass filter on z; call this new signal zH .

˚ Signal zH only contains frequencies from p{2 to p.

˚ Downsample by removing every other term from zH
7.

– Use a low-pass filter on z; call this new signal zL.

˚ Signal zL contains only frequencies from 0 to p{2.

˚ Downsample by removing every other term.

‚ Second stage decomposition.

– Use a high-pass filter on zL; call this new signal zLH .

˚ Signal zLH contains only frequencies from p{4 to p{2.

˚ Downsample by removing every other term.

– Use a low-pass filter on zL; call this new signal zLL .

6Refer back to the discussion in Chapter 2 on aliasing.
7That is, for v P `2pZ4q we would remove the second and fourth terms from the signal.
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˚ Signal zLL contains only frequencies from 0 to p{4.

˚ Downsample by removing every other term.

‚ Iterate.

Momentarily ignore the theoretical necessity of downsampling; instead, consider the kind

of spatial and frequency information we know about the signal at each stage. Before we

began filtering our signal z, we had perfect spatial resolution on z, but we knew only that

z contained frequencies from 0 to p. After passing z through a high-pass filter and down-

sampling, we exchanged some spatial resolution for some frequency resolution in our new

“half-signal”, zH . Because of the downsampling8, we lost half of our spatial resolution, but

we doubled our frequency resolution—the frequencies in zH are between p{2 and p. The

same goes for our lower “half-signal” zL: we lost half of our spatial resolution, but we know

that the frequencies in zL are between 0 and p{2.

At each stage, the traditional wavelet transform only acts on the lower “half-signals”.

This is a convention, rather than a mathematical necessity; in general, we want more spatial

resolution on high frequencies but more frequency resolution on low frequencies. We will

stick with this convention for the moment; however, the way that we decompose a signal can

be adapted to match our application.

Let me now explicitly compare the discrete Haar transform for `2pZ4q with the general

first-stage transform outlined above. First, if we directly convolve a signal v P `2pZ4q with

the high-pass filter/mother Haar wavelet HM , then, according to Equation 2.7, we will have

the projection of v onto tRkHMu
N´1
k“0 , that is,

v ˚HM “ rvs
tRkHM u

N´1
k“0

.

But we don’t want the whole projection—since the “mother” half of the basis is the set

tR2kHMu
N{2´1
k“0 , we only want every other term of rvs

tRkHM u
N´1
k“0

. This is why downsampling

is necessary.

8This is sort of misleading—the extra terms are redundant with respect to the wavelet basis, but, as it turns
out, they also won’t tell us anything else spatially about our signal.
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2. Wavelet Bases

Here are the questions you might be asking at this point:

(1) How can we construct different kinds of wavelet bases?

(2) Why do we construct wavelet bases for `2pZNq in the form tR2kvu
N{2´1
k“0 YtR2kuu

N{2´1
k“0

for some high and low pass filters v and u?

That’s what this section will be about. It’s going to take a lot of proofs and a lot of

time—that’s why I tried to prime the reader for this section with the discrete Haar wavelet

transform and a general outline of discrete wavelet transforms.

Recall the vectors u1 and u2 that we introduced in the beginning of the chapter. Each of

these vectors had frequency localized properties: we identified them as half of the discrete

Haar wavelet basis and as high-pass filters. In earlier chapters, we’ve also noted that the

standard basis can be thought of as the basis generated by e0, that is, tRke0u
N´1
k“0 —this basis

has perfect spatial resolution. What happens if we try to construct an orthogonal basis of a

similar form, but such that each basis vector has frequency localized properties?

Example 18. What does a set of the form I’ve just described look like for u1? That is,

what does tRku1u
N´1
k“0 look like?

R0u1 “

ˆ

?
2

2
,´

?
2

2
, 0, 0

˙

R1u1 “

ˆ

0,

?
2

2
,´

?
2

2
, 0

˙

R2u1 “

ˆ

0, 0,

?
2

2
,´

?
2

2

˙

R3u1 “

ˆ

´

?
2

2
, 0, 0,

?
2

2

˙
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The set above has frequency localized properties. However, it isn’t an orthogonal basis,

and it turns out that no set of this form can simultaneously have frequency localized prop-

erties and be an orthogonal basis. We now prove this; it is a big result, and it critically

constrains the way wavelets can be constructed.

Theorem 3.2. Let w P `2pZNq. Then tRkwu
N´1
k“0 is an orthonormal basis for `2pZNq if

and only if |Fpwqpnq| “ 1 for all n P ZN .

Proof. Consider the following claim: it turns out that the set tRkwuk“0 is an orthonor-

mal basis for `2pZNq if and only if9

〈w,Rkw〉 “

$

’

’

&

’

’

%

1 if k “ 0

0 if k “ 1, 2, ..., N ´ 1.

That is, 〈w,Rkw〉 “ e0. But from 3.5, we know that w ˚ w̃ “ e0. Furthermore, it turns out

that Fpw̃q “ Fpwq.

We proved in Theorem 2.4 that |Fpe0qpmq| “ 1 for m “ 0, 1, ..., N ´ 1.

Then from the Convolution Theorem (Theorem 2.6) we know that

Fpw ˚ w̃q “ Fpe0q

Fpwq ¨ Fpw̃q “ 1

Fpwq ¨ Fpwq “ 1

|Fpwq|2 “ 1.

This ends our proof.

�

9Proof sketch: combinatorically speaking, there should be a lot of vectors to check when we’re proving that

a basis is orthonormal (it should take

ˆ

N
2

˙

`N inner products). However, it should be easy but tedious

to show that 〈Rkw,Rk`jw〉 “ 〈w,Rjw〉 for all j and k. This should prove the claim.



2. WAVELET BASES 50

Recall Theorem 2.4; it demonstrated that the standard basis had no frequency resolution

because |Fpeiqpnq| “ 1 for each basis vector. Theorem 3.2 is more general but similar in its

conclusion: no orthogonal basis of the form tRkwu can have frequency localized properties.

However, we can come up with an orthogonal basis with somewhat frequency localized

properties and somewhat spatially localized properties if we take a slightly different approach.

The next couple of theorems demonstrate the plausibility of this method. Before we introduce

the main theorems, however, we have to introduce a small definition and prove something

about it. The only utility of this theorem is for theorems that follow it; it makes the proofs

a little less messy.

Definition 32. For z P `2pZNq, define zˆ P `2pZNq by

zˆpnq “ p´1qnzpnq for all n.

Furthermore, note that

(3.1) pz ` zˆqpnq “ zpnqp1` p´1qnq “

$

’

’

&

’

’

%

2zpnq if n is even

0 if n is odd.

Theorem 3.3. Suppose M P N, N “ 2M , and z P `2pZNq. Then

(3.2) Fpzˆqpnq “ Fpzqpn`Mq for all n.

Proof. By definition,
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Fpzˆqpnq “
N´1
ÿ

k“0

zˆpkqe´2πikn{N

“

N´1
ÿ

k“0

p´1qkzpkqe´2πikn{N

“

N´1
ÿ

k“0

zpkqe´iπke´2πikn{N

“

N´1
ÿ

k“0

zpkqe´2πikpn`N{2q{N

“

N´1
ÿ

k“0

zpkqe´2πikpn`Mq{N

“ Fpzqpn`Mq

�

Theorem 3.4. Suppose M P N, N “ 2M , and w P `2pZNq. Then tR2kwu
M´1
k“0 is an

orthonormal set with M elements if and only if

|Fpwqpnq|2 ` |Fpwqpn`Mq|2 “ 2 for n “ 0, 1, ...,M ´ 1.

Proof. We know from Equation 3.1 that

pz ` zˆqpnq “

$

’

’

&

’

’

%

2zpnq if n is even

0 if n is odd.

.

Since w ˚ w̃ is a member of `2pZNq,

ppw ˚ w̃q ` pw ˚ w̃qˆqpnq “

$

’

’

&

’

’

%

2pw ˚ w̃qpnq if n is even

0 if n is odd.
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Now consider the following claim: the set tR2kwu
M´1
k“0 is an orthonormal set if and only

if10

〈w,R2kw〉 “

$

’

’

&

’

’

%

1 if k “ 0

0 if k “ 1, 2, ...,M ´ 1.

By adapting Theorem 2.8 slightly, it’s straightforward to see that pw ˚ w̃qp2kq “ 〈w,R2kw〉.

That is, we’re only interested in the even members of the convolution. Putting everything

together, the set tR2kwu
M´1
k“0 is an orthonormal set if and only if

ppw ˚ w̃q ` pw ˚ w̃qˆqp2kq “ 2pw ˚ w̃qp2kq “ 2 〈w,R2kw〉 “

$

’

’

&

’

’

%

2 if k “ 0

0 if k “ 1, 2, ...,M ´ 1.

This is equivalent to saying

ppw ˚ w̃q ` pw ˚ w̃qˆqp2kq “ 2e0.

We now find the Fourier transform of both sides of this equation. Due to the linearity

properties of the Fourier transform,

(3.3) Fp2e0qpnq “ 2Fpe0qpnq “ 2

for all n (we’ve already proved that Fpe0qpnq “ 1 for all n). By the convolution theorem,

(3.4) Fpw ˚ w̃qpnq “ Fpwqpnq ¨ Fpw̃qpnq “ Fpwqpnq ¨ Fpwqpnq “ |Fpwqpnq|2.

By Equation 3.2, we know

(3.5) Fppw ˚ w̃qˆqpnq “ Fpw ˚ w̃qpn`Mq “ |Fpwqpn`Mq|2.

10Proof outline: use the same sort of techniques that you used earlier to prove a very similar claim.
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Putting Equations 3.3, 3.4, and 3.5 together,

ppw ˚ w̃q ` pw ˚ w̃qˆqp2kq “ 2e0

if and only if

|Fpwqpnq|2 ` |Fpwqpn`Mq|2 “ 2 for n “ 0, 1, ...,M ´ 1.

This concludes our proof. �

Theorem 3.4 indicates necessary conditions for constructing an orthonormal set of vectors

in `2pZNq—note that since M “ N{2, this set alone cannot be a basis for `2pZNq. Note that

the mother and father Haar wavelets satisfy the conditions specified by Theorem 3.4. As

the next definition indicates, if we are able to construct two of these sets, which are also

orthogonal to one another, then the union of these sets will be an orthogonal basis for `2pZNq.

Definition 33. Suppose N is an even integer, say N “ 2M for some M P N. An

orthonormal basis for `2pZNq of the form

tR2kuu
M´1
k“0 Y tR2kvu

M´1
k“0

for some u, v P `2pZNq, is called a first-stage wavelet basis for `2pZNq. We call u and v the

generators of the first-stage wavelet basis. We sometimes also call u the father wavelet

and v the mother wavelet11.

We now present a few criteria for constructing wavelet bases.

Theorem 3.5. Suppose M P N and N “ 2M . Let u, v P `2pZNq. Then

W “ tR2kvu
M´1
k“0 Y tR2kuu

M´1
k“0

is an orthonormal basis for `2pZNq if and only if

11The “mother” denotation makes more sense in the context of the continuous wavelet transform. The idea
is that we’re projecting a function onto scaled and shifted editions of the same function—the “mother” of
other functions. At this point, we’ve talked about the shifting aspect; we’ll get to the scaling part later.
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(3.6) |Fpuqpmq|2 ` |Fpuqpm`Mq|2 “ 2

(3.7) |Fpvqpmq|2 ` |Fpvqpm`Mq|2 “ 2

and

(3.8) Fpuqpmq ¨ Fpvqpmq ` Fpuqpm`Mq ¨ Fpvqpm`Mq “ 0

Proof. From Theorem 3.4, we know that Equations 3.6 and 3.7 ensure that tR2kvu
M´1
k“0

and tR2kuu
M´1
k“0 are both orthonormal sets. We need to verify that the condition specified

by Equation 3.8 ensures that tR2kvu
M´1
k“0 Y tR2kuu

M´1
k“0 is an orthonormal set. We claim that

we only need to check that

(3.9) 〈R2ku,R2jv〉 for all j, k “ 0, 1, ...,M ´ 1

when Equation 3.8 holds.

We leave it to the reader to show that Equation 3.9 is equivalent to12

〈u,R2jv〉 “ 0 for all j “ 0, 1, ...,M ´ 1.

By Theorem 2.8, we know that

〈u,R2jv〉 “ pu ˚ ṽqp2kq.

We also know that pu ˚ ṽqp2kq “ 0 for k “ 0, 1, ...,M ´ 1 if and only if

pu ˚ ṽqpkq ` pu ˚ ṽqˆpkq “ 0 for k “ 0, 1, ..., N ´ 1

since, by Equation 3.1, the expression given above will be always be zero when k is odd.

12This is very similar to the other proofs in this section that we’ve asked the reader to complete. Note that
when k “ j, 〈R2ku,R2jv〉 = 〈u, v〉.
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Then by Theorems 2.7, 3.3, and the convolution theorem,

pu ˚ ṽqpkq ` pu ˚ ṽqˆpkq “ 0

Fppu ˚ ṽqqpmq ` Fppu ˚ ṽqˆqpmq “ 0

FpuqpmqFpvqpmq ` Fpu`MqFpv `Mq “ 0

Since tR2kvu
M´1
k“0 Y tR2kuu

M´1
k“0 is an orthonormal set of size N , it is a basis for `2pZNq.

�

Example 19. Suppose that N is divisible by 4. Define Fpuq,Fpvq P `2pZNq by

Fpuqpnq “

$

’

’

&

’

’

%

?
2 for n “ 0, 1, ..., N

4
´ 1 or n “ 3N

4
, 3N

4
` 1, ..., N ´ 1

0 for n “ N
4
, N

4
` 1, ..., 3N

4
´ 1

and

Fpvqpnq “

$

’

’

&

’

’

%

0 for n “ 0, 1, ..., N
4
´ 1 or n “ 3N

4
, 3N

4
` 1, ..., N ´ 1

?
2 for n “ N

4
, N

4
` 1, ..., 3N

4
´ 1

When we compute the IDFT transform of Fpuq and Fpvq, u and v will be generators

of a first-stage wavelet basis; we call these the set of Shannon wavelets. We plot a

representative Shannon mother wavelet in Figure 3.1. It is left to the reader to check that

the construction above satisfies the criteria given by Theorem 3.5. In addition, note that u

and v will be high and low-pass filters, respectively13.

Theorem 3.6. Suppose M P N, N “ 2M, and u P `2pZNq is such that tR2kuu
M´1
k“0 is an

orthonormal set with M elements. Define v P `2pZNq by

vpmq “ p´1qmup1´mq

13Again, the slightly non-intuitive construction is the result of aliasing.
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(a) Frequncy-Amplitude Plot

(b) Time-Amplitude Plot

Figure 3.1. Shannon Mother Wavelet with N “ 32

for all m. Then tR2kuu
M´1
k“0 Y tR2kvu

M´1
k“0 is a first-stage wavelet basis for `2pZNq.

We mentioned earlier that we would need to downsample in order to compute the wavelet

transform; we now define downsampling mathematically.

Definition 34. Let M P N; let N “ 2M . Then we define the downsampling operator

D : `2pZNq Ñ `2pZMq by

Drzspnq “ zp2nq for n “ 0, 1, ...,M ´ 1.

Example 20. Let z “ r1, 2, 3, 4s. Then Drzs “ r1, 3s.
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Definition 35. Let M P N; let N “ 2M . Then we define the upsampling operator

U : `2pZMq Ñ `2pZNq by

U rzspnq “

$

’

’

&

’

’

%

zpn{2q if n is even,

0 if n is odd.

At this point, we’re ready to actually compute a wavelet transform of a signal.

Definition 36. Suppose that for u, v P `2pZNq, tR2kuu
M´1
k“0 YtR2kvu

M´1
k“0 is an orthonor-

mal basis for `2pZNq. Then we define the first-stage discrete wavelet transform of

z P `2pZNq by

Wrzs “ tx1, y1u

where

x1 “ Drz ˚ ũs

and

y1 “ U rz ˚ ṽs.

It should be clear from Theorem 2.8 that together, x1 and y1 constitute the projection

of z onto the first-stage wavelet basis generated by u and v. That is, x1, y1 P `2pZMq,

x1piq “ 〈z,R2iu〉 and y1piq “ 〈z, R2iv〉. Often we concatenate y1 with x1; the resultant

vector is an element of `2pZNq. However, it’s easier to manipulate x1 and y1 separately.

When we introduced the DFT, we also introduced the IDFT - we now provide the anal-

ogous inversion formula for the wavelet transform.

Example 21. Let z “ r1, 3s. Then U rzs “ r1, 0, 3, 0s.

Theorem 3.7. Let M P N, let N “ 2M , and let u, v P `2pZNq such that tR2kuu
M´1
k“0 Y

tR2kvu
M´1
k“0 is an orthonormal basis for `2pZNq. Then

u ˚ U rDrz ˚ ũss ` v ˚ U rDrz ˚ ṽss “ z.
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That is,

u ˚ U rx1s ` v ˚ U ry1s “ z.

Proof. Let z P `2pZNq. If tR2kuu
M´1
k“0 Y tR2kvu

M´1
k“0 is an orthonormal basis for `2pZNq

then we know that

z “
M´1
ÿ

i“0

〈z,R2iu〉R2iu`
M´1
ÿ

j“0

〈z,R2jv〉R2jv.

We now show that u ˚ U rDrz ˚ ũss “
řM´1
i“0 〈z,R2iu〉u. Remember that Drz ˚ ũspiq “

〈z,R2iu〉. Then

pu ˚ U rDrz ˚ ũssqpkq “
N´1
ÿ

i“0

U rDrz ˚ ũsspiq ¨ upk ´ iq.

Note that for odd k, U rDrz ˚ ũsspkq “ 0. Therefore,

N´1
ÿ

i“0

U rDrz ˚ ũsspiq ¨ upk ´ iq “
M´1
ÿ

i“0

〈z, R2iu〉 ¨ upk ´ 2iq

“

M´1
ÿ

i“0

〈z,R2iu〉 ¨R2iupkq.

�

2.1. Wavelet Transform Iteration.

Definition 37. Suppose N is divisible by 2p for p P N. We define a pth stage wavelet fil-

ter sequence as a sequence of vectors u1, v1, u2, v2, ..., up, vp such that, for each ` P t1, 2, ..., pu,

u`, v` P `
2
pZN{2`´1q.

Example 22. Though we’re confident the reader followed the previous definition, keeping

track of the lengths of the filters while trying to understand the upcoming definitions can be
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a challenge. Let N “ 8. Then

u1, v1 P `
2
pZ8q

u2, v2 P `
2
pZ4q

u3, v3 P `
2
pZ2q.

Definition 38. Suppose N is divisible by 2p for p P N. Then for z P `2pZNq, define

x1 “ Dpz ˚ ṽ1q P `
2
pZN{2q

and

y1 “ Dpz ˚ ũ1q P `
2
pZN{2q.

Furthermore, we recursively define x2, y2, ..., xp, yp by

x` “ Dpy`´1 ˚ ṽ`q P `
2
pZN{2`q

and

y` “ Dpy`´1 ˚ ṽ`q P `
2
pZN{2`q

The pth stage wavelet transform of z is the set of vectors typ, xp, ..., x2, x1u.

Example 23. As an extension of the example provided earlier in this chapter, consider

the second stage Haar wavelet transform of v “ p5, 4, 0, 0q. We already know that x1 “
´

9
?

2
2
, 0
¯

and y1 “

´?
2

2
, 0
¯

. Then

x2 “ 〈HM , y1〉 “
9
?

2

2
¨

?
2

2
` 0 ¨

?
2

2

y2 “ 〈HF , y1〉 “
9
?

2

2
¨

?
2

2
´ 0 ¨

?
2

2
.

Then the second stage Haar wavelet transform of v is the set ty2, x2, x1u.
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3. Significance Tests Using the Haar Wavelet Transform

We now introduce the first of four significance tests in this thesis. Though different tests

should be used in different contexts, all of the significance tests aim to indicate when a given

signal is not produced by white noise. Why is this important, and what does this mean?

Suppose we are examining some signal - a string of data zptq formed by taking discrete

samples at even time intervals of some process.

For example, suppose zptq represents the temperature of a lake at a given time t. We

might suspect that there is a pattern to our data— we should expect periodic behavior at

daily and yearly time scales. Thus, we can say that

zptq “ fptq `W ptq,

where fptq is the true temperature of the lake at time t and W ptq is measurement error at

time t14. When we don’t a priori know the form of fptq15, then we will have to establish

mathematical tests to differentiate fptq from W ptq.

In our case, we’re interested in ecological signals, which, for many reasons, we suspect

have transient behavior. As such, we analyze them using wavelets. Therefore, we want to

establish tests that can tell us, with confidence, which wavelet transform coefficients of our

signal zptq can be attributed to a white noise signal, W ptq.

The following two tests are my own, although they are modeled after the tests found in

the next chapter.

3.1. One Signal Significance with the Haar Wavelet Transform. Suppose we

want to determine if a signal z P `2pZNq is white noise by examining the coefficients of the

wavelet transform of z. We first find the Haar wavelet transform of z; we’ll treat the set of

corresponding transform coefficients tx1, x2, ..., xp, ypu as a long vector Hrzs P `2pZNq.

14In general, we will assume that W ptq is white noise.
15In practice, of course, we won’t ever know the form of fptq. In fact, we don’t even know that fptq is
non-zero, or that fptq is periodic or stationary. This, perhaps, is the fundamental strength of the wavelet
transform: we don’t have to make as many assumptions about the underlying function fptq.
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We derive the probability distribution for each discrete Haar wavelet transform coefficient

of a white noise signal; afterwards, we’ll demonstrate how we can use this information to

conduct a significance test.

Theorem 3.8. Let N “ 2n for some n P N. For a white noise signal with variance

σ2, W P `2pZNq, let HrW s P `2pZNq be the discrete Haar wavelet transform of W . Then

HrW spiq has a normal distribution Np0, σ2q.

Proof. We prove the theorem inductively; we follow the algorithm given by the Python

program given in the Appendix.

We denote the jth stage discrete Haar wavelet transform by HjrW s. Consider the mem-

bers of the first stage Haar wavelet transform; that is,

H1rW spiq “

$

’

’

&

’

’

%

W piq`W pi`1q
?

2
for i “ 0, 1, ..., N

2
´ 1

W piq´W pi`1q
?

2
for i “ N

2
, ..., N ´ 1.

From Theorem 1.10, for i “ 0, 1, ..., N
2
´ 1,

VarrH1rW spiqs “ Var

„

W piq `W pi` 1q
?

2



“
1

2
VarrW piq `W pi` 1qs

“ σ2

and for i “ N
2
, ..., N ´ 1,

VarrH1rW spiqs “ Var

„

W piq ´W pi` 1q
?

2



“
1

2
VarrW piq ´W pi` 1qs

“ σ2.
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Assume that for each i, HjrW spiq is a normally distributed random variable with mean

µ “ 0 and variance σ2. Then

Hj`1rW spiq “

$

’

’

’

’

’

&

’

’

’

’

’

%

HjrW spiq`HjrW spi`1q
?

2
for i “ 0, 1, ..., N

2j
´ 1

HjrW spiq`HjrW spi`1q
?

2
for i “ N

2j
, ..., N

2j´1 ´ 1

HjrW spiq for i “ N
2j´1 , ..., N ´ 1.

Since we assumed that HjrW spiq is a normally distributed random variable with mean

µ “ 0 and variance σ2, then we know that for i “ N
2j´1 , ..., N ´ 1, Hj`1rW spiq is a normally

distributed random variable with mean µ “ 0 and variance σ2. Then for i “ 0, 1, ..., N
2j
´ 1,

VarrHj`1rW spiqs “ Var

„

HjrW spiq `HjrW spi` 1q
?

2



“
1

2
rHjrW spiq `HjrW spi` 1qs

“ σ2.

The distribution of Hj`1rW spiq for i “ N
2j
, ..., N

2j´1 ´ 1 can be proved similarly. �

Theorem 3.9. Let N “ 2n for some n P N. For a white noise signal W P `2pZNq with

variance σ2 “ 1, let HrW s P `2pZNq be the discrete Haar wavelet transform of W . Then

HrW spiq2 „ χ2
2;

that is, HrW spiq2 has a chi-square distribution with one degree of freedom.

Proof. This fact follows straightforwardly from the previous proof and the fact that the

square of a random variable with a standard normal distribution is chi-square distributed

with one degree of freedom. �

We now introduce our significance test.
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Procedure 2. One Signal Haar Wavelet Significance Test. Suppose N “ 2p for

some p P N and z P `2pZNq16. We want to conduct a test to determine whether the pth

stage Haar wavelet transform coefficients of z are significantly different from the pth stage

Haar wavelet transform coefficients of a white noise signal W P `2pZNq. We allow for some

pre-specified α, the likelihood of a Type I error.

The null hypothesis of our test is that Hrz1spiq „ χ2
1, where z1 is a normalized version of

z that we will introduce momentarily; the alternative hypothesis is that Hrz1spiq  χ2
1. We

reject or fail to reject the null hypothesis using the following steps.

(1) Normalize17 z using Procedure 1 from Chapter 1; we call this normalized signal z1.

(2) Compute the pth stage Haar wavelet transform, Hrz1s, of z1.

(3) Compute the rejection region for the null hypothesis. That is, determine k such

that P pHrz1spiq2 ě kq “ α, or, equivalently, solve the following equation for k:

1´

ż k

0

1

21{2Γp1{2q
x
´1
2 e´

x
2 dx “ α.

(4) For i “ 0, 1, ..., N ´ 1, if Hrz1spiq2 ě k, reject the null hypothesis. Otherwise, we

fail to reject the null hypothesis.

We provide examples of the Haar wavelet one-signal significance test in Chapter 5; we

also discuss potential problems with its use. We provide the code to compute this test in

the Appendix.

When z has some length N ‰ 2, we make z as periodic as we need it to be, which

means that we repeat the entries of z until our signal has length N 1 “ 2p. This adjustment

technically renders the significance test invalid, but we suspect that it will nevertheless be

‘accurate.

3.2. Cross Spectrum Significance with the Haar Wavelet Transform. In gen-

eral, a wavelet cross spectrum aims to determine when two signals have similar wavelet

transforms.

16We will discuss later what we should do when N ‰ 2p.
17We do this because we can’t make any assumptions about the white noise we’re dealing with.
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Definition 39. Let z1, z2 P `
2pZNq. Then we define the Haar wavelet transform

cross spectrum for i “ 0, 1, ..., N ´ 1 as

Hrz1spiq
2
¨Hrz2spiq

2.

Suppose both z1 and z2 are white noise signals; if we normalize z1 and z2, then we know

from Theorem 3.9 that for all i, both Hrz11spiq and Hrz12spiq will be chi-square distributed

with one degree of freedom. To construct a cross spectrum significance test, we want to

determine the probability distribution of Hrz11spiq
2Hrz12spiq

2.

Definition 40. We say that a random variable X has a Gamma distribution if it has a

probability density function of the form

fpx;α, βq “
1

βαΓpαq
xα´1e´

x
β .

We denote a random variable having a Gamma distribution as X „ Gpα, βq. Note that

if X „ Gpν{2, 2q, then X has a chi-square distribution with ν degrees of freedom.

Theorem 3.10. Let X „ χ2
1 and Y „ χ2

1 be independent. Let Z “ XY . Then Z has

density function

fpzq “
1

π
?
z
K0pz

1{2
q

where K0 is the modified Bessel function of the second kind of order zero.

Proof. From [10], we cite the probability density function of the product of two inde-

pendent Gamma distributions. Let Z „ Gpα1, β1 “
1
α1
q and Y „ Gpα2, β2q; let X and Y be

independent. Then Z “ XY is a random variable with probability density function

fpz;α1, α2, β2q “
2

z

ˆ

α1z

β2

˙

α1`α2
2 1

Γpα1qΓpα2q
Kα2´α1

ˆ

2

c

α1z

β2

˙

,

where Kα2´α1 is the modified Bessel function of the second kind of order α2´α1. If α1 “ 1{2,

α2 “ 1{2, and β2 “ 2, then X and Y are both chi-square distributed with one degree of
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freedom. With the appropriate parameter substitutions, it’s clear that Z “ XY has density

function

fpzq “
1

π
?
z
K0pz

1{2
q.

using the fact that Γ
`

1
2

˘2
“ π. �

Procedure 3. Cross Spectrum Haar Wavelet Significance Test. Suppose N “ 2p

for some p P N and z1, z2 P `
2pZNq. We want to conduct a test to determine whether the

cross spectrum coefficients of z1 and z2 are significantly different from the pth stage Haar

wavelet transform coefficients of two white noise signals W1,W2 P `
2pZNq. We allow for some

pre-specified α, the likelihood of a Type I error.

The null hypothesis of our test is that Hrz1spiq „ χ2
1, where z1 is a normalized version of

z that we will introduce momentarily; the alternative hypothesis is that Hrz1spiq  χ2
1. We

reject or fail to reject the null hypothesis using the following steps.

(1) Normalize z1 and z2 using Procedure 1 from Chapter 1; we call these normalized

signals z11 and z12.

(2) Compute the pth stage Haar wavelet transforms, Hrz11s and Hrz12s, of z11 and z12.

(3) Compute the rejection region for the null hypothesis. That is, determine k such

that P pHrz11spiq
2Hrz12spiq

2 ě kq “ α, or, equivalently, solve the following equation

for k:

1´

ż k

0

1

π
?
z
K0pz

1{2
qdx “ α.

(4) For i “ 0, 1, ..., N ´ 1, if Hrz11spiq
2Hrz12spiq

2 ě k, reject the null hypothesis. Other-

wise, we fail to reject the null hypothesis.

We provide examples of the Haar wavelet cross spectrum significance test in Chapter 5;

we also discuss potential problems with its use. We provide the code to compute this test in

the Appendix.



CHAPTER 4

The Continuous Wavelet Transform

We will begin with a brief introduction to continuous wavelet theory, as presented in [3]

and [2]. This section will be remarkably non-technical - we will only need these definitions

to define admissibility criteria for wavelets and to get a loose idea about what a wavelet

transform is really doing.

To begin our discussion, we first define the set of square-summable functions.

Definition 41.

L2
pRq “

"

f : CÑ R :

ż 8

´8

|fpxq|2dx ă 8

*

We call this the set of square-summable functions.

First, note that many common functions are not square-summable; for example,

(1) fpxq “ x

(2) gpxq “ sinpxq

(3) hpxq “ cospxq.

The fact that these last two trigonometric functions are not square-summable turns out

to be of fundamental importance to wavelet theory. Fourier analysis relies on these two

functions to act as basis vectors for L2p0, 2πq - the set of square-summable functions on the

interval p0, 2πq. But since sine and cosine functions aren’t even members of L2pRq, they

certainly can’t act as basis vectors. Continuous wavelets, however, are square-summable,

and just as their discrete counterparts acted as basis vectors for `2pZNq, continuous wavelets

act as basis vectors for L2pRq.

We require that a wavelet be a window function.

66
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Definition 42. A nontrivial function w P L2pRq is called a window function if xwpxq is

also in L2pRq. The center t˚ and radius ∆w of a window function w are defined to be

t˚ “
1

||w||2

ż 8

´8

x|wpxq|2dx

and

∆w “
1

||w||

d

ż 8

´8

px´ t˚q2|wpxq|2dx

In addition, we require that

Cψ “

ż 8

´8

|Frψspωq|2

|ω|
dω ă 8,

where Frψs is the continuous Fourier transform of ψ.

It turns out that this will be the criterion necessary for a function to be reconstructed

from its wavelet transform.

We now introduce the continuous wavelet transform.

Definition 43. Let f P L2pRq, let ψ be a wavelet. Then we define the continuous

wavelet transform of f for b P R and a ą 0 as

pWψfqpb, aq “ |a|
1{2

ż 8

´8

fpxqψ

ˆ

x´ b

a

˙

dx,

We often refer to a as scale and b as shift.

By the way that we’ve defined a wavelet, both the wavelet and its Fourier transform will

be window functions.

Suppose that a given wavelet ψ and its Fourier transform Frψs have centers and radii

given by t˚, ω˚,∆ψ, and ∆Frψs. Then the wavelet transform of a function f evaluated at a

and b localizes f within the time-domain within the interval

rb` at˚ ´ a∆ψ, b` at
˚
` a∆ψs .
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Furthermore, the wavelet transform localizes a function f within the frequency-domain

within the interval
„

ω˚

a
´

1

a
∆Frψs,

ω˚

a
`

1

a
∆Frψs



.

1. Continuous Wavelet Significance Tests

We now introduce the wavelet transform that we will be using for the remainder of this

chapter.

Definition 44. Let zptq P `2pZNq. Since zptq is interpreted as a signal sampled at

some constant sampling rate, let δt be the time difference between each pair of data points.

Let ψ be a wavelet. We define the sampled continuous wavelet transform of z for

n “ 0, 1, ..., N ´ 1 and a ą 0 as

(4.1) Tn,arzs “
N´1
ÿ

t“0

zptq
δt
?
a
ψ

ˆ

pt´ nqδt

a

˙

For the remainder of this chapter, we’ll just refer to Equation 4.1 as the wavelet transform

of zptq at n and a. Equation 4.1 is a subtle variation of the transform given by Torrence and

Compo in [13]; reasons for avoiding Torrence and Compo’s transform are given in [6].

Definition 45. Following [13] and [6], we define the wavelet power of a signal zptq P

`2pZNq at scale a and shift n as

|Tn,arzs|
2.

We often plot wavelet power over a domain of n and a; a plot of this form is called a

scaleogram.

Consider Figure 4.1. On the right, we see a traditional time-amplitude plot of a 3Hz sine

function; that is, a plot of fptq “ sinp6πtq. On the right, we see the wavelet power spectrum

of fpxq plotted in a scaleogram. The scaleogram was constructed using Equation 4.1 and a

Morlet wavelet; we will introduce the Morlet wavelet momentarily.
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(a) Time-Amplitude Plot of fptq (b) Power Spectrum of fptq

Figure 4.1. Plots of fptq “ sinp6πtq.

Note that the coefficients are plotted on a spectrum from blue to red; the intensity is

proportional to the magnitude of the coefficients. The horizontal axis plots the shift n

of the wavelet transform - these coefficients should roughly be interpreted as coefficients

in the time domain. The vertical axis corresponds to the wavelet scale parameter a. It

turns out that when we use the Morlet wavelet, we can directly compare wavelet scale with

Fourier frequency. Finally, note the strange diffusion effects appearing on the extreme left

and right boundaries of the transform; these are known as edge effects. They are the

inevitable consequence of taking the wavelet transform of a finite-length signal; there are

some established methods of reducing them.

Definition 46. We say that ψptq given below is the Morlet wavelet.

(4.2) ψptq “ π´1{4eiω0te´
t2

2

For the remainder of this chapter, ψptq will refer to the Morlet wavelet rather than an

arbitrary wavelet.
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The Morlet wavelet has many desirable properties. In particular, [13], [8] and [2] note

that when ω0 “ 6.0, wavelet scale and Fourier frequency are almost exactly inversely pro-

portional1; that is, f “ 1
a
, where f is Fourier frequency and a is wavelet scale. This greatly

eases the interpretation of wavelet transform coefficients, especially - as is the case when the

data sets are ecological - when knowledge of the exact frequency being examined is critical

to the analysis of results. In addition, the Morlet wavelet has both a real and an imaginary

part; a wavelet transform using a Morlet wavelet can be used for phase analysis. Finally,

the Morlet wavelet has properties that are useful when analytically deriving the statistical

significance tests that we will begin discussing momentarily; see [6] and [7].

Consider Figure 4.2, a plot of

fptq “ e´pt´2.5q2 cosp2πtq ` e´pt´7.5q2 cosp4πtq

and its wavelet transform. The figure really re-emphasizes the central theme of this thesis;

it provides insight into the power of the wavelet transform, and the properties of the wavelet

transform that really differentiate it from the Fourier transform - the wavelet transform is

able to roughly locate the moment at which the frequency in the sample signal changed.

(a) Time-Amplitude Plot of fptq (b) Power Spectrum of fptq

Figure 4.2. Plots of fptq “ e´pt´2.5q2 cosp4πtq ` e´pt´7.5q2 cosp2πtq.

1Looking back at Figure. 4.1, note that the scaleogram has large coefficients when scale a « .33. This means
the peak Fourier frequency is about 3Hz.
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(a) Time-Amplitude Plot of fptq (b) Power Spectrum of fptq

Figure 4.3. Plots of fptq “ W ptq.

Perhaps the most popular methodological source for the application of the wavelet trans-

form to data sets is given by Torrence and Compo in [13]; since its publication, the paper

has been cited nearly 5000 times. Though the paper is valuable for its attempt to organize

and synthesize years of wavelet research into a relatively straightforward manual for scien-

tists, the work is most notable for its attempt to bring measures of statistical significance2

to wavelet analysis.

As we noted in Chapter 3, when we compute the wavelet transform of white noise, we see

apparently non-random structures within the transform coefficients; see Figure 4.3. Tests

for statistical significance are necessary, therefore, to differentiate between features produced

by randomness and features truly indicative of some underlying process. Nevertheless, plots

like Figure 4.4 allow us to be optimistic about the ability of the wavelet transform to detect

some underlying signal fptq; it’s actually more obvious that the signal contains a sine function

when we look at the wavelet transform of the signal.

Torrence and Compo established tests for statistical significance using Monte Carlo meth-

ods; later papers analytically derived the probability distributions necessary for establishing

significance tests; see [6], [7]. Though the findings of [6] and [7] numerically match the

results of Torrence and Compo, we found that the derivations are wrong. We will recreate

2We will define the general form of statistical significance test in the next section.
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their proofs in the following section; we believe that the probability distributions they derive

are accurate when δt, the sampling interval, approaches zero.

(a) Time-Amplitude Plot of fptq (b) Power Spectrum of fptq

Figure 4.4. Plots of fptq “ sinp6πtq `W ptq.

1.1. One Signal Wavelet Significance Test. Following—and correcting—the deriva-

tions found in [6], we derive the probability distribution for each Morlet wavelet transform

coefficient of a white noise signal; afterwards, we’ll demonstrate how we can use this infor-

mation to conduct a significance test. We begin by proving a series of lemmas.

Lemma 4.1. Let W ptq P `2pZNq be a white noise signal with mean µ “ 0 and variance

σ2. Then <rTn,arW ss and =rTn,arW ss are normally distributed with mean µ “ 0.

Proof. First, we identify the real and imaginary parts of the wavelet transform:

<rTn,arW ss “
N´1
ÿ

t“0

W ptq
δt
?
a
<

«

ψ

ˆ

pt´ nqδt

a

˙

ff

and

=rTn,arW ss “
N´1
ÿ

t“0

W ptq
δt
?
a
=

«

ψ

ˆ

pt´ nqδt

a

˙

ff

.

First, note that linear combinations of normally distributed random variables are also

normally distributed - both the real and imaginary parts of Tn,arW s given above are linear

combinations of normally distributed random variables.
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Next, we demonstrate that <rTn,arW ss and =rTn,arW ss have mean µ “ 0; that is,

Er<rTn,arW sss “ Er=rTn,arW sss “ 0.

We will only prove the real part; the proof of the imaginary part is identical. By definition,

Er<rTn,arW sss “ E

«

N´1
ÿ

t“0

W ptq
δt
?
a
<

«

ψ

ˆ

pt´ nqδt

a

˙

ffff

“
δt
?
a

N´1
ÿ

t“0

<

«

ψ

ˆ

pt´ nqδt

a

˙

ff

E rW ptqs

“ 0

since ErW ptqs “ 0 for all t.

�

The following theorem is taken from [9] and is necessary for a later proof. Given certain

assumptions about X and Y , it provides the criteria necessary to demonstrate that X and

Y are independent.

Lemma 4.2. Let X1, X2, ..., Xn be independent normally distributed random variables,

and assume that the nth moment of each Xi exists. Let

Y1 “

n
ÿ

i“1

aiXi

and

Y2 “

n
ÿ

i“1

biXi.

If
n
ÿ

i“0

aibiσ
2
i “ 0,

then X and Y are independent.
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The following lemma is not true. Nevertheless, we include it: based upon the Monte

Carlo results found in [13], the overall theorem we will prove using the lemma appears to

be approximately accurate for small δt.

Lemma 4.3. Let W ptq P `2pZNq be a white noise signal with mean µ “ 0 and variance

σ2. Then <rTn,arW ss and =rTn,arW ss are independent.

Proof. We know W ptq’s are mutually independent and normally distributed. Following

Lemma 4.2, we want to show that

(4.3)
δt2

a

N´1
ÿ

t“0

<

«

ψ

ˆ

pt´ nqδt

a

˙

ff

=

«

ψ

ˆ

pt´ nqδt

a

˙

ff

VarrW ptqs “ 0.

Since VarrW ptqs and δt are non-zero, it’s apparent that Equation 4.3 only holds when

N´1
ÿ

t“0

<

«

ˆ

pt´ nqδt

a

˙

ff

=

«

ψ

ˆ

pt´ nqδt

a

˙

ff

“ 0.

Unfortunately, this just isn’t true using the Morlet wavelet. We’ve written up some

simple Python code to calculate the value of the left side of Equation 4.3 in the Appendix,

but we’ll also simplify the expression to make it more clear that it isn’t equal to zero.

Remember that we are using a Morlet wavelet. If we let x “ pt´nqδt
a

, then

ψpxq “ π´1{4e´
x2

2 e´iω0x

“ π´1{4e´
x2

2 rcospω0xq ´ i sinpω0xqs .

Therefore,

<rψpxqs “ π´1{4e´
x2

2 cospω0xq

and

=rψpxqs “ ´π´1{4e´
x2

2 sinpω0xq
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Thus,

pN´1´nqδt
a
ÿ

x“´nδt
a

<
”

ψ pxq
ı

=
”

ψ pxq
ı

“ ´π´1{2

pN´1´nqδt
a
ÿ

x“´nδt
a

e´x
2

cos pω0xq sin pω0tq

“ ´
π´1{2

2

pN´1´nqδt
a
ÿ

x“´nδt
a

e´x
2

sin p2ω0xq

It should be clear that, in general, this sum is not equal to zero. However, we note that

lim
δtÑ0

δt2σ2

a

N´1
ÿ

t“0

<

«

ψ

ˆ

pt´ nqδt

a

˙

ff

=

«

ψ

ˆ

pt´ nqδt

a

˙

ff

“ 0

�

Unfortunately, the next lemma also isn’t true; like the previous lemma, however, it

becomes approximately accurate when the sampling interval δt approaches zero.

Lemma 4.4. Let W ptq P `2pZNq be a white noise signal with mean µ “ 0 and variance

σ2. Then

Varr<rTn,arW sss “ Varr=rTn,arW sss “
1

2
δtσ2.

Proof. From Lemma 4.1, we know that Er<rTn,arW sss “ Er=rTn,arW sss “ 0. There-

fore, we know that

Varr<rTn,arW sss “ Erp<rTn,arW ssq2s

and

Varr=rTn,arW sss “ Erp=rTn,arW ssq2s.

We will only compute the real part; the proof of the imaginary part is very similar. First,



1. CONTINUOUS WAVELET SIGNIFICANCE TESTS 76

Erp<rTn,arW ssq2s “ E

«˜

N´1
ÿ

t1“0

δt
?
a
<

«

ψ

ˆ

pt1 ´ nqδt

a

˙

ff

xpt1q

¸˜

N´1
ÿ

t2“0

δt
?
a
<

«

ψ

ˆ

pt2 ´ nqδt

a

˙

ff

xpt2q

¸ff

“
δt2

a

N´1
ÿ

t“0

ErW ptq2s<2

«

ψ

ˆ

pt2 ´ nqδt

a

˙

ff

.

The last step follows from the linearity properties of the expected value operator and the fact

that the W piq’s are independent with mean µ “ 0. Therefore, for i ‰ j, ErW piqW pjqs “ 0.

In addition, since ErW piqs “ 0, ErW piq2s “ σ2. We can rewrite the expression as

Varr=rTn,arW sss “ δtσ2
N´1
ÿ

t“0

1

a
<2

«

ψ

ˆ

pt´ nqδt

a

˙

ff

δt.

In order for the lemma to be true, this expression will need to equal 1
2
δtσ2. Unfortunately,

it doesn’t - it’s only true when we let δt approach zero. The expression is actually a left

Riemann sum. We approximate the sum with the corresponding integral; that is,

lim
δtÑ0

N´1
ÿ

t“0

1

a
<

«

ψ

ˆ

pt´ nqδt

a

˙

ff2

δt “

ż 8

´8

1

a
<

«

ψ

ˆ

pt´ nq

a

˙

ff2

dt

“

ż 8

´8

<
”

ψ puq
ı2

du

“

ż 8

´8

”

π´1{4e´
u2

2 cospω0uq
ı2

du.

Integrating numerically, we find the integral equals 1{2. Of course, the result will not hold

true for any fixed δt greater than zero. We have assumed that N is sufficiently large that we

can approximate the summation with an integral with bounds ´8 ă t ă 83. Nevertheless,

we grudgingly admit that

Varr<rTn,arW sss «
1

2
δtσ2.

�

3Since wavelets are window functions, this is not actually a bad assumption. However, it will not hold true
for the extreme edges of the wavelet transform.
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We collect all of the previous lemmas to prove the following theorem (and later theorems).

We assume that all of the lemmas are accurate. We will discuss potential problems with the

assumptions we’ve made at the end of the chapter.

Theorem 4.5. Let W ptq be a white noise signal with mean µ “ 0 and variance σ2. Then

|Tn,arW s|
2

δtσ2{2
„ χ2

2.

Proof. This theorem is given in [6]. However, only an outline of the proof is given; we

have filled in the gaps with the lemmas provided above.

(1) We want to show that both the real and imaginary parts of the wavelet transform

of a white noise signal are normally distributed with mean µ “ 0; we proved this in

Lemma 4.1.

(2) By dividing by their standard deviation - found in Lemma 4.4 - we can standardize

both the real and the imaginary parts. That is,

<rTn,arW ss
a

δtσ2{2
„ Np0, 1q

and

=rTn,arW ss
a

δtσ2{2
„ Np0, 1q.

(3) By Lemma 4.3, the real and imaginary parts of the Morlet wavelet transform of

white noise are independent random variables.

(4) It is well known that the square of a random variable with a standard normal

distribution has a chi-square distribution with one degree of freedom; furthermore,

the sum of two independent random variables with chi-square distributions each with

one degree of freedom has a chi-square distribution with two degrees of freedom.

Thus,

|Tn,arW s|
2

δtσ2{2
“

<rTn,arW ss2

δtσ2{2
`

=rTn,arW ss2

δtσ2{2
„ χ2

2.

�
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Note that our probability distribution does not depend on n or a — this is a remarkable

fact, and it greatly reduces the work that we have to do.

We now introduce our significance test.

Procedure 4. One Signal Morlet Wavelet Significance Test. Suppose z P `2pZNq.

We want to conduct a test to determine whether the Morlet wavelet transform coefficients

of z are significantly different from the Morlet wavelet transform coefficients of a white noise

signal W P `2pZNq. We allow for some pre-specified α, the likelihood of a Type I error.

The null hypothesis of our test is that |Tn,arz1s|2

δt{2
„ χ2

2, where z1 is a normalized version of

z that we will introduce momentarily; the alternative hypothesis is that |Tn,arz1s|2

δt{2
 χ2

1. We

reject or fail to reject the null hypothesis using the following steps.

(1) Normalize z using Procedure 1 from Chapter 1; we call this normalized signal z1.

(2) Compute the Morlet wavelet transform of z1.

(3) Compute the rejection region for the null hypothesis. That is, determine k such

that P p|Tn,arz
1s|2 ě kq “ α, or, equivalently, solve the following equation for k:

1´

ż k

0

1

2Γp1q
e´

x
2 dx “ α.

(4) For all a and n, if |Tn,arz
1s|2 ě k, reject the null hypothesis. Otherwise, we fail to

reject the null hypothesis.

We provide examples of the Morlet wavelet significance test in Chapter 5.

1.2. Cross Spectrum Significance with the Morlet Wavelet. As in Chapter 3, we

now introduce the Morlet wavelet cross spectrum significance test. We first introduce the

relevant probability distribution; we will then construct the significance test. The following

discussion is taken from [7].

Definition 47. Let x, y P `2pZNq. Then we define the wavelet cross spectrum of x

and y by

Cn,apx, yq “ Tn,arxsTn,arys.
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In general, we are more concerned with the square of the wavelet cross spectrum; that is,

|Cn,apx, yq|
2
“ |Tn,arxs|

2
|Tn,arys|

2.

Theorem 4.6. Let W1,W2 P `
2pZNq be white noise signals with means µ1 “ µ2 “ 0 and

variances σ2
W1
, σ2

W2
, respectively. Then

|Cn,apW1,W2q|
2

σ2
W1
σ2
W2

„
1

4
δt2κ

where κ is a random variable with probability density function

fpxq “
1

2
K0px

1{2
q

where K0 is the modified Bessel function of the second kind of order zero.

Proof. Though the result seems intimidating, it is actually trivial to prove given past

statistical results. Assuming the results of the last section hold true for small δt, we know

|Tn,arW1s|
2

δtσ2
x{2

„ χ2
2

and

|Tn,arW2s|
2

δtσ2
y{2

„ χ2
2.

From [14], we know that the product of two chi-square random variables each with two

degrees of freedom is a random variable κ with probability density function

fpxq “
1

2
K0px

1{2
q.

Then

|Cn,apW1,W2q|
2

σ2
W1
σ2
W2

“
|Tn,arW1s|

2

σ2
W1

`
|Tn,arW2s|

2

σ2
W2

„
1

4
δt2κ

�

We now introduce our last significance test.
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Procedure 5. Cross Spectrum Morlet Wavelet Significance Test. Suppose

z1, z2 P `
2pZNq. We want to conduct a test to determine whether the cross spectrum coeffi-

cients of z1 and z2 are significantly different from the cross spectrum Morlet wavelet transform

coefficients of two white noise signals W1,W2 P `
2pZNq. We allow for some pre-specified α,

the likelihood of a Type I error.

The null hypothesis of our test is that
|Cn,apz11,z

1
2q|

2

δt2{4
„ κ, where z1 is a normalized version

of z that we will introduce momentarily; the alternative hypothesis is that
|Cn,apz11,z

1
2q|

2

δt2{4
 χ2

1.

We reject or fail to reject the null hypothesis using the following steps.

(1) Normalize z1 and z2 using Procedure 1 from Chapter 1; we call these normalized

signals z11 and z12.

(2) Compute the Morlet wavelet transforms of z11 and z12.

(3) Compute the rejection region for the null hypothesis. That is, determine k such

that P
´

|Cn,apz11,z
1
2q|

2

δt2{4
ě k

¯

“ α, or, equivalently, solve the following equation for k:

1´

ż k

0

1

2
K0px

1{2
qdx “ α.

(4) For all n and a, if
|Cn,apz11,z

1
2q|

2

δt2{4
ě k, reject the null hypothesis. Otherwise, we fail to

reject the null hypothesis.

We provide examples of the Morlet wavelet cross spectrum significance test in Chapter

5.



CHAPTER 5

Applications

1. Sample Significance Tests

We provide a few sample significance tests. The data sets are provided by the Gloeo

group at Dartmouth. Unfortunately, no pair of these sample data sets was suitable for the

Morlet wavelet cross spectrum test; instead, we used the famous Canadian hare and lynx

population data set for our test.

1.1. Sample Haar Wavelet Significance Tests. Many of the sample data sets pro-

vided by the Gloeo group contained fewer than 20 data points; I felt that an analysis of

such a short data set using the Morlet wavelet would be corrupted by edge effects. Though

I did not discuss them in technical detail, the reader should know that edge effects are the

result of a wavelet exceeding the boundaries of the signal of interest; if it gives the reader

any intuition about how these edge effects might occur, consider that highly dilated wavelets

(those with scale term a close to zero) produce the worst edge effects.

I designed both of the Haar wavelet significance tests with the hope that I could more

adequately analyze these short signals—the Haar wavelet is the shortest of the discrete

wavelets, and does not provoke as harsh edge effects as other wavelets. Unfortunately, the

Haar wavelet does not have many other desirable properties.

As an orthonormal decomposition, the discrete Haar wavelet transform suffers from the

same kinds of leakage problems as the discrete Fourier transform. In addition, it can be very

hard to interpret Haar transform coefficients—they are not easily translated into units of

time or frequency. Nevertheless, I believe the Haar significance tests offer a viable alternative

to the Morlet wavelet significance tests.

In the future, I hope to eschew interpreting the Haar wavelet coefficients directly; instead,

I hope to use the statistically significant coefficients to build models of ecological situations.

81
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In theory, statistically significant coefficients reflect the underlying system that produced

the signal—a model built using these coefficients should have some predictive validity. In

addition, I would like to consider how significant cross spectrum coefficients could validate

an ecological model.

Figures 5.1 and 5.2 plot Gloeo recruitment data per m3 for 2008 and 2009 at Lake

Sunapee in New Hampshire; Figure 5.3 plots the cross spectrum of the 2008 and 2009 data

sets. Remember that the Haar wavelet transform coefficients have been concatenated into a

single vector.

Importantly, these plots indicate statistically significant cross spectrum coefficients; these

coefficients indicate some periodic behavior for both summers on the two to three week scale.
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1.2. Morlet Wavelet Significance Tests. Many sources, including [13], guard against

an apparently common “style over substance” charge brought against the wavelet transform:

that the continuous wavelet transform produces pretty pictures, but cannot generate useful

quantitative results. These critiques inspired the introduction of the first Monte Carlo sim-

ulations used to produce statistical significance tests; in turn, the lack of statistical rigor in

these tests inspired the probabilistic derivations found in [6], [7], and this thesis.

Despite this apparent introduction of rigor, the Morlet wavelet transform still has many

flaws. For example, consider Figure 5.4: despite testing at the 95% confidence level, the

region of significance remains a diffuse and hard-to-interpret band within the scaleogram.

It’s hard to know how a researcher could use this kind of data to prove a result or to promote

future research—the transform just isn’t accurate enough. For example, if we wanted to build

a model using the significance test found in Figure 5.4, which transform coefficients would

we base our model upon?

We would construct a model using the most statistically significant coefficients; unfortu-

nately, since different components of a signal can have different relative strengths, this could

exclude possibly vital coefficients from the model. For example, an attempt to construct a

model of the signal

fpxq “
sinp2πxq

4
` sinp4πxq

using this method would inevitably exclude the sinp2πxq
4

term. Without sophisticated a priori

knowledge of the system being examined by the transform, it’s hard to know how to use the

Morlet wavelet transform effectively.

Figure 5.5 shows plots of the light intensity at Lake Sunapee recorded every ten minutes

for 2008. When converted from ten minute intervals to hours, the two narrow bands of

significance running across the center of the scaleogram correspond to periodic behavior on

12 and 24 hour intervals—this is what we should expect. Most interestingly, the transform

contains patterns of statistically significant coefficients that indicate daily or weekly periodic
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behavior during parts of spring, summer, and fall. Again, without a well-reasoned procedure

for handling the data, it’s unclear what a researcher could do with this information.

Figure 5.6 shows the cross spectrum test of the classic Canadian hare-lynx population

data. The cross spectrum indicates significant correlation in periodicity on the four to seven

year scale between the hare and lynx population levels for about thirty years.

The hare-lynx data set was taken from http://dave-reed.com/csc121.F10/Labs/Lab1/.
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2. Conclusion

2.1. Shortcomings of Significance Tests. In the past several sections, I indicated

problems with specific significance tests. However, I would like to note a serious problem

with all of the significance tests in this thesis.

In Chapter 1, I defined a Type II error—the error associated with failing to reject the

null hypothesis even though it is false. All of the significance tests defined in this thesis avoid

Type I errors by constructing appropriate rejection regions based upon the null hypothesis

in question. However, none of the tests account for Type II errors; this is because it is

much harder to compute the probability of Type II errors. For example, for the one signal

Haar significance test, the probability of committing a Type II error is the probability that

a random variable that is not chi-square distributed with one degree of freedom registers

values that a chi-square random variable with one degree of freedom registers 95% of the

time.

When we don’t a priori know anything about a signal, we don’t have any means of

computing the probability of committing a Type II error—at least not that I can see. In

fact, to me, this seems like a baffling and generally unsolvable problem. This is a shame,

because without knowing the probability of a Type II error, we don’t know how much useful

information we’re throwing out when we conduct a significance test.

2.2. Future Research. I mentioned in the introduction that continuous wavelet trans-

forms are best suited for ecological research—I said this because the Morlet wavelet transform

coefficients are easily interpreted in terms of frequency and position. However, I’m convinced

that there is not very much value in examining a wavelet transform scaleogram by itself—I

outlined my critiques of the Morlet wavelet transform in the sections above.

Instead, I believe the future of wavelets in ecological research will be the use of significance

tests on discrete wavelet transforms to construct models. To advance these aims, I would like

to extend the results I found for the Haar wavelet transform of white noise to more complex

discrete wavelet transforms—the Shannon wavelet, for example, or the Daubechies wavelet,

which we did not discuss. Deriving probability distributions of wavelet transforms of white
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noise for these wavelets should be relatively straightforward, and these wavelets have many

desirable properties relative to the Haar wavelet, including improved frequency localization.

Ecology can benefit from wavelets—ecological data sets, like the data sets examined

above, often exhibit the kind of short-term periodic behavior best analyzed by wavelets.

Nevertheless, the methods need to become more sophisticated in order for researchers to

make valuable and well-justified claims about data sets.



Appendix. Python Implementation

2.3. Python Code for Haar Wavelet Transform. The following code computes the

complete Haar wavelet transform; in addition to Python 2, the code requires the Python

package numpy. The code is adapted from pseudocode found in [11].

import numpy as np

def haar_decomp(my_signal):

my_signal = my_signal/np.sqrt(len(my_signal))

my_h = len(my_signal)

def decomp_step(signal,h):

haar_coef = np.zeros(h)

for i in range(0,h/2):

haar_coef[i] = (signal[2*i] + signal[2*i+1])/np.sqrt(2)

haar_coef[h/2 + i] = (signal[2*i] -signal[2*i+1])/np.sqrt(2)

signal[0:h] = haar_coef

return signal

while my_h>1:

my_signal = decomp_step(my_signal,my_h)

my_h = my_h/2

return my_signal

93
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The following code reconstructs a signal from Haar coefficients; that is, it is the inverse

of the code provided above. The code is my own.

def haar_recon(my_haar):

my_h = 1

len_haar = len(my_haar)

count = 0

def recon_step(haar_coef,h):

recon = np.zeros(2*h)

for i in range(0,h):

recon[2*i] = (haar_coef[i]+haar_coef[i+h]*np.power(2,count/2.0))

recon[2*i+1] = (haar_coef[i]-haar_coef[i+h]*np.power(2,count/2.0))

haar_coef[0:2*h] = recon

return haar_coef

while my_h < len(my_haar):

my_haar = recon_step(my_haar,my_h)

my_h = my_h*2

count +=1.0

return my_haar

2.4. Python Code for Hanning Filter.

from numpy import zeros, loadtxt

from numpy.fft import fft,ifft

from pylab import *
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fname = ’my_filename.dat’

my_z = loadtxt(fname)

def hanning_filter(z):

length_z = len(z)

H_f = zeros(length_z)

H_f[0] = .5

H_f[1] = -.25

H_f[-1] = -.25

fft_z = fft(z)

H_f_z = ifft(fft(H_f)*fft(fft(z)))

fft_ab = fft(z)

return H_f_z, fft_ab, fft(H_f)

h,new_z,h_f = hanning_filter(my_z)

subplot(2,2,1)

plot(x,my_z, linewidth=2.5)

subplot(2,2,2)

plot(abs(h_f),linewidth=2.5 )

subplot(2,2,3)

plot(abs(h)**2,linewidth=2.5)
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subplot(2,2,4)

plot(abs(new_z) ** 2,linewidth=2.5)

show()

2.5. Python Code Demonstrating Morlet Wavelet Transform Real and Imag-

inary Part Non-Independence.

from numpy import *

my_x = linspace(0,10,1000)

my_dx = .01

my_n = 5

my_a = 1

def morlet_test(x,dx,n,a):

i = 1j

t = ((x - 2*ones(len(x)))*dx)/a

morlet = (pi ** (-.25)) * exp(-(t ** 2)/2.0) * exp(-i*6.0*t)

my_test = ((dx ** 2)/a)*sum(real(morlet)*imag(morlet))

print my_test

print morlet_test(my_x,my_dx,my_n, my_a)
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2.6. Python Code for One Signal Haar Significance.

import numpy as np

import pylab

from scipy.optimize import newton

from scipy.stats import chi2

import pywt

fname = ’gloeo2009.dat’

signal = np.loadtxt(fname)

signal = (signal - np.mean(signal))/np.std(signal)

sig_level = .95

db1 = pywt.Wavelet(’db1’)

coeffs = pywt.wavedec(signal, db1, mode = ’per’)

my_coeffs = np.concatenate(coeffs)

def find_k(significance_level):

def chi_cdf(my_k):

return chi2.cdf(my_k,1) - significance_level

good_k = newton(chi_cdf,significance_level)

return good_k
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k = find_k(sig_level)

x = range(len(my_coeffs))

pylab.plot(x,np.power(my_coeffs,2),linewidth = 2.5)

pylab.plot(x, k*np.ones(len(x)), color="red", linewidth=2.5, linestyle="--")

pylab.show()

2.7. Python Code for Cross Spectrum Haar Significance.

import numpy as np

import pylab

from scipy.integrate import quad

from scipy.optimize import newton

from scipy.special import k0

import pywt

fname_1 = ’gloeo2008.dat’

signal_1 = np.loadtxt(fname_1)

signal_1 = (signal_1 - np.mean(signal_1))/np.std(signal_1)

fname_2 = ’gloeo2009.dat’

signal_2 = np.loadtxt(fname_2)

signal_2 = (signal_2 - np.mean(signal_2))/np.std(signal_2)

sig_level = .95

db1 = pywt.Wavelet(’db1’)
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coeffs_1 = pywt.wavedec(signal_1, db1, mode = ’per’)

my_coeffs_1 = np.concatenate(coeffs_1)

coeffs_2 = pywt.wavedec(signal_2, db1, mode = ’per’)

my_coeffs_2 = np.concatenate(coeffs_2)

def find_k(significance_level):

def bessel_cdf(k):

result,err = quad(lambda x: (1/(np.pi*np.sqrt(x)))*k0(np.sqrt(x)), 0, k)

return result - significance_level

good_k = newton(bessel_cdf,5*significance_level)

return good_k

k = find_k(sig_level)

x = range(len(my_coeffs_1))

pylab.plot(x,np.power(my_coeffs_1,2)*np.power(my_coeffs_2,2),linewidth = 2.5)

pylab.plot(x, k*np.ones(len(x)), color="red", linewidth=2.5, linestyle="--")

pylab.show()
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All plots in this thesis were generated using the Python package Matplotlib. The con-

tinuous Morlet wavelet transforms and one-signal significance tests were computed using

the Python package KPyWavelet. The cross spectra plots and significance tests were com-

puted by adapting the KPyWavelet source code—this adapted code was not provided but is

available upon request.
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