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Abstract

Bose-Einstein condensates present to us the opportunity to probe into the atomic interac-

tions that govern a macroscopic quantum mechanical system. The degenerate hyperfine

manifold in the bosonic atoms splits in the presence of an external B-field; radio-frequency

induced coupling releases experimentally-attainable knowledge about the Zeeman mani-

fold in 87Rb. The purpose of this study is to investigate quantum dynamics in two and

three-component Bose-Einstein condensate (BEC) systems. We start with a theoretical

analysis of Josephson tunneling dynamics between identical BECs trapped in a double

potential well, paying particular attention to the non-linear self-trapping e↵ect observed

as a consequence of the intra-well interaction. We present a model for the non-equilibrium

dynamics in a two-level system and introduce the Rabi oscillations. This is followed by a

numerical and experimental investigation of Rabi oscillations in a three-level 87Rb BEC

between the F = 1 hyperfine level spin states mF 2 {�1, 0, 1}. The relation between the

observed total Rabi frequency, ⌦R and the detuning �, along with its e↵ect on the BEC

population dynamics is explored. Finally, we explore the possible suspects for the shift of

the resonance at strong Rabi frequencies ⌦.
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Chapter 1

Introduction to Bose-Einstein Condensation

Whilst lecturing the students in 1924 at the University of Dhaka, Sathyandra Nath Bose’s

intent was to show the inadequecy of the theory of radiation in comparison to the experi-

mental data. A simple statistical error in his approach instead led to a theory satisfying

the experiment. In his ’Planck’s Law and the hypothesis of light quanta’ [5], Bose probed

into the statistics of identical indistinguishable particles. While Bose’s ideas were initially

dismissed by the physics community, Albert Einstein saw the importance of his results and

extended it to predict the existence of a novel low-temperature state of matter, the ’Bose-

Einstein condensate’. Einstein showed that at extremely low temperatures, the probability

that a particle occupies the ground energy level is very high [6]. At this stage the inter-

particle separation is very small compared to the particles’ De Broglie wavelength [7], and

the wave-like atoms start to overlap. In this ‘super-atom’, the quantum features of the

individual atoms are greatly amplified, a behavior better known as macroscopic quantum

phenomena [8] .

In this section, we will start by introducing the topic of quantum statistics and various

particle distributions to the reader (Section 1.1). Next, a brief section on the theory of

1
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Bose-Einstein condensation (Section 1.2) will be followed by a discussion of the properties

of the 87Rb atom, including the fine, hyperfine and the zeeman manifold of the alkali atom

(Section 1.3). The final section will look at the ingenious and yet inexpensive laser cooling

techniques after some 80 years of development (Section 1.4). A roadmap for this thesis

will be presented in Section 1.5.

1.1. Quantum Statistics

As illustrated by quantum mechanics and its experimental success, the world is governed

by probabilities. No matter how bizarre this idea may seem to a fatalist [9], this is exactly

how the quantum world appears to us again and again1 (at least for now). One of the

hallmarks of Thermal Statistics, the Gibbs distribution gives a measure of the probability

of a system to occupy a state s with energy ✏s and number of particles N. More explicitly

stated, the Gibbs factor (1.1) gives the occupancy probability for defined values of s, ✏s,

N and the chemical potential µ [10].

e

0

@
(Nµ� ✏s)

kBT

1

A

(1.1)

The sum of the Gibbs factors forms the normalization factor for state probabilities.

The Gibbs sum Z, or the grand partition function, is completed over all states s and the

number of particles N in a system (1.2). Here, � = e(µ/kBT ) for the case of an ideal gas

1The probabilistic nature of the world rarely features in the contested aspects of quantum mechanics. On
the other hand, the sudden collapse of the wave function has been the main focus of multiple physics and
even philosophical debates.
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(non-interacting dilute gas), as in [11].

Z(µ, T ) =
1X

N=0

X

s

e

0

@
(Nµ� ✏s)

kBT

1

A

=
1X

N=0

X

s

�Ne

 �✏s
kBT

!

(1.2)

Then, the probability that the system will be in a state of energy ✏ with particles N is

given by (1.3)

P (✏, N) =
�Ne(�✏s/kBT )

Z
(1.3)

In quantum mechanics, indistinguisable particles come in two types. Fermions are

particles with a half integral spin (1/2,3/2,5/2,...etc), and their distribution across states

is governed by the Pauli exclusion principle [12]. On the other hand, bosons are particles

with an integral spin (1,2,3,...etc) and therefore not subject to Pauli exclusion; bosons

have no restrictions on the occupancy number per particle state. For the fermions (e.g.

quarks, electrons) no identical two fermions can occupy the same quantum state in a

system. Only in the quantum regime, does the identity of such particles start to dictate

their distribution.

In the classical regime, it is virtually impossible to identify the bosonic or fermionic

nature of particles simply based o↵ the particle distribution across the energy states2.

The average occupancy per state is much less than 1 for both bosons and fermions for this

classical case. As we head into the quantum regime, the bosonic distribution is squeezed

down; the bosons abandon the energetic quantum states and settle into the ground state

of the system. For a fermionic distribution in the same environment, the Pauli Exclusion

2The distribution functions for both bosons and fermions converge to the same limit at everyday (not
ultra-cold) temperatures.
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principle ensures that only a single fermion occupies the ground state and as a result, the

average occupancy per state is close to, but always less than, 1.

For our derivations of these new distributions, we will consider only two states. A

particle can either occupy the state invoking our curiousity (then it will be part of the

system), or it will be part of the reservoir (which does in fact contain numerous states, but

for our purposes, all that matters is the exchange between the system and reservoir). The

thermal average of the occupancy of the system in a state s with energy ✏ is represented

by n(✏s) (1.4). Meanwhile, the total number of atoms is given simply by the sum of all

the average state occupancies n(✏s) (1.5).

n(✏s) =

P1
N=0

P
s N�

Ne(�✏s/kBT )

Z
(1.4)

N =
X

s

n(✏s) (1.5)

For a distribution of fermions, the average occupancy per state cannot exceed 1 (a

consequence of the Pauli Exclusion principle). In this case, the partition function Z

only contains two terms (1.6), and the average occupancy n(✏) can be simplified into

an expression similar to (1.7). This is the Fermi-Dirac distribution, which gives the

average fermion occupancy per state at a temperature T .

ZFD ! 1 + �e
� ✏

kBT (1.6)

nFD(✏) =
1

e(✏�µ)/(kBT ) + 1
(1.7)
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Maxwell-Boltzmann

Fermi Dirac

Bose-Einstein

-4 -2 0 2 4
0

1

2

3

4

e-m

n

Figure 1.1. In the classical limit (at large values of ✏ � µ), all the distri-
butions converge to the same function.

The partition function for a distribution of bosons can be summed up by looking at

individual terms of the series and noting that it converges to a limit (1.8) [11]. We find that

the the average occupancy of a state is given by (1.9). This is the famous Bose-Einstein

distribution function.

ZBE ! 1

1 + �e
� ✏

kBT

(1.8)

nBE(✏) =
1

e(✏�µ)/(kBT ) � 1
(1.9)

We see that both the Fermi-Dirac and the Bose-Einstein distributions approach the

same limit in the classical regime. At normal temperatures, the energy of a system is

large, i.e. ✏ � µ is a large number. All the distribution functions converge to the same

average occupancy function n(✏) (Figure 1.1). This is the reason why it can be hard to

distinguish between bosonic and fermionic systems simply based o↵ information about

n(✏) at a room-like temperature T .
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1.2. Theory of the Bose-Einstein Condensate

The defining property of bosons is the ability for multiple bosons to occupy the same

quantum state or orbital. We see from (1.9) that as T ! Tc, where Tc is the critical

temperature specific to the atoms under consideration, the average occupancy for the

ground state of the distribution (nBE(✏ = 0)) becomes macroscopically large. At this

low energy scale, the Heisenberg Uncertainty principle dictates the emergence of a large

uncertainty in a particle’s position, and atoms start to behave like waves. The macroscopic

overlap of the de Broglie waves of identical bosons leads to the creation of a wave-like

super-atom in the ground state (Figure 1.2). This happens when the inter-atom separation

reduces to a number smaller than the thermal de Broglie wavelength of the atoms; More

precisely, this phase transition occurs when n�DB
3 > 2.612, where n is the particle density

and �DB = h/
p
2⇡mkBT is the thermal de Broglie wavelength of a particle [13]. Typically,

condensation to a solid or liquid happens long before atoms reach this regime. The BEC

is a supercooled metastable state, which can only be achieved at low atomic densities. At

high densities, the rate of three body collisions is high, converting the atoms into molecules,

and works against the condensate. Therefore, it is vital to keep the condensate at a low

particle density, in order to increase its lifetime. Such densities can only be achieved in

an ultrahigh vacuum chamber. A condensate lifetime can range from a few seconds to a

minute in a typical vacuum chamber.

After some 70 years of development and research on laser-cooling techniques (briefly

reviewed in Section 1.4), Bose-Einstein condensation was first observed in 1995 at JILA,

where Eric Cornell and Carl Weiman were able to Bose condense 87Rb atoms, achieving
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Figure 1.2. As the temperature decreases and we head into the quantum
regime, atoms shift from being point-like particles to wave-like distributions.
The overlap of waves is so dramatic that the atoms lose their individual
identity, and become a part of a super atom. Adapted from [1].

a condensate density of 2.5 ⇤ 1012 cm�3 atoms at a temperature of 170 nK [14]. Four

months later, Wolfgang Ketterle at MIT was able to produce a 23Na condensate with

about a hundred times more atoms [1]. The high number of atoms enabled Ketterle to

observe quantum mechanical interference e↵ects between two condensates. This milestone

meant that the three pioneers of ultracold atomic physics shared the Nobel Prize in 2001.

1.3. Atomic Structure of Rubidium

Alkali-metals have a near-monopoly in BEC labs around the world. The first ever con-

densate was created with the 87-isotope of Rubidium [14]. Rubidium has two bosonic

isotopes: 85Rb and 87Rb. 85Rb nucleus is the stable isotope, while the 87Rb nucleus de-

cays to 87Sr with a half-life of 4.97(3)1010 years [15]. There are a multitude of reasons for

the popularity of 87Rb: The 87Rb isotope has 37 protons, 37 electrons and 50 neutrons; In

total, the atom has 124 fermions, which makes the 87Rb isotope a boson. Its convenient
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splitting of 780.24 nm between the 52S1/2 and the 52P3/2 states (Figure 1.3) means that

we can use a relatively inexpensive diode laser, lasing in the near-infrared range, to bump

the atoms into the first excited state, 52P3/2.

The orbital and spin angular momentum for the 87Rb atom is determined by the nuclear

spin and the valence electrons. The presence of a single valence electron greatly simplifies

the theory. This section is meant to be a selective review of a collegiate quantum physics

course for the interested reader. In what follows, we will review the fine, hyperfine and

zeeman theory as applied to the 87Rb atom.

The fine structure is a result of the spin-orbit coupling in the electron’s inertial frame

and the relativistic energy correction. In the electron’s frame, the nucleus orbits around

the electron, producing a magnetic field B that interacts with the electron’s magnetic

moment. We define the quantum number J by the relation in (1.10), where L is the

orbital angular momentum and S = 1/2 is the spin angular momentum. The n = 5 level

contains the 5s and the 5p orbital (corresponding to L 2 {0, 1}). The fine structure is

composed of 52XJ levels. For an electron occupying the 5s orbital, J 2 {1/2} for L = 0

(X ! S). For an electron occupying the 5p orbital, J 2 {1/2, 3/2} where L = 1 (X ! P ).

As this degeneracy is lifted, the n = 5 level transitions into the fine energy levels 52S1/2

or 52P1/2 and 52P3/2 (depending on the electron’s occupation of the s or the p-orbital).

|L� S|  J  L+ S (1.10)

The nucleus of an atom has a magnetic moment which creates a B-field. The interac-

tion of the electron’s angular momentum with the magnetic field of the nucleus leads to
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the hyperfine manifold. The total angular momentum F is given by (1.11) where I is the

nuclear spin.

F = J + I (1.11)

|J � I|  F  J + I (1.12)

For this regime, F is the “good” quantum number (or the conserved quantity). The 87Rb

isotope has a total of 37 protons, of which there is only unpaired proton, which occupies

the 2p3/2 nuclear orbital [16]. Hence, the isotope has a total nuclear spin I = 3/2 [2].

Then, Table 1 follows from (1.11) and (1.12).

J I F

1/2 (L ! 0) 3/2 1, 2

1/2 (L ! 1) 3/2 1, 2

3/2 (L ! 1) 3/2 00, 10, 20, 30

Table 1. The hyperfine manifold for L = 0 and L = 1 states; it is shown
(not to scale) in Figure 1.3

The hyperfine splitting is given by 1.13 where Ahfs is the magnetic dipole constant and

Bhfs is the electric quadrupole constant (not applicable for states with J = 1/2). For the

ground state (52S1/2) of 87Rb, Ahfs has been experimentally determined through atomic-

fountain measurements to be 3.417 GHz [17]. For the ground state, K ! (�1/2±2). This

corresponds to an energy gap of 6.835 GHz between the F = 1 and the F = 2 hyperfine

manifold.
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Figure 1.3. The D2 Rubidium Fine and Hyperfine structure. We encour-
age the reader to consult the original source of this figure [2]. The Lande-g
factors for the hyperfine structure are included along with the Zeeman shift
per unit of Gauss. Note that these numbers only represent the Zeeman
shifts in the weak magnetic field linear regime.
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�Ehfs =
1

2
AhfsK +Bhfs

✓ 3
22K(K + 1)� 2I(I + 1)J(J + 1)

2I(2I � 1)2J(2J � 1)

◆
(1.13)

K = F (F + 1)� I(I + 1)� J(J + 1) (1.14)

�E52S1/2,hfs =
1

2
Ahfs (F (F + 1)� I(I + 1)� J(J + 1)) ! 6.835GHz (1.15)

The presence of an external magnetic field produces another perturbation, the Zeeman

shift. The energy splitting is introduced by the alignment of the atomic magnetic moment

along the direction of the external magnetic field. As a result, each hyperfine degenerate

manifold gets split up into 2F + 1 Zeeman sub-levels (represented by |F,mF |). mF is the

new quantum number which represents the projection of the magnetic moment along Bz.

In the Zeeman splitting regime, F = 1 level has a degeneracy of 3, which gets lifted

in the presence of an external magnetic field. The excitation frequencies for each Zeeman

sublevel are slightly di↵erent. In a weak field scenario, the di↵erence is given by (1.16),

where µB is the Bohr Magneton, gF is the Lande g-factor, and Bz is the z-component of

the magnetic field. Knowing gF for the ground states (gF = ±1/2) and excited states

(gF = 2/3) enables us to determine the change in excitation frequency �! = �E/~.

�E = µBgFmFBz (1.16)

In a strong external magnetic field, the Zeeman splittings are no longer linear. The

Paschen-Back e↵ect comes into play, which is a result of the external field disrupting

the coupling between the orbital (L) and spin (S) angular momenta. Then, the energy
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Figure 1.4. The splitting for the hyperfine manifold of the ground state
52S1/2 of 87Rb in presence of an external magnetic field (in units of Gauss).
In the weak Zeeman field, the splitting is represented by the F values. In
the strong Zeeman field scenario, the splitting is represented by the values
for mJ .

splitting is given by the Breit-Rabi formula (1.17). A plot of the Breit-Rabi equation is

presented in Figure 1.4.

EBR,(F=3/2±1/2) =
�Ehfs

2(2I1)
� µBgImFB ± �Ehfs

2

r
1 +

4

2I + 1
mF xB + (xB)2 (1.17)

where

x =
µB(gJ � gI)

�Ehfs

The frequency shift is di↵erent for di↵erent Zeeman sub-levels; this plays an important

role during laser-cooling, with certain atoms becoming more likely to absorb a certain
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frequency than the other. In the next section, we will review the cooling techniques

(developed over the course of 70-80 years) that have gone into the experimental realization

of the Bose-Einstein condensate

1.4. The Atomic Refrigerator: Laser Cooling

Experimentalists have spent the better half of a century developing cooling techniques

to realize the Bose-Einstein condensate. This section will be a review of the theory of

laser cooling, including the Zeeman slower, Optical Molasses and the Magneto-Optical

Trap (MOT). Finally we will review the technique of “evaporative cooling”, which enables

cooling below the Doppler limit. For a more detailed description of the entire cooling

process, we refer the curious reader to [18, 19].

Speaking in the broadest terms possible, the atoms are heated in an oven and then

bombarded with a monochromatic laser in the Zeeman Slower. These events take place in

an ultrahigh vacuum chamber, ensuring that our condensate agent is not a↵ected by stray

atoms in the apparatus. Every absorbed photon also brings about a momentum kick in the

direction opposite to atom propagation. This is the force of light and it drastically reduces

the atom temperatures. Next, the atomic beam is subjected to counter-propagating beams

(one in each of the 3 dimensions). In this ’optical molasses’ phase, atoms are further cooled

down to the Doppler temperature. A position-dependent magnetic force strives to hold

the atoms from the optical molasses at the center of trap. This forms the magneto part

of the MOT.
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After cooling in the MOT, atoms are held in a harmonic magnetic trap, ready for

evaporative cooling. Radio-frequency radiation resonant at a radius from the trap center

enables hot atoms (with strong oscillations) to transition out of the trap, and hence leave

the remaining atoms a little colder than before. This process of evaporative cooling,

applied for a range of radio-frequencies, single-handedly cools the trapped atoms. As the

thermal cloud ejects its hottest atoms, the temperature decreases into the nK regime and

the phase-space density increases to the point where macroscopic quantum e↵ects become

observable. The Bose-Einstein condensate is formed, which behaves like a super-atom and

can be experimented on and then released from the trap for imaging. Shadow imaging is

used to determine its position and density, while time-of-flight measurements probe into

its momentum-data. Imaging techniques will be briefly reviewed at the end of this section.

1.4.1. Zeeman Slower

The first stage of the cooling process requires an almost-steady flow of gaseous atoms. A

chunk of metal ( 87Rb in our Bates Lab) is heated in an e↵usive oven, maintained in an

ultrahigh vacuum chamber, and the gaseous atoms (at about 370K) exit through a gate

into the Zeeman Slower. In our Bates ultracold laboratory, we utilize a tapered single-

layer solenoid with a zero crossing. For a thorough understanding of the construction of

the Zeeman Slower, we refer the reader to the thesis “Progress Towards Bose-Einstein

Condensation” by previous student Marc Tollin ’12.

As the atoms propagate through the solenoid, they are met with the Zeeman Slower

beam, which propagates opposite to the atomic beam. The laser appears blue-shifted by

an amount that depends on the reference frames of di↵erent atoms. Let us track a group
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of atoms which enter the Zeeman Slower at, say 350 ms�1 and are hit with a detuned laser

beam. A magnetic field inside the solenoid then shifts the resonant frequency of the high-

speed atoms bringing them into resonance with the laser beam. The angular detuning

� from resonance in an atom’s reference frame is dependent on both the Zeeman shift

(due to Bsolenoid) and the Doppler shift (due to v 6= 0) (1.18). By substituting (1.16) here

for a specific energy level, we can find the strength of the magnetic field B in the axial

direction of the solenoid. As the fast atoms absorb the now-resonant photons, they receive

a momentum-kick slowing them down. As the atoms slow down, the e↵ective detuning

� (1.18) also changes. The magnetic field inside the solenoid is varied to make up for

the change in detuning. In this way we can, in a sense, lock on to the fastest atoms and

shrink the Maxwell-Boltzmann distribution. An alternate, but less popular method is to

sweep our Zeeman laser frequency to always stay in resonance with the decelerating atoms

instead of varying the magnetic field, a method known as “chirp” cooling.

� = �0 +
2⇡v

�
+
�E

~ (1.18)

The fast atoms absorb the now-resonant photons, which carry both energy and mo-

mentum (1.19). When absorbed, a photon excites an atom into an excited state, and

also provides a momentum-kick in the opposite direction. Some time later, the atom will

spontaneously emit a photon in a random direction. When considering large numbers,

the spontaneous photon emission gets averaged out to zero, and in general, the overall
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momentum change is in the direction of the laser beam.

p =
~!
c

(1.19)

In the Zeeman slower, atoms are decelerated from about 330 ms�1 to 30 ms�1 in about

0.7 meters.

1.4.2. The Magneto-Optical Trap

In the next phase, we load the 87Rb vapor into a Magneto-Optical Trap (MOT) (Figure

1.4.2), which, as the name suggests, makes use of optical kicks and magnetic forces to slow

down and trap the alkali atoms. Six counter-propagating laser beams (two in each of the

3 dimensions) form an “optical molasses”. The lasers are slightly red-tuned away from

resonance of cold atoms, which brings it into resonance with the hotter atoms. The optical

molasses simply slows down the faster atoms (some very fast/hot atoms may still be able to

escape). The quadrupole magnetic trap, which employs the anti-Helmholtz configuration

creates a potential minimum at the center of the MOT. As a result, cold atoms remain

stranded in the middle while hotter atoms undergo ultra-damped oscillations about the

potential minimum.

The lasers exert a scattering force on the hotter atoms on resonance and slow them

down, so they can be trapped by the quadrupole trap. In this MOT, atoms are cooled

all the way down to their Doppler limit ( T ! 14z0µK). The fact that even such low

temperatures are insu�cient for Bose-Einstein condensation shows the daunting task that
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Figure 1.5. The Magneto-Optical Trap. The figure shows six counter-
propagating beams in the x, y and z directions along with two magnetic
coils in an anti-helmholtz configuration (the current in both coils is anti-
parallel). Adapted from [3].

we once faced as experimentalists. For sub-doppler cooling into the nK-regime, still hotter

atoms need to be traded out of the thermal cloud in exchange for a temperature drop.

1.4.3. Evaporative Cooling

This is the final stage of the BEC creation process; it is necessary to reduce the temperature

below the critical temperature Tc. Once the MOT is turned o↵, the atoms from the optical
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molasses are loaded into a harmonic magnetic trap. The hotter the atoms are, the higher

they can climb up the potential. The trap depth is reduced significantly until the potential

depth is about 100 nK, so that the most energetic atoms now have enough energy to escape

the trap. During a rethermalization phase, the atoms also undergo collisions and some

more hotter atoms escape the trap. This “evaporative cooling” technique allows us to get

the temperature below the critical value, and achieve Bose-Einstein condensation.

In our Radio-Frequency (RF)-induced magnetic trap, we are resonant with atoms away

from the center of the trap (at a radius r from the trap) to excite the hotter atoms into an

untrappable state and out of the thermal cloud. The magnetic field gradient means that

we can express the trap height as a function of the RF. A sweep of the RF laser allows

us to remove the hotter atoms from the cloud. At this point in time, the thermal cloud

is cold enough, that the atoms overlap each other and form a condensate, with a single

macroscopic wavefunction (Figure 1.2).

1.4.4. Imaging

Once the condensate is formed, information about its atomic distribution can be obtained

by releasing it, and allowing it to undergo ballistic expansion. Probing the condensate

with a resonant laser beam, this “time of flight” technique, allows us to obtain absorption

images of the BEC. A typical condensate image is shown in Figure 1.6. It is color-coded

to represent the atomic density, increasing from blue to green to yellow to red. The

presence of a magnetic field gradient means that di↵erent Zeeman sublevels will feel forces

in di↵erent directions.
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Figure 1.6. Absorption Image of a 87Rb condensate in the |F = 1,mF = 1i
Zeeman state.

The force on a condensate particle is given by (1.20). In our lab, we utilize the

ground states of 87Rb. The |F = 1,mF = 1i and |F = 1,mF = �1i Zeeman sublevels

have opposite magnetic momenta µ, while the |F = 1,mF = 0i sublevel does not have

an associated magnetic moment. From (1.20), it follows that the two former sublevels

(mF = ±1) will feel a force in opposite directions, while the middle sublevel (mF = 0) will

feel no force.

~F = �rU = r(~µ. ~B) ! µrB (1.20)

For a spinor condensate, a condensate with multiple spin-components (atoms in all

three F = 1 Zeeman states), a typical image is presented in Figure 1.7. This is the famous

Stern-Zerlach technique used to obtain information about atomic angular momenta [20].

Our experimental data (Chapter 4) have been extracted using this technique.
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Figure 1.7. Absorption Image of a 87Rb condensate occupying the
|F = 1,mF = 0,±1i Zeeman state. The condensate is separated using the
Stern-Gerlach technique in the presence of a magnetic field gradient.

1.5. A Roadmap

Our field is now at a historic turning point, in which we are moving from

studying physics in order to learn about atom cooling to studying cold

atoms in order to learn about physics. J.R. Anglin and W. Ketterle [21]

Investigating the amplified quantum dynamics in cold atoms has brought us a giant

step closer to understanding atom-atom interactions at the scale of a single atom, and

how they a↵ect the “big picture”. Cold atoms are perfect testing grounds to expand our

knowledge of coupled multi-level systems, both in the hyperfine and the Zeeman manifold.

This thesis is organized as follows:

• Our first inquiry will focus on an interactive Bose gas. An introduction of the

Gross-Pitaeskii equation is followed by a detour into a theoretical review of the

superconductive Josephson junction. We then investigate the novel population
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and phase dynamics of a condensate in a symmetric double-well trap, and discuss

the similarities to its superconductive counter-part (Chapter 2)

• In the world of Spinor condensates, we discuss the theory of a two-level BEC

system, in the “interaction picture”, when coupled due to an electromagnetic

driving field. The Rabi oscillations and the e↵ects of detuning from resonance on

the state probabilities are discussed (Chapter 3).

• In Chapter 4, we extend the two-level theory to a three-level system in the inter-

action picture, and predict Rabi oscillations associated with the Rabi frequency

⌦. The ground state of 87Rb splits into 3 di↵erent Zeeman levels |1, 1i,|1, 0i and

|1,�1i under the influence of an external magnetic field. We study this radio-

frequency coupled three-level system in our ultracold atomic lab, and perform

numerical analysis to fit the observed features to our Rabi theory. We observe

the e↵ects of non-zero detuning on the state probabilites in Fourier space, and

report an observed shift of the resonance !0 at strong driving field ⌦. The thesis

concludes by investigating the coherence time of our condensate.

Throughout the thesis, footnotes and citations are used to guide the curious reader

towards useful resources. We encourage the utilization of these for certain derivations and

lengthy calculations, in order to make this document more comprehensible for the reader.

In Figures 4.2 � �4.7, the labels for P0 and P2 should be replaced to be consistent with

the experimental conditions. In Figures 4.2��4.7, a labeling statement like ⌦! 2⇡(300)

KHz should be replaced by ⌦
2⇡ ! 300 KHz. A further correction to the units should be
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included in Figures 4.3 and 4.7; here a labeling statement like !0 ! 3.8x106 rad s�1 should

be changed to !0
2⇡ ! 3.8 MHz.



Chapter 2

Josephson Dynamics in an Interactive Bose Gas

The atomic dynamics in a condensate are responsible for its novel nature. Since the

condensate is really just an overlap of thousands, or even millions of wavefunctions, we can

model it using quantum mechanics. In this chapter, we will discuss the internal dynamics

of a single condensate, when held in a harmonic trap. We will draw an exciting relation to

superconductivity, and discuss the behavior of a superconductor in the Josephson Junction.

Finally, we will talk about two condensates trapped in a double-well. The remarkable

unified behavior, including the self-trapping phenomena will be introduced in the last

section.

2.1. Gross-Pitaevski Equation: An Interactive Picture

The quantum-mechanical BEC is modeled as an N -particle system. We assign the wave-

function  (~r) to the system, and individual wavefunctions  (~ri) to the individual atoms

at spatial positions ~ri. Then, the multi-particle wavefunction  (~r), can be expressed using

the Hartee-Fock approximation as the product of all the individual  (~ri) as follows.

23
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 (~r) =  (~r1)⌦  (~r2)⌦ ...⌦  (~ri) (2.1)

In order to model our system we need to include its potential, kinetic and internal

dynamics. The first two are taken care of by the Schrödinger equation for a particle (2.2),

and we can modify it to to include the e↵ects due to interaction. We make an addition

of a non-linear interaction term, g| |2 on the right hand side. This is the Gross-Pitaeskii

equation (2.3), first presented by Eugene P. Gross and Lev P. Pitaeskii in 1961 to describe

the ground state of a quantum system of identical bosons.

i~@ 
@t

=

✓
� ~2
2m

r2 + Vexternal

◆
 , (2.2)

i~@ 
@t

=

✓
� ~2
2m

r2 + Vexternal + g| |2
◆
 (2.3)

The applications of this equation are such that it can be used to study superfluid

and superconductive systems [8]. For our Bose gas, we assume that each particle has an

individual wavefunction and feels an external wavefunction, which remains the same for

all particles in the system. This is the mean-field approximation which simply states that

each particle feels the presence of the same environment as every other particle in the

system. This method works very well in dilute quantum systems where the interactions

are generally weak. This enables us to rewrite (2.1) as (2.4) and normalize the system

wavefunction h | i = 1.

 (~r) =  (~r)⌦  (~r)⌦ ...⌦  (~r) (2.4)
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The e↵ective Hamiltonian can be written as (2.5) where U0 = 4⇡~2a/m is the constant

e↵ective interaction at low energies [22], and a is the s-wave scattering length.

H =
NX

i=1


� ~2
2m

@2

@~r2i
+ V (ri)

�
+ U0

X

i<j

�(~ri � ~rj) (2.5)

Let us now attempt to minimize the free energy F = E�µN where E( ) =
h | Ĥ | i

h | i .

This gets reduced to minimizing F ( ) = h |H | i � µ h | i. Calculating this, our

expression for F becomes (2.6) based o↵ [23].

F = �N
~2
2m

Z
 ⇤(~r)r2 (~r)d~r +N

Z
 ⇤(~r)Vext (~r)d~r

+
N(N � 1)

2
U0

Z
d~r

Z
 ⇤(~r) (~r0)�(~r � ~r0) (~r) (~r0)d~r0

+ µ

✓Z
 ⇤(~r) (~r)d~r

◆N

(2.6)

We employ the variational technique [23] to minimize F and set @F
@ ⇤ = 0. Solving for each

of the terms before recombining them, we obtain for the variation:

�F

� ⇤ = 0 = N

Z 
� ~2
2m

r2 (~r) + Vext(~r) (~r)

+(N � 1)U0

✓Z
| (~r)|2�(|~r � ~r0|)d~r0

◆
 (~r)� µ (~r)

�
� ⇤(~r)d~r

We minimize the free energy F by setting the expression inside the square brackets equal to

zero. Substituting in for U0 and approximatingN�1 ' N , we obtain the time-independent

Gross-Pitaevskii equation (2.7). The scattering length a can be either positive or negative,

which leads to either an attractive or repulsive condensate; the s-wave scattering length
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sets the tone for the condensate’s future. It is positive for 87Rb (109a0) and negative for 7Li

(�23.3a0) [24]. Note that (2.7) is the same as the time-independent Schrödinger equation

except for the addition of an external potential, a non-linear U0| (~r)|2. On the right hand

side, the eigenvalue for the Hamiltonian is the chemical potential (which may or may not

be equal to the energy E per particle, depending on uniformity of the condensate).

� ~2
2m

r2 (~r) + Vext(~r) (~r) +N
4⇡~2
m

a| (~r)|2 (~r) = µ (~r) (2.7)

In the case of a uniform Bose gas, the GPE reduces to:

µ = U0| (~r)|2 = U0n (2.8)

The GPE predicts remarkable features in multi-condensate systems. The resulting

mathematics is similar to that of a coupled system with a barrier; we will come back to

discuss the GPE for BEC trapped in a double harmonic potential well in the last section

of this chapter.

2.2. The Superconductive Josephson Junction

The Bose Einstein condensate is not the only system where the overlap of atomic  leads

to an amplification of quantum phenomena. Exciting e↵ects have been observed in cer-

tain kinds of fluids (superfluidity) and metals (superconductivity) at low temperatures.

Superconductivity is the phenomena of zero electrical resistivity displayed by certain ma-

terials at temperatures close to absolute zero (for Type-I superconductors) [25]. When a
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material transitions to its superconductive phase, it also expels environmental magnetic

flux, exhibiting the Meissner e↵ect [26]. For a complete understanding of the BCS theory

of superconductivity, we refer the reader to [25, 26, 27].

In superconductive physics, a pair of electrons can make a bound state as a result of

phonon interactions in a lattice. These ‘Cooper’ pairs are duo-fermion systems, which

means that they are bosons (integral spin). As the temperature drops below the critical

temperature, the ‘Cooper’ pairs drop to their ground state as a result of Bose-Einstein

condensation. We can employ quantum mechanics to ascribe a wavefunction  and a

relative phase � to a superconductor. We define  in terms of the Cooper pair density ⇢

and the relative phase of the pairs �(2.9).

 =
p
⇢ exp [i�] (2.9)

When two superconductors are placed close together, separated only by an insulating

barrier, there are ”super shorts” observed. In 1962, Brian Josephson (at the age of 22)

attempted to solve the problem, and associated the short-circuit not to a breach in the

barrier but to the tunneling of Cooper pairs [28] through the barrier. This amplification

of quantum phenomena, as hypothesized by Josephson, was met with fierce opposition

from Bardeen and Cooper [29].

Consider two superconductors, sandwiched together with a barrier. Then, we can

model their behavior with a modified Schrödinger equation (2.10). The coe↵ecient ↵ is

an interaction parameter due to the insulating barrier and represents the strength of the
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coupling between the two superconductive systems.

i~ @
@t
 A,B = HA,B A,B + ↵ B,A (2.10)

We can also define the wavefunctions  A,B as in (2.11), where � is the relative phase

between the two electrons in the Cooper pairs.

 A,B =
p
⇢A,B exp [i�A,B] (2.11)

We can algebraically solve (2.10) by employing (2.11) and equating the real and imagi-

nary parts. We obtain the relations (2.12) [30]. The positive sign goes with superconductor

A, and the negative sign is used when considering superconductor B.

@

@t
⇢⇤A,B = ±2

~↵
p

(⇢A⇢B)⇤ sin' (2.12)

Upon inspection of relation (2.12), we can make deductions about the behavior of

the coupled superconductors. Even though there is a tendency for the the pair density

⇢ to change, in reality this would lead to a charge imbalance and create an electric field.

The absence of an electric field in the barrier suggests that the magnitude of the rate of

change of pair densities must be the same for both superconductors. The current density

J through the barrier depends on the charge and the rate of change of ⇢ (2.13)

J = e⇤
@⇢

@t
=

4e

~ ↵
p

(⇢A⇢B) sin' (2.13)
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The maximum current density can be defined as Jc, which leads to the first Josephson

equation (2.14)

J = e⇤
@⇢

@t
= Jc sin' (2.14)

The phase di↵erence ' between the superconductors changes with time, and so there

is an oscillating current density with a maximum value of Jc. This is a result of Cooper

pair tunneling through the insulating barrier. We observe similar quantum features in a

Bose gas trapped in multiple potential wells.

2.3. Josephson Dynamics in a Bose gas

The ability to assign a single wavefunction to macroscopic systems means that di↵erent

systems of particles in significantly di↵erent environments could end up acquiring a similar

‘one-body’ wavefunction. The coherent behavior of bosons in a Bose-Einstein Condensate

allows us to ascribe to the condensate a single wavefunction. This  should be su�cient,

along with an equation of dynamics (The Gross-Pitaevskii equation) to describe all of its

exhibited properties, including the quantum tunneling phenomena.

In this section, we will look at a non-ideal weakly-linked BEC in a symmetric double-

well trap (Figure 2.3) for E0
1 �E0

2 ! 0. We will present theoretically predicted dynamics

of atomic tunneling for a BEC at zero temperature.

For a condensate trapped in this asymmetric double-well (we will enforce the limit of a

symmetric trap later in the derivation), we define the zero point energies of the two wells

as E0
1 and E0

2 , and the number of particles in each of the wells are N1 and N2, such that

N = N1 +N2, where N is the total number of particles (which remains constant, i.e. no
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Figure 2.1. An example of a double well trap for a Bose-Einstein conden-
sate. For E0

1 = E0
2 , this is a symmetric trap. This figure is adapted from

[4].

loss of particles) in the system. The interaction term  depends on the strength of the

barrier between the two wells. To place the particles in each of the wells, some energy

needs to be put into the system; this is represented by the energies U1 and U2, with U1N1

and U2N2 the bulk on-site energies to place the entire population in the respective wells.

The two condensates form a two-body coupled system where the dynamics are governed

by (2.15) and (2.16) [4].

i~@ 1

@t
=

�
E0

1 + U1N1

�
 1 �  2 (2.15)

i~@ 2

@t
=

�
E0

2 + U2N2

�
 2 �  1 (2.16)

The one-body wavefunctions  1,2 (2.17) are given in terms of the number of particles N1,2

and the phase �1,2

 1,2 =
p
N1,2e

i�1,2 (2.17)
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We define the following two useful quantities:

z =
N1 �N2

N
(2.18)

' = �1 � �2 (2.19)

A solution for the coupled Schrödinger equations ((2.15) and (2.16)) with (2.17) yields

a condensed form for the rate of change of the population imbalance (ż) in 2.18 and the

phase ('̇) in 2.21, in terms of �E (2.22) and ⇤ (2.23). Here, for mathematical simplicity,

we have taken ~ = 1 and remapped 2t ! t.

ż = �
p
1� z2 sin' (2.20)

'̇ = ⇤z +
zp

1� z2
cos'+�E (2.21)

�E =
E0

1 � E0
2

2
+N

(U1 � U2)

4
(2.22)

⇤ = N
(U1 + U2)

4
(2.23)

With the above relations in our arsenal, we attain some remarkable conclusions for the

case of an interacting nonlinear Bose gas. We carry out a numerical simulation for (2.20)

and (2.21). We define the initial conditions (t ! 0) to be:

z(0) = 0.6

'(0) = 0
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Consider the case when �E ! 0. In such a case (a symmetric double-well trap),

E0
1 = E0

2 , and ⇤, which is a measure of the interaction strength of the two condensates

through the barrier, is the useful parameter that governs the population imbalance z.

In Figure 2.2, we observe pure sinusoidal oscillations for strong interactions (⇤ ! 1.0).

As the interaction strength is decreased (⇤ ! 8.0), the oscillations become distorted.

With increasing ⇤, the oscillations around z = 0 gain an anharmonic character. As

⇤ ! ⇤c = 10.0, the oscillations approach a critical transition (Figure 2.3). Finally, as

⇤ ! 12.0, the population in each individual trap starts to oscillate at a non-zero time

averaged value hz(t)i 6= 0 . This is the so-called self-trapping e↵ect. This quantum non-

linear tunneling e↵ect is a consequence of the inter-atomic interaction in each of the wells.

In the self-trapping regime, this population imbalance, which always favors one of

the two wells, perfectly showcases the distinction between the superconductive Josephson

junction and the bosonic Josephson junction. In the former, charge imbalance is sup-

pressed either by the inability of the junction to sustain an electric field, or by an external

circuit which maintains a balanced charge across the junction.
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Figure 2.2. The fractional population imbalance z(t) is plotted along the
remapped time 2t. We use the defined initial conditions and consider
⇤ 2 {1, 8}.
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Figure 2.3. The fractional population imbalance z(t) is plotted along the
remapped time 2t. We use the defined initial conditions and consider
⇤ 2 {9.99, 12}.



Chapter 3

Quantum Dynamics in Two-Level Systems

Bose-Einstein condensates present to us a useful interactive system of atoms. In the

previous chapter, we considered the Gross-Pitaeskii equation and studied how it laid out

the theme for coupled condensates. In this chapter, we will consider a single system

composed of multiple components (e.g. di↵erent spin states in a hyperfine manifold).

We will discuss the coherent dynamics of a two-level system and the general formalism

as applied to the goals of this thesis. We will start by considering a two-level system

interacting with an electromagnetic field in the semi-classical formalism (Section 3.1). We

will introduce the notion of coherence, and the role it plays in nonequilibrium dynamics

of the Bose-Einstein condensate. To gain better insight into the behavior of di↵erent spin

components in the condensate, we will transform our system to a rotating frame (Section

3.2) and adopt the rotating wave approximation. Section 3.3 will discuss the emergence

of Rabi oscillations in our two-level system. This will enable us to better understand

population dynamics between spin states.

35
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Figure 3.1. A representation of a two-level system. |0i and |1i repre-
sent the two eigenstates for the system, with ~!0 the unperturbed energy
di↵erence between the two states.

3.1. The Two Level Atom

Two-level systems capture the quantum mechanics behind the ideas of magnetic trapping,

and optical manipulation and detection. In this section, we will discuss the semi-classical

dynamics (by considering a large number of photons) of a quantum two-level system in

the presence of near-resonant electromagnetic radiation. This could be the spin states of

an electron in the presence of microwave or radio-frequency radiation. Let us consider two

energy levels |0i and |1i (Figure 3.1) where we will treat |0i as the ground state with some

energy E0, and |1i as the excited state with energy E1. The energy E2 � E1 is given by

~!0, and is the energy di↵erence between the two bare states.

For such a two-level system, the resonant electromagnetic radiation has the angular

frequency !0. |0i and |1i are the eigenstates of the bare Hamiltonian Ĥ0 without any

driving field or perturbations. The eigenvalue of an eigenstate is the energy of that bare
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state:

Ĥ0 |0i = E0 |0i = 0 |0i

Ĥ0 |1i = E1 |1i = ~!0 |1i

Now, let us consider the two-level system in the presence of an electromagnetic radiation

field with angular frequency ! = !0 + � where � is the detuning of the field from the

resonance of the bare states (Figure 3.2). For a system in the eigenstate |ii at time t = 0

with no phase, we can represent the phase evolution of the system with the factor of

exp
⇥�iEi

~ t
⇤
. In other words | (0)i = |ii ) | (t)i = |ii exp

⇥�iEi

~ t
⇤
. Then, the rate of

change of | (t)i is given as:

d

dt
| (t)i = d

dt

✓
|ii exp


�iEi

~ t

�◆

= � i

~ exp


�iEi

~ t

�
Ei |ii

= � i

~ exp


�iEi

~ t

�
Ĥ0 |ii

d

dt
| (t)i = � i

~Ĥ0 | (t)i (3.1)

We have obtained the general time-dependent Schrödinger equation [31], which means

that  (t), as we have defined it, is a valid quantum mechanical wavefunction. For such

a system, when the entire population is in a single eigenstate, the state probability Pi =
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Figure 3.2. A representation of a two-level system in an electromagnetic
field with the angular frequency ! = !0 +�.

| hi | (t)i |2 = 1. The major hallmark of quantum mechanics is the postulate that a single

particle can be a in a superposition of states at some t. We assign state coe�cients c0

and c1 to the bare eigenstates |0i and |1i. This allows us to represent our system with

a wavefunction | i for our system (as given in Figure 3.2). The state coe�cients obey

the relation |c0|2 + |c1|2 = 1, and just as before, the probability of occupying a state is

| hi | i |2 = |ci|2 where i 2 {1, 2} for our two-level system.

| i = c0 |0i+ c1 |1i (3.2)

The bare Hamiltonian Ĥ0 in matrix formulation in the {|0i , |1i} basis is given by

(3.3). We can introduce a driving field, represented by a perturbation Hamiltonian V̂ to

couple the two eigenstates and drive transitions between them. The driving field induces

a dipole moment between the two states, which leads to an oscillatory perturbation upon

its interaction with the electromagnetic field. For this reason, ~⌦ = µE0 where µ is the
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induced dipole in the particles and E0 is the amplitude of the electromagnetic field. Here

we treat the Rabi frequency ⌦ as a completely real driving frequency, so that ⌦⇤ = ⌦.

We also assume that the phase delay associated with the driving field �V ! 0 so that

cos (!t+ �V ) ! cos!t

Ĥ0 = ~

0

BB@
0 0

0 !0

1

CCA (3.3)

V̂ = ~

0

BB@
0 ⌦ cos!t

⌦ cos!t 0

1

CCA (3.4)

Then, the e↵ective Hamiltonian of the system ˆHeff is obtained by adding Ĥ0 and V̂ (3.5).

Note that coupling the two states means that |0i and |1i are no longer the stationary

states of the system.

Ĥeff = ~

0

BB@
0 ⌦ cos!t

⌦ cos!t !0

1

CCA (3.5)

3.2. The Interaction Picture

In order to better grasp the consequences of (3.5), we note that, as it stands Ĥeff is

time dependent. To remove the time-dependence, the Hamiltonian can be viewed in the

interaction picture (also known as the rotating frame). Here, we present a concise version

of the transformation technique, which is a purely mathematical procedure.

Let us define the unitary operator Û = e[�iĤ1t/~] and the Hermitian operator Ĥ1 (3.6).

Then, we transform our system | i !
��� ̃

E
.
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Ĥ1 = ~

0

BB@
0 0

0 !

1

CCA (3.6)

f| i = Û⇤ | i (3.7)

Then (3.8) is a direct consequence of (3.6) (from the Appendix). The Hamiltonian ĤRF

applies in the interaction picture or the rotating frame (RF)1

ĤRF = Û⇤
⇣
Ĥeff � Ĥ1

⌘
Û (3.8)

We should restate the e↵ective Hamiltonian Ĥeff in an exponential form before we trans-

form to the rotating frame (3.9).

Ĥeff =
~
2

0

BB@
0 ⌦ (ei!t + e�i!t)

⌦ (ei!t + e�i!t) 2!0

1

CCA (3.9)

Employing (3.9) and (3.8), we obtain (3.10) for the Hamiltonian matrix in the interaction

picture.

ĤRF = Û⇤
⇣
Ĥeff � Ĥ1

⌘
Û

= e[iĤ1t/~]~
2

2

664

0

BB@
0 ⌦ (ei!t + e�i!t)

⌦ (ei!t + e�i!t) 2!0

1

CCA�

0

BB@
0 0

0 2!

1

CCA

3

775 e[�iĤ1t/~]

1For purposes of this thesis, the abbreviation RF is used to refer to the ’rotating frame’ and should not
be confused with radio-frequency, which is also sometimes denoted in several articles as RF.
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ĤRF =
~
2

0

BB@
1 0

0 ei!t

1

CCA

0

BB@
0 ⌦ (ei!t + e�i!t)

⌦ (ei!t + e�i!t) 2 (!0 � !)

1

CCA

0

BB@
1 0

0 e�i!t

1

CCA

=
~
2

0

BB@
0 ⌦ (1 + e�i2!t)

⌦ (1 + ei2!t) �2�

1

CCA (3.10)

At this point, we invoke the rotating wave approximation which allows us to drop the

exponential terms since they oscillate at twice the driving frequency 2!. Finally, we obtain

a simplified time independent form for the Hamiltonian Ĥ 0 given in (3.11). We can use

this Hamiltonian and the Schrodinger equation (3.1) to find the evolution of the state

amplitudes for the new states.

Ĥ 0 =
~
2

0

BB@
0 ⌦

⌦ �2�

1

CCA (3.11)

3.3. Rabi Oscillations in a Two-Level Atom

In (3.11) we have a Hamiltonian describing the behavior of a quantum mechanical two-

level system whose original states |0i and |1i are no longer stationary states. The new

states in the interaction picture can be thought of as states on the Bloch sphere. Usually

the states gain phase as they evolve with time, now we move to the frame where they

are stationary. Note that from (3.7) it follows that the state probabilities continue to be
���
D
Û⇤i

��� 
E���

2

= |ci|2 for i 2 {1, 2} states.
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To probe into the consequences of Ĥ 0 on the state amplitudes, the Schrödinger equation

(3.1) is used to find the rate of change of state amplitudes of
��� e (t)

E
.

i~ d

dt

��� e (t)
E
= Ĥ 0

��� e (t)
E

Continuing our use of the state basis, in matrix form this is (3.12):

i~

0

BB@
ċ0(t)

ċ1(t)

1

CCA =
~
2

0

BB@
0 ⌦

⌦ �2�

1

CCA

0

BB@
c0(t)

c1(t)

1

CCA (3.12)

An alternate method is to restate this as a system of coupled di↵erential equations. We

start with the entire population in the RF state corresponding to |0i, i.e. c0(t = 0) = 1.

2iċ0(t) = ⌦c1(t)

2iċ1(t) = ⌦c0(t)� 2�c1(t)

c0(0) = 1

c1(0) = 0 (3.13)

The state probabilities c0(t) and c1(t) evolve as given in (3.14). Here, we have replaced

the angular frequency term
p
⌦2 +�2 with ⌦R. ⌦R is known as the total Rabi frequency

for this two-level system. As � ! 0,⌦R ! ⌦ (the Rabi frequency), which is the case

where the electromagnetic field is in resonance with the energy separation between the

two levels (consider figure 3.2 when � = 0)
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0

BB@
c0(t)

c1(t)

1

CCA = e

i�t

2

0

BB@
cos

✓
⌦Rt

2

◆
� i�

⌦R

sin

✓
⌦Rt

2

◆

� i⌦

⌦R

sin

✓
⌦Rt

2

◆

1

CCA (3.14)

Any experiment with such a two-level system (e.g. electron with spin states interacting

with a microwave or radio-frequency field) will produce observations of the quantities |ci|2

(3.15) and (3.16), where |ii is a state of the system under consideration. ⌦R (total Rabi

frequency) is the frequency of oscillation of the state probabilities.

|c0(t)|2 =
�2

⌦2
R

+
⌦2

⌦2
R

cos2
✓
⌦Rt

2

◆
(3.15)

|c1(t)|2 =
⌦2

⌦2
R

sin2

✓
⌦Rt

2

◆
(3.16)

In what follows we will consider the case of an on-resonance electromagnetic field (�! 0)

and a slightly detuned electromagnetic field (� 6= 0).

3.3.1. On-Resonance Field

The first case we will consider is that when the electromagnetic field is on resonance with

the energy level separation between the |0i and |1i. As � ! 0,! = (!0 + �) ! !0. In

this case, the probability dynamics of the states, (3.15) and (3.16), can be simplified to

yield equations (3.17) and (3.18).

|c0(t)|2
�=0
==) cos2

✓
⌦t

2

◆
(3.17)

|c1(t)|2
�=0
==) sin2

✓
⌦t

2

◆
(3.18)
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Figure 3.3. Rabi Oscillations in a two-level system at ⌦R

2⇡ ! ⌦R

2⇡ = 300 KHz.

We present Rabi oscillations of the state probabilities P0 = |c0(t)|2 and P1 = |c1(t)|2

in the quantum mechanical two-level system in Figure 3.3 . In this case, we note that as

t ! 1.7µs, P0 ! 0 and P1 ! 1. Such a pulse that entirely transforms the state of the

system is known as the ⇡-pulse. Similarly, a pulse time of say, 3.4µs represents the time

it takes to for the system to return to its starting point. We refer to such a pulse as a

2⇡-pulse, and the time of a 2⇡-pulse is the period of the Rabi oscillations. The oscillation

frequency is ⌦, and therefore the 2⇡-pulse time is dictated by the total Rabi frequency.

3.3.2. O↵-Resonance Field

Let us now consider the case when the electromagnetic field is slightly detuned from

the resonance, i.e. � ! ↵⌦. In this case, the general equations (3.15) and (3.16) are
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used to examine the population dynamics of the two states. We consider the case when

↵ 2 {0.4, 1.0, 4.0} (Figure 3.4).

As � increases, the amplitude of Rabi oscillations decreases. The period of the oscil-

lations decreases because the total Rabi frequency, ⌦R =
p
⌦2 +�2 increases even though

the Rabi frequency ⌦/2⇡ = 300 KHz stays constant. At a high value for the detuning

(�! 4⌦), we see that the Rabi oscillations die out and the state probabilities approach

a limit. In other words, the time-average value hPi(t)i ! Pi(t = 0) (this is seen in the

bottom plot in Figure 3.4).
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Figure 3.4. A plot of the Rabi oscillations (Pi)for a two-level system,
plotted as a function of time for the states i 2 {0, 1}. Here, we have plotted
oscillations for the case of � 2 {0.4⌦, 1.0⌦, 4.0⌦}. The oscillations die out
at high values of the detuning from the resonance.
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Figure 3.5. A representation of Pi(! � !0) at
⌦
2⇡ = 300 KHz with a pulse

time of 1.7 µs. In the Fourier domain, the state amplitudes display sinc-like
behavior.

3.3.3. Rabi Oscillations in Fourier Space

In order to better grasp the e↵ect of � on the state amplitudes, we can carry out an

analysis in the Fourier (or frequency) domain instead of the time domain. We pick a

specific pulse time (a ⇡-pulse time is an obvious choice, since at �! 0, one of the states

will have the probability Pi(! = !0) = 1 while the other state will remain empty), and

predict the population dynamics as a function of �.

We see from Figure 3.5 that at � ! 0, P0 ! 1. This is because we have chosen the

pulse time to be 1.7 µs, which also happens to be the ⇡-pulse time for ⌦
2⇡ ! 300 KHz. At

high values of detuning, the oscillations die out, and ⌧ ! 1.7 µs fails to be the ⇡-pulse

for the system. This is obvious from figure 3.5 since a pulse time of ⌧ ! 1.7 µs does not

convert the entire population from P1 to P2 (recall that this is how a ⇡-pulse is defined).



Chapter 4

The Rubidium-87 Atom: A Three-Level System

The 87Rb alkali atom presents to us numerous multi-level quantum mechanical systems.

In our lab, we use the D2 transitions to cool down the atoms in the laser cooling process.

The D2 line represents the transitions between the quantum mechanical energy levels

52S1/2 and 52P3/2 (Figure 1.3), which have a wavelength gap in the near-infrared range of

the electromagnetic spectrum at about 780.24 nm.

As the condensate forms, the bosons are in the ground state 52S1/2. In the ground

state, we have access to the hyperfine levels F = 1 and F = 2. In the presence of an

external magnetic field, the hyperfine levels split up into (2F + 1) zeeman sublevels. As

a result, the F = 1 hyperfine level now represents a three-level system (mF 2 {�1, 0, 1})

while the F = 2 hyperfine level is essentially a five-level system ({�2,�1, 0, 1, 2}). Based

on the laser cooling techniques adapted and the long-term goals, ultra-cold atomic labs

may find it easier to work with the atoms in one of the two hyperfine levels. In our lab,

we employ a magnetic dipole trap to hold the atoms after the evaporative cooling stage;

we trap the bosons in the |F = 1,mF = �1i hyperfine state. This provides us with a

48
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neat three-level ladder system to study the non-equilibrium dynamics, especially the Rabi

oscillations, displayed by the condensate.

In this chapter, we start by introducing the three-level system, and considering the

Hamiltonian for this particular configuration in Section 4.1. We then examine the system

in the interaction picture, and invoke the rotating wave approximation. Predictions for

the evolution of the state probabilities are presented in Section 4.2. For the on-resonance

driving field, we compare our experimental results with the theoretical predictions to

determine the e↵ective parameters governing our system. Then, we consider the case of

an o↵-resonant electromagnetic field. We state the Rabi dynamics for � 6= 0, before a

comparison with the acquired experimental data is produced. Finally, we explore the

possible causes for the shift of the resonance at strong driving field frequency ⌦.

4.1. The Zeeman Three-Level Ladder System

The F = 1 hyperfine manifold of the 52S1/2 state in 87Rb has a degeneracy of 3. In

the presence of an external magnetic field, this degeneracy is lifted and the hyperfine

level splits into the three Zeeman states. The energies of the levels and their splitting is

determined by the strength of the B-field. This non-linear behavior is depicted by the

Breit-Rabi formula (refer to Section 1.3).

At weak magnetic field strengths, the energy separations between the three levels can

be approximated as equal (4.1). As showcased by the Breit-Rabi formula, this approxi-

mation does not apply in the strong B-field regime, where the splitting gains a quadratic

character. In our apparatus, the dipole trap has B ⇡ 5.5G, which places us in the linear
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weak field regime. This corresponds to a resonant frequency of !0 ⇡ 3.85 x 106 rad s�1 at

weak values of the driving field.

E|1,1i � E|1,0i ⇡ E|1,0i � E|1,�1i = ~!0 (4.1)

The three-level system (Figure 4.1) is radio-frequency coupled, which shows up as the

parameter ⌦ coswt in the e↵ective Hamiltonian. The radio-frequency of angular frequency

! is generated with the use of an antenna. Here the energy spacing is ~!0 and then the

three levels represent the Zeeman sublevels of the F = 1 ground state of Rubidium.

|0i : |F = 1,mF = �1i

|1i : |F = 1,mF = 0i

|2i : |F = 1,mF = +1i

The system is represented with the wavefunction | i which is defined in terms of the

eigenstates and the state coe�cients ci for i 2 {0, 1, 2} (4.2).

| i = c0 |0i+ c2 |1i+ c2 |2i (4.2)

We define the Hamiltonian Ĥ0 for this three-level system with only two non-zero diagonal

elements (4.3). Here we have treated the quantum level |0i as the ground state level

with energy E0 = 0 1. In this way, the eigenvalues of the states are the energies of the

1A non-zero ground energy adds a constant bias to the Hamiltonian and does not a↵ect the state dynamics.
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Figure 4.1. The Zeeman three-state system for 87Rb. With a radio-
frequency field (angular frequency !), the system behaves as a coupled
three-level system. The Zeeman splitting between the three levels is taken
to be the same (~!0) in this weak Zeeman field regime.

eigenstates.

Ĥ0 = ~

0

BBBBB@

0 0 0

0 !0 0

0 0 2!0

1

CCCCCA
(4.3)

Ĥ0 |0i = 0 |0i

Ĥ0 |1i = ~!0 |1i

Ĥ0 |2i = 2~!0 |2i

The driving field results in an oscillatory time-dependent perturbation V (4.4) repre-

sented by the factor cos!t. The ladder arrangement of the quantum levels means that

the states |0i and |2i are coupled to the middle state |1i (which is coupled to both of the

outer states |0i and |2i). Here we have assumed that the driving field does not have a
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phase association with it, so that ⌦ = ⌦⇤.

V̂ = ~

0

BBBBB@

0 ⌦ cos!t 0

⌦ cos!t 0 ⌦ cos!t

0 ⌦ cos!t 0

1

CCCCCA
(4.4)

The e↵ective Hamiltonian Ĥeff is the sum of the internal and the perturbation Hamiltoni-

ans (4.5). The coupling means that the eigenstates |ii are no longer the stationary states.

In fact, the time-dependence means that there are no stationary states for this system (at

least in the current lab frame).

Ĥeff = ~

0

BBBBB@

0 ⌦ cos!t 0

⌦ cos!t !0 ⌦ cos!t

0 ⌦ cos!t 2!0

1

CCCCCA
(4.5)

In our search for the new states, we examine the system in the interaction picture

by defining the new wavefunction
��� ̃

E
= Û⇤ | i where Û = e�

iĤ1t
~ is a unitary operator.

Then, Ĥ1 must be a Hermitian operator (4.6).

Ĥ1 = ~

0

BBBBB@

0 0 0

0 ! 0

0 0 2!

1

CCCCCA
(4.6)

In the rotating frame, the new Hamiltonian Ĥ 0 (from Appendix) is found by computing:

Ĥ 0 = Û⇤
h
Ĥ0 � Ĥ1

i
Û (4.7)
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For the three-level e↵ective Hamiltonian (4.5), the Hamiltonian in the interaction picture

is time-independent (4.8), where � = (! � !0). We have taken the rotating wave ap-

proximation which allows us to ignore terms oscillating at twice the driving frequency i.e.

2!.

Ĥ 0 =
~
2

0

BBBBB@

0 ⌦ 0

⌦ �2� ⌦

0 ⌦ �4�

1

CCCCCA
(4.8)

4.2. Evolution of the State Probabilities

Now that we are in possession of a time-independent Hamiltonian (4.8), we apply Schrödinger’s

equation (4.9) to find the state dynamics.

d

dt

��� ̃
E
= � i

~Ĥ
0
��� ̃

E
(4.9)

Substituting (4.2) and (4.8) in (4.9), we can express the Schrödinger equation in matrix

form (4.10).

i~

0

BBBBB@

ċ0(t)

ċ1(t)

ċ2(t)

1

CCCCCA
=

~
2

0

BBBBB@

0 ⌦ 0

⌦ �2� ⌦

0 ⌦ �4�

1

CCCCCA

0

BBBBB@

c0(t)

c1(t)

c2(t)

1

CCCCCA
(4.10)

This is essentially a system of three coupled di↵erential equations, where c1(t) is coupled

to both c0(t) and c2(t) while c0(t) and c2(t) are each coupled only to c1(t). We define

the initial conditions such that the entire population of the system is in one of the three
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states.

2iċ0(t) = ⌦c1(t)

2iċ1(t) = ⌦c0(t)� 2�c1(t)

2iċ2(t) = ⌦c1(t)� 4�c2(t)

c0(0) = 1

c1(0) = 0

c2(0) = 0 (4.11)

Let us now enforce certain conditions on the system. In what follows, we will pay close

attention to the two specific cases, namely the on-resonant case (� = 0) and the general

o↵-resonant case (� 6= 0)

4.2.1. Resonant Driving Frequency

In the case of a resonant driving field, ! = !0 and � ! 0. This means that the terms

with � in the interaction Hamiltonian Ĥ 0 (4.8) go to zero. Ĥ 0 is essentially reduced to

(4.12).

Ĥ 0 =
~
2

0

BBBBB@

0 ⌦ 0

⌦ 0 ⌦

0 ⌦ 0

1

CCCCCA
(4.12)
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Consequently, the system of di↵erential equations (4.11) are simplified to yield 4.13

2iċ0(t) = ⌦c1(t)

2iċ1(t) = ⌦c0(t)

2iċ2(t) = ⌦c1(t)

c0(0) = 1

c1(0) = 0

c2(0) = 0 (4.13)

For such a coupled system, we obtain the dynamic state amplitude equations:

0

BBBBB@

c0(t)

c1(t)

c2(t)

1

CCCCCA
=

0

BBBBBBB@

1

2
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⌦tp
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� 1

◆

� ip
2
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✓
⌦tp
2

◆

1

2

✓
cos

⌦tp
2
+ 1

◆

1

CCCCCCCA

(4.14)

We present a theoretical plot of the state probabilities |ci(t)|2 for i 2 {0, 1, 2} in Figure

4.2. We predict that the state amplitudes P0(t) = |c0(t)|2 and P2(t) = |c2(t)|2 are related

such that they are reflections about the line P (t) = 0.5, and have the same total Rabi

frequency. There is a phase o↵set of half the oscillation period between P0(t) and P2(t).

The population in the middle state, i.e. P1(t) = |c1(t)|2 oscillates twice as fast compared

to the other two quantum states. We also note the following results:
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Figure 4.2. A plot of the Rabi oscillations for the three-level system. This
is the case of �! 0.

0  |c0(t)|2  1.0

0  |c1(t)|2  0.5

0  |c2(t)|2  1.0

In our laboratory setting, the Rabi frequency ⌦ is indirectly controlled by varying the

power (in units of dBm)to an amplifier. This means that we can set a particular power

input to our amplifier, and then record the Rabi oscillations displayed by the condensate.

This experimental evidence not only showcases the Rabi profiles, but enables us to fit our

analytical models to the data points and obtain a result for the Rabi frequency output

of the amplifier. Here is our experimental data for Rabi oscillations (� ! 0) at various

amplifier input powers. It is important to note that ! is not the same for all the trials.

This refers to the observed shift of the resonance in our experiments (more on this later).
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Figure 4.3. The data points represent the observed Rabi oscillations in
the Zeeman sublevels of the 87Rb atom ground state. The fitted models
(curves) depict the behavior of the three Zeeman states in our laboratory.
The corresponding Rabi frequency, ⌦ is found, and presented for each trial.
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4.2.2. O↵-Resonant Driving Frequency: The Fourier Domain

For a non-zero �, the system of coupled di↵erential equations (4.11) needs to be solved

analytically. This leads to a third-order di↵erential equation with complex coe�cients.

The system can be solved with the defined initial conditions for a specified value for �.

We plot the probabilities Pi(t) = |ci(t)|2 for i 2 {0, 1, 2} for � 2 {0.2⌦, 0.5⌦, 1.0⌦} in

Figure 4.4.

We see that the clean Rabi oscillations have been a↵ected by the detuning. The total

Rabi frequency of the system increases with the magnitude of the detuning while the

amplitude of the oscillations decreases. The population in the middle level |1i oscillates

at twice the frequency of the other two states, with a smaller amplitude. In the limit,

� ! ↵⌦ where ↵ is a comparatively larger number, the oscillations die out. This is

depicted in Figure 4.5 for �! 4.0⌦.

The e↵ect of � on the state amplitudes can be better understood in Fourier space. In

what follows, we vary the frequency ! instead of the radio-frequency pulse time. Fixing

the pulse time, t ! ⌧ where ⌧ is the pulse time corresponding to a ⇡-pulse. For a three-

level system, the ⇡-pulse is the radio-frequency pulse that converts the entire population

from one of the two outer states |0i or |2i to the other one of the two. Similarly, a 2⇡-pulse

represents a pulse time that makes the system complete a whole period of oscillation and

return to the initial values. This creates the possibility of using multiple pulse times to

attain the same final probability Pi(t) for some i 2 {0, 1, 2} (4.15), where n is an integer.

Pi(⌧) = Pi(⌧ + (2⌧)n) (4.15)
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Figure 4.4. Here we present the evolution of the state probabilities for
⌦ ! 2⇡(300)KHz. The three plots show dynamics for � 2
{0.2⌦, 0.5⌦, 1.0⌦}.
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Figure 4.5. In this plot for Pi(t) for � ! 4.0⌦, the oscillations die out
and there are e↵ectively no significant Rabi oscillations. This is the far-o↵
resonant regime.

The state populations behave as sinc curves. Since the fourier domain and the time

domain are inversely related, a longer pulse time corresponds to a narrower peak width in

the fourier domain (as illustrated in Figure 4.6).

A typical theoretical plot of Pi(!) for i 2 {0, 1, 2} and a fixed pulse time ⌧ looks like

the plots in Figure 4.6. Since the total Rabi frequency and ⇡-pulse time are dependent

upon the detuning, we see that Pi(!) has a peak when ! ! !0 (�! 0), where |ii is the

state of maximum probability (Pi ! 1) at the ⇡-pulse time.

Examining a plot for Pi(!), we can carry out a search for the peak value of the proba-

bility (with an associated !’-value). Then, for a particular value for the Rabi frequency ⌦,

!0 is the resonant frequency for the system. In other words !0 = !0. Conducting trials for

di↵erent Rabi frequencies (we remind the reader that we accomplish this feat by varying

the power input to an amplifier), we can observe the behavior of the state probabilities

and the resonance in the weak and strong driving field regimes (Figure 4.7).
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Figure 4.6. The comparison illustrates the importance of equation 4.15.
The overall profile of the curves is similar, except the bottom plot has a
narrower peak (corresponding to a bigger ⌧).

4.3. Concluding Remarks

This thesis is built around the notion of the Rabi frequency ⌦. As we mentioned earlier,

during an experiment, we do not directly control the Rabi frequency. We are in control

of the input power to an amplifier which produces the electromagnetic (radio-frequency)

field which couples the system. Therefore, it is vital to know the “Rabi Output” of our

amplifier. In Figure 4.7, we plot the Rabi oscillations and find the Rabi frequency along
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with the input Power. The Rabi frequency values have been calculated by fitting analytical

models to the Rabi oscillation experimental data for our 87Rb isotope.

In Figure 4.7, we observe that the resonance of the system shifts with varying driving

field strengths, plotted in 4.8. We present to the reader the calculated shifts, to indicate

the scale of this resonance drift (Figures 4.9 and 4.10). Unexpectedly so, as the Rabi

frequency ⌦ increases, the resonant frequency decreases. Our initial suspect, the Bloch-

Siegert shift, a↵ects the resonance on the order of a few kHz, and increases the resonant

frequency as the Rabi frequency is increased. The cause of the Bloch-Siegert shift is

not physical, but mathematical. When we invoke the rotating wave approximation, we

drop the terms oscillating at twice the Rabi frequency. At high Rabi frequencies (strong

driving fields), those doubly-oscillating terms (from the counter-rotating frame) start to

matter and cause the Bloch-Siegert shift. The most likely cause for a fall in the resonance

frequency with increasing Rabi frequency could be the presence of higher-order harmonics

in the amplifier output. Given that the amplifier output data has not been compiled for

such high input powers (Power ! 3dBm), it is impossible to tell if the amplifier output

is clean.
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Figure 4.7. The data points represent the observed spectra in the Zeeman
sublevels of the 87Rb atom ground state for a fixed ⌧ . The corresponding
Rabi frequency, ⌦ and the resonant angular frequency !0 are found by fitting
models; they are presented for each trial.
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Figure 4.8. A representation of the Rabi output (⌦) of our amplifier, with
respect to the input power of the amplifier (in dBm).
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Figure 4.9. This plot shows the unexpected drift in the resonance (!0) as
the amplifier input power (in dBm) is increased.
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Appendix: The Rotating Frame

The rotating frame, or the interaction picture is nothing more than a mathematical con-

venience and it does not a↵ect the system in any way. As an analogy, it can be thought

of as a frame in the Bloch sphere in which the Bloch vectors remain stationary, hence the

name ’rotating frame’. We start by defining the unitary operator Û , for which Û Û⇤ = I

and Û = Û⇤.

Û = e

h
� iÂt

~

i

In order for Û to be a unitary, the operator Â must be Hermitian with the property

Â = Â⇤. Now, starting with the system defined with | i, we redefine the system by

operating on it with Û .
��� ̃

E
= Û⇤ | i

Note that since Û is unitary, the wavefunction remains normalized and the probabilities

(the observed results) are not a↵ected by this transformation of the wavefunction:

���
D
 ̃
���  ̃

E���
2

=
���
D
 ⇤

��� Û Û⇤
��� 

E���
2

= |h ⇤ | i|2 = 1

66
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In our derivation of the rotating frame Hamiltonian we will employ the Schrödinger equa-

tion for both | i and
��� ̃

E
:

i~ d

dt
| i = Ĥ0 | i

i~ d

dt

��� ̃
E
= Ĥ 0

��� ̃
E

Now we start with the Schrödinger equation and obtain a simplified expression for the

rate of change of
��� ̃

E
on the right hand side of the equation below:

Ĥ 0
��� ̃

E
= i~ d

dt

��� ̃
E

= i~ d

dt

⇣
Û⇤ | i

⌘

= i~ | i d

dt
Û⇤ + i~Û⇤ d

dt
| i

=
i2~Â
~ Û⇤ | i+ Û⇤i~ d

dt
| i
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Utilizing the Schrödinger equation for the original wavefunction | i, we substitute Ĥ | i

for the Schrödinger factor in the last term:

Ĥ 0
��� ̃

E
= �ÂÛ⇤ | i+ Û⇤Ĥ0 | i

= Û⇤Ĥ0I | i � IÂÛ⇤ | i

= Û⇤Ĥ0Û Û⇤ | i � ÂÛ⇤ | i

=
h
Û⇤Ĥ0Û � Â

i
Û⇤ | i

Ĥ 0
��� ̃

E
=

h
Û⇤Ĥ0Û � Â

i ��� ̃
E

It follows that:

Ĥ 0 =
h
Û⇤Ĥ0Û � Â

i

For the last step, we once again invoke the properties of the hermitian operator Â and the

unitary operator Û . More specifically, we employ the relations Û = Û⇤ and Â = Â⇤.

Â =
⇣
ÂÛ⇤

⌘
Û

= ÛÂ⇤Û

= Û⇤ÂÛ
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Therefore, in the rotating frame or the interaction picture, the Hamiltonian Ĥ 0 is e↵ectively

the operator:

Ĥ 0 =
h
Û⇤Ĥ0Û � Û⇤ÂÛ

i

Ĥ 0 = Û⇤
h
Ĥ0 � Â

i
Û
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