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Introduction

Mathematical modeling is extremely useful in the field of epidemiol-
ogy. Mathematicians use models to better understand and analyze the
factors that influence the dynamic spread of infectious disease through
a population. A model can help predict whether a disease will spread
through a population, stabilize, or die out. In other cases, models are
fit to data for a past epidemic in order to estimate parameters that gov-
erned that epidemic. Models can also help mathematicians to study
the effectiveness of public health measures in limiting an infectious dis-
ease. No single model works for all epidemics — each model makes its
own assumptions and accounts for unique complications appropriately.
Therefore, although many existing epidemiological models are based
upon a similar foundation, the creation of new models is a diverse and
ongoing field of research with varied and important applications.

One of the most fundamental epidemiological math models is the
SIR model, originally proposed by Kermack and McKendrick [21]. In
this model individuals in a population are categorized into groups: Sus-
ceptible (S), Infected (I), and Removed (R). The interpretation of the
removed compartment varies with the disease being modeled, but typi-
cally it implies that an infected individual either died or recovered with
immunity. The result is that individuals in the removed compartment
cannot spread disease and they also cannot be infected with the dis-
ease — hence they are removed from the system. In the case of many
models for the spread of Human Immunodeficiency Virus (HIV), the
removed category is assumed to be individuals with Acquired Immun-
odeficiency Syndrome (AIDS), under the assumption that once HIV
infection has progressed to AIDS a person is severely sick and unlikely
to be sexually active.

To analyze the flow of people from one compartment to another
using the SIR model, let β represent the rate at which susceptible
individuals have contact with others sufficient for the spread of disease,

iv



INTRODUCTION v

and ν represent the rate of removal for a single infective. This flow
between compartments is represented in Figure 0.1.

S I R- -
β ν

Figure 0.1. Compartmental diagram for SIR model.

We can formulate differential equations, as follows, to represent the
change in the sizes of the S, I, and R populations:

dS

dt
= −βIS

dI

dt
= βIS − νI

dR

dt
= νI.

From these equations, the predicted course of the disease through the
population may be graphed over time. Furthermore, these differential
equations can be used to solve for an expression for the basic repro-
duction number, R0. This value tells us, on average, how many sec-
ondary infections are caused by one infected individual introduced into
an otherwise susceptible population. The basic reproduction number
is an important figure in the discussion of how contagious an infection
is, and also in the discussion of how quickly or effectively a disease
might spread through a population. In particular, we may find that an
infection is likely to die out if R0 < 1 and likely to stabilize or become
epidemic if R0 > 1.

These SIR models are most straightforward when used to model
diseases that are spread by air-born particles or by contact, such as
the flu. The models become more complicated for sexually transmit-
ted diseases because not all people in a population are at equal risk of
infection. Instead, risk depends on many factors including sexual activ-
ity, partner selection, and tendency to use protection. When building
models for the spread of HIV, one must also consider that sexual ac-
tivity is not the only mode of transmission; HIV may also be spread
by injection drug use or through breast feeding, for example. Hyman
and Stanley review a range of methods useful in modeling HIV [17].
Many HIV models are an adaptation of the SIR model, often with
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the addition of new compartments or with new parameters surround-
ing transmission. An HIV model by Boily et al., for example, has four
compartments of infectives and four compartments of removed individ-
uals (with AIDS) — accounting for those who are or are not coinfected
with another sexually transmitted disease (STD) and those who are or
are not being treated with Antiretroviral Therapy (ART) [5]. Com-
partmental separation based on STD coinfection and ART treatment
allows the model to incorporate the impact of these two conditions
on both susceptibility and time progression from HIV to AIDS. Many
models are also simplified to a homosexual population where HIV is
only spread through sexual activity. Punyacharoensin, et al. review a
range of mathematical models for HIV in men who have sex with men
(MSM) [38]. Each mathematician modeling HIV dynamics chooses his
or her own perspective on the topic and offers different variations, and
the diverse possibilities are part of what makes the field exciting and
rapidly growing.

No one model can account for every intricacy of the spread of a
disease. However, many models have been built to account for dif-
ferent nuances surrounding HIV transmission dynamics including var-
ied sexual activity levels, STD coinfection, condom usage, education,
partnership duration and concurrency, and ART treatment [38]. One
such nuance is heterogeneous mixing. Many SIR-like models for HIV
assume that each member of a population is equally likely to interact
with any other member of the population. However, in reality, there are
many factors — such as race, neighborhood, profession, socio-economic
status, religion, education, and more — that impact how likely one
person is to interact with another. One increasingly popular way to
analyze the effects of heterogeneous mixing is by using networks. In
this type of model, a vertex represents an individual, and an edge rep-
resents a relationship between individuals. Work has been done by
Newman, Brauer, Rothenberg, and Miller, among others, to analyze
concepts like final epidemic size and R0 in random networks [32] [6]
[40] [29]. The first chapter of this paper is dedicated to understanding
these models on random networks. Other researchers have used com-
puter programming and agent-based analysis to simulate the spread of
disease along a known network. Additionally, many recent papers have
developed SIR-like models that can represent epidemic spread through
a network in either discrete stochastic (probability-based) time steps
or in a more traditional deterministic manner. The second and third
chapters of this thesis will explore and develop an SIR-like model like
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this, such that the change in infectives can be observed across time.

One framework through which to consider heterogeneous mixing
is the hypothesis that people preferentially interact with other peo-
ple of their race and in their neighborhood. In this paper I represent
this hypothesis by building and analysing a network divided into sub-
populations, where there is a higher density of edges within a sub-
population than between sub-populations. This type of division in a
network is called community structure. An interesting case where this
type of analysis might be applicable is in the case of HIV in Wash-
ington, D.C.. The District of Columbia exists in one of the world’s
wealthiest nations, yet 2.7 percent of the city’s population is living
with HIV/AIDS as of 2012, a level comparable to parts of Sub-Saharan
Africa, and defined as epidemic [15]. If you focus on sub-populations
within the city (such as the MSM population or the black-male pop-
ulation) there is an even higher incidence. Figure 0.2 from the Kaiser
Family Foundation [15] demonstrates the distribution by racial/ethnic
groups. Data from the District of Columbia Department of Health
shows the density of HIV positive individuals by ward in 2012, with
Ward 6 and Ward 8 having highest prevalence at 2772.9 and 3057.5
living HIV cases per 100,000 adults, respectively, and Ward 3 having
the lowest prevalence at 387.5 living HIV cases per 100,000 adults [12].
There are likely many reasons why disparity exists, but it is possible
that sexual contact networks play a role, and exploring network models
will allow us to examine this possibility further.

This research seeks to understand how we may use networks to
model epidemics, more specifically HIV epidemics. It also seeks to take
advantage of one of the large benefits of network models — the ability
to model heterogeneous mixing — to analyze heavy prevalence of HIV
in certain sub-populations in Washington, D.C.. While substantiated
predictions cannot be made without detailed data regarding sexual
activity in the city, it is possible to observe trends from the model’s
predictions. We can see how community structure in a network may
impact initial and long term behavior of an epidemic, in particular
how it relates to the perpetuation of disparity in prevalence between
communities.
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Figure 0.2. HIV cases per 100, 000 adults/adolescents
in Washington, D.C. in 2010, by gender and
race/ethnicity [15].



CHAPTER 1

Epidemiology in Random Networks

A network is a mathematical way of representing connections be-
tween elements in a set. A network can be used to visualize friendships
between people, flights between cities, predator/prey relationships be-
tween animals, and much more. It is easy to see how networks might
help us to understand epidemics, which consider the spread of disease
between people.

In this chapter I will review the foundations of network theory, and
then outline previous work that has been done by Brauer [6] and Miller
[29], to analyze epidemics through random networks.

1. The fundamentals of networks and graph theory

A more formal definition of a network, also known as a graph, goes
as follows.

Definition. A network, G, consists of two finite sets — the ver-
tex set (denoted V (G)) and the edge set (denoted E(G)). We write,
G = (V (G), E(G)). The vertex set contains elements called vertices,
or nodes. The elements in the edge set are called edges, and an edge
is written as a pair, {u, v}, where u, v ∈ V (G).

For the purpose of this work, we will restrict our scope to simple
graphs — graphs in which there may be no more than one edge between
two distinct vertices and no edge may connect a vertex to itself in a
loop. Note that when two nodes in a network are joined by an edge
we say that they are neighbors, or alternatively that they are adjacent,
and that when an edge has an endpoint at a particular node we say
that the edge is incident with that node. Now, it helps to define a few
more basic concepts of networks, the degree of a vertex and the degree
sequence of a graph.

1



1. THE FUNDAMENTALS OF NETWORKS AND GRAPH THEORY 2

Definition. The degree of a vertex, u, is the number edges inci-
dent with u. In the case of simple graphs, the degree is also equal to
the number of vertices adjacent to u.

Definition. The degree sequence of a network, G, with n ver-
tices, is written as d = (d1, d2, ..., dn) where each di is the degree of a
vertex in G, and the degrees are written in non-increasing order.

Another concept that provides us with information about the de-
grees represented in a graph, and that is particularly relevant to the
analysis of epidemics, is called the degree distribution. We can define
it as follows.

Definition. Consider a network G. Let pk represent the portion
of vertices in G with degree k. Note that pk is also equal to the prob-
ability that a randomly selected vertex in G will have degree k. Then
the set of pk values is the degree distribution of G. In many cases
the degree distribution may be represented with a function, such as
one of many popular probability distributions.

These definitions and network properties are illustrated with the
sample network below in Figure 1.1.

6

4
5

1

2
3

Figure 1.1. Graph, G, with
vertex set V (G) = {1, 2, 3, 4, 5, 6};
edge setE(G) = {{1, 2}, {1, 5}, {2, 3}, {2, 5}, {3, 4}, {4, 5}, {4, 6}};
degree sequence d = (3, 3, 3, 2, 2, 1);
and degree distribution p1 = 1

6
, p2 = 1

3
, p3 = 1

2
.

In networks representing the spread of disease, degree and degree
distribution have several important interpretations. Most models al-
low all edges to be contacts through which disease has the potential
to spread. In airborne infections like the flu, this would mean that
an edge connects person a to person b if a and b interact — they are
friends, family, co-workers, etc. Then, the degree of a vertex represents
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the number of individuals with whom a person interacts. In the case
of sexually transmitted diseases, this could mean any sexual interac-
tion sufficient to spread disease. For simplicity, we could say that an
edge exists between each pair of sexual partners in the network. Then,
the degree of a vertex is equivalent to the number of sexual partners
a person has. We can see that another reason why using networks to
study epidemics is beneficial is that it allows us to restrict the num-
ber of contacts that any individual has, even as the population grows,
and it also allows us to account for variety in the number of contacts
each individual has. These points are particularly relevant to sexually
transmitted disease, as the density or size of a population is unlikely
to have a huge impact of the number of sexual partners any individual
has, and not every person is equally sexually active.

2. The configuration model: generating a random network

Many mathematicians who study epidemics on networks, such as
Brauer and Miller, start with a population represented by a network
of n vertices with a known degree distribution. From this information,
a random graph can be generated in two comparable ways. The first
is Newman’s configuration model [33]. Begin with a graph G, with n
vertices and no edges. Next, assign each vertex degree k with proba-
bility pk. If the sum of the degrees of the vertices is odd as a result of
this randomization, the degrees must be re-chosen until the sum of the
degrees is even, because each edge in a graph contributes two to the
sum of the degrees and thus the sum of the degrees in a graph must
always be even. The phenomenon that the sum of the degrees is even
is commonly referred to as the handshake theorem. Now, add k spokes
to each vertex with degree k, for every integer k. These spokes can be
thought of as half-edges. After the spokes are added to the vertices,
they are randomly connected to one another to build edges between
vertices. The product is a randomly generated network on a given set
of vertices with an assigned degree distribution.

We can also think of this random graph generation in another way,
laid out by Miller [29]. In this method, vertices are again assigned
degrees randomly according to the degree distribution. Then, each
vertex is placed into a list k times, where k is the degree of the vertex.
The order of the list is randomized and an edge is placed between each
node in positions 2n and 2n + 1 for n = 0, 1... with the result being
a randomly generated graph equivalent to the one built in Newman’s
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configuration model. This second way of thinking about the random
generation is useful because it lends itself to computer implementation
with an algorithm.

Each of these forms of random graph generation might create a
graph with loops, or with multiple edges between a pair of vertices.
However, in large populations where the degrees of vertices are rela-
tively small, the probability of generating a loop or a duplicate edge is
negligible. This is the case for networks used to model most epidemics,
because typically we are considering networks of populations where an
individual has few contacts relative to population size. Imagine the
case of sexually transmitted diseases models for major cities — a per-
son may have no, very few, or many sexual partners in a given period
of time, but it is likely that any individual will not have a high number
of sexual partners relative to the total population of the city. There-
fore, in the context of our work, we can ignore the possibility of loop
or duplicate edge generation and assume that we are working with a
simple graph.

This network is generated randomly according to our degree distri-
bution, and consequently it represents all possible outcomes from the
randomization at once, and we can solve for properties of the network
accordingly using probability generating functions.

3. Analysis of R0 using generating functions

Now, given a degree distribution for our population, and following
analysis put forth by Brauer [6], we can come to an interesting inter-
pretation of the basic reproduction number, R0, in networks.

To begin, define the probability generating function for this degree
distribution as follows:

G0(z) = p0 + p1z + p2z
2 + p3z

3 + ... =
∞∑
k=0

pkz
k.

This generating function does not provide much useful information
on its own, but it can be mathematically manipulated to produce new
functions which may be valuable analytical tools. For example, if we
evaluate the kth derivative of G0 at 0 and divide by k! then the output
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is equivalent to pk. Formally, we have:

pk =
1

k!

dkG0

dzk
|z=0.

Another piece of information accessible by manipulating the gener-
ating function is the mean degree of the network, denoted <k>. The
mean degree is equal to the sum of degrees divided by n, the number
of vertices in the network. If we let nk denote the number of vertices
with degree k, then we can see that the mean degree can be calculated
as follows:

<k>=

∑
v∈V deg(v)

n
=

∑∞
k=0 knk

n
=
∞∑
k=0

knk

n
=
∞∑
k=0

kpk.

Recall that we defined the generating function to be:

G0(z) =
∞∑
k=0

pkz
k.

So consider the first derivative of the generating function:

G′0(z) =
∞∑
k=0

kpkz
k−1.

Now evaluate this derivative at z = 1 to get:

G′0(1) =
∞∑
k=0

kpk1k−1 =
∞∑
k=0

kpk =<k> .

Thus, if we know the degree distribution of our network, we can solve
for the probability generating function of the degree distribution, and
from that we can find the mean degree in our network by evaluating
G′0(1).

The average degree tells us how many contacts the average person
in our population has, and can help us to interpret the idea ofR0 in the
context of networks as follows. For now we will assume that infected
nodes infect all of their neighbors, but transmissibility can be incorpo-
rated into this analysis later to allow for the probability that disease
does not spread along an edge. Suppose that an infection is introduced
into a susceptible network at node x, and that individual x then infects
one of his or her contacts, and call this person y. Let y have degree k.
Now we would like to know how many people y will infect. Since we are
in the early stages of the spread of this infection, and our network is
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relatively large, assume that all of y’s neighbors, with the exception of
x, are susceptible. Now, y can spread the infection to k− 1 people be-
cause he or she can infect any of her k neighbors except x (x is already
infected). We will give this concept of k − 1 the name excess degree,
where the excess degree is the number of ways there are to leave a ver-
tex, when tracing a path through a network, other than by going back
along the way we came. Note that since we’ve allowed all edges in our
network to represent the spread of disease, the mean excess degree is
equal to the average number of people that one infected individual will
infect when disease is introduced into a largely susceptible population.
This is exactly our definition for the basic reproduction number R0.
Next we will continue to follow Brauer’s analysis to use our generating
function to solve for an expression for the mean excess degree, R0, of
our random network.

Following a random edge, the probability that we will come to a
vertex of degree k (excess degree k−1) is proportional to k because the
higher the degree of a vertex, the more edges are adjacent to it. Let
qk−1 be the probability that a vertex reached by following a random
edge has excess degree k − 1. Now qk−1 = ckpk where c is a constant.
We know that since q represents probabilities, if we sum qk−1 over all
of the possible values of k it must equal 1. So we have,

1 =
∞∑
k=0

ckpk,

1 = c
∞∑
k=0

kpk,

c =
1∑∞

k=0 kpk
,

c =
1

<k>
,

and then we get that,

qk−1 =
kpk
<k>

.

We can use this probability distribution to create the following
probability generating function for the excess degree:
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G1(z) =
∞∑
k=1

qk−1z
k−1 =

∞∑
k=1

kpk
<k>

zk−1 =
1

<k>

∞∑
k=1

kpkz
k−1 =

1

<k>
G′0(z).

In a parallel way to how we calculated the mean degree of the network,
we can use G1(z) to calculate the mean excess degree, <ke>.

So, <ke> is equal to the sum over the possible values for excess
degree, of the value times the portion of the vertices with that excess
degree. Written out this is

<ke>=
∞∑
k=1

(k − 1)qk−1.

Then by inserting our solution for qk−1 we get

<ke>=
∞∑
k=1

(k − 1)
kpk
<k>

.

Manipulating this more we arrive at

<ke>=
∞∑
k=1

(k − 1)
kpk
<k>

(1)k−2 = G′1(1).

And thus, we can claim that R0 = G′1(1), the mean excess degree.
Then, if we have chosen a probability distribution to represent the
degree distribution of our network, we can solve for the generating
functions, and therefore solve for R0.

Assume we’re working in discrete time steps, or generations. In
each generation, every susceptible node which has an infected neighbor
becomes infected. Now we will discuss the way Brauer calculates the
probability that an infection, initiated at a random vertex, will die out
in n generations. We will call this probability zn. Assume that we
choose a random edge along which to introduce the infection. Now the
probability that the vertex we reach has excess degree j is qj. The
probability that the infection will die out in n generations is equal to
the probability that each of the j secondary infections dies out in n−1
generations, or (zn−1)

j. Now we have

zn =
∞∑
j=0

qj(zn−1)
j =

∞∑
k=1

qk−1(zn−1)
k−1 = G1(zn−1).
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We can see how z∞ is the probability that the infection will die out
eventually. I will refer the reader to Brauer’s text [6] for the remainder
of this solution as well as a discussion of transmissibility. However, the
result is that if R0 < 1 the infection will die out with probability of 1,
and if R0 > 1 the infection will lead to an epidemic with probability
1 − G0(z∞) but it will initially increase to a minor outbreak without
causing a major epidemic with probability G0(z∞).

While this method of analyzing disease spread across our random
network is interesting because of its conceptual connection to our idea
of R0, it has limitations. It assumes that we are in the early stages
of disease spread such that all of a node’s neighbors are susceptible.
In reality, many diseases we would like to model have already taken
hold of a population such that we may have interactions between two
already infected individuals. Another limitation is that it assumes that
every contact spreads disease. Additionally, this model, while useful in
predicting the final outcome of the disease spread, does not well handle
questions surrounding what happens between patient zero and the end
behavior.

4. An SIR-like random network model

To tackle the issue of transmission dynamics, Volz [49] offers a ran-
dom network model where an infected node transmits disease to its
neighbors independently with rate r and recovers at rate ν. Volz’s
model then more closely resembles an SIR model, as he works to
describe the changes in the numbers of susceptibles, infectives, and
removed over time. Using the configuration network and generating
functions as previously described, Volz [49] derives a series of equa-
tions to analyze the dynamics of this system. Miller [29] then proposes
a simplifications of Volz’s equations to get the following:

dR
dt

= νI

S(t) = G0(θ(t))

I(t) = 1−R(t)− S(t).

Note that θ(t) is equal to the probability that a random edge has not
transmitted infection at time t.

It may also be shown that as we let the population size go to infin-
ity and allow each vertex to be connected to every other vertex, these
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equations simplify down to Kermack and McKendrick’s original SIR
equations [29]. This makes intuitive sense, since we know that the
SIR model assumes any individual may infect any other individual in
a fully mixed population.

While these models all begin to address the question of modeling
epidemics with networks, they still treat every vertex in the network
equally. There is a degree distribution to restrict the number of con-
tacts held by the nodes such that the population is not fully mixed, but
each individual has the same probability, pk, to have degree k. Fur-
thermore, individuals of the same degree have the same probability of
having a connection with a third randomly chosen vertex. In reality,
as has already been mentioned, there are many factors which influ-
ence how likely any two individuals are to interact with one another.
One concept in graph theory that stems from these ideas is commu-
nity structure, and this topic will be explored more deeply in the next
chapter. Additionally, it is important to understand the diversity in
the field of epidemic studies on networks, and so the foundations of
this generating function analysis are worthy of attention. However, the
remainder of this paper will largely diverge from the idea of generating
functions, and instead take an approach that looks a lot more like a
traditional SIR approach, only tailored to the language and properties
of complex networks.



CHAPTER 2

Community Structure and Epidemics

Intuitively, we already have a good understanding that people tend
to break up into groups in their environment. Our world is made up of
divisions — by age, profession, gender, political affiliation, and much
more. However, people may still interact with others outside of their
own group, and the interactions between these groups are important
because collectively the groups comprise one meta-population. In or-
der to understand the network that represents an entire population, we
must also look at the complex network structure, and one important
feature of network structure is the presence or absence of these sub-
populations, or communities. A network that has community structure
has a vertex set which can be divided into disjoint subsets such that the
density of edges within a subset is greater than the density of edges
between subsets. The interpretation of community structure in the
context of epidemics is that we may have collections of people within
our larger population such that there are more interactions within the
sub-population than between the sub-population and the remainder of
the network. The result is that an infected individual is more likely to
spread disease within his or her community than to a person outside
of his or her community. As we will see in the remainder of this paper,
the degree to which community structure is present in a network may
have a profound effect on the transmission dynamics of any infectious
disease across the network.

Before we address the mathematical definitions and implications
behind community structure in networks, let’s explore a few more ex-
amples of networks that have exhibited this type of organization. Much
of the work that has been done with community structure in networks
to date relates to the development of algorithms that can take network
data and detect community structure. With these types of algorithms,
it is possible to take a data set for nodes which may seem uniformly
connected, and separate them out into groups appropriately such that
visualization of community structure is possible. The results of one

10
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such visualization are represented in the works of Moody and New-
man [30] [33]. In the network, nodes represent middle school and high
school students in one school system, and edges represent a friendship
between two students. After a community detection algorithm was
run, the nodes were colored by race, and it was determined that the
communities highlighted social group segregation strongly related to
race [30]. In another study, which also demonstrates a like-with-like
phenomenon for multi-racial contact networks, a survey was taken of
heterosexual couples in San Francisco, and it was found that there were
many more same-race couples than mixed-race couples (Table 1) [7].

Table 1. A survey of heterosexual couples in San Fran-
cisco [7].

Women
Black Hispanic White Other

Black 506 32 69 26
Hispanic 23 308 114 38
White 26 46 599 68

Men

Other 10 14 47 32

Both of these studies demonstrate how analysis of previous network
data supports our hypothesis that there may be community structure
by race in the sexual contact network in Washington, D.C.. Looking
at these past findings then invigorates the purpose of this study — to
look at the effects of community structure on epidemic trends — and
connects back to the initial inspiration of HIV prevalence disparity by
race and ward in Washington, D.C.. In the following sections, we will
formalize our definition of community structure, and work towards the
development of an SIR-like model for a random network with commu-
nity structure that is adapted from the works of Kitchovitch et al. and
Sattenspiel et al. [24] [43]. Then, we will continue in Chapter 3 with
an analysis of the model and an application to and discussion of data
from HIV in Washington, D.C..

1. Introduction to community structure in networks

Community structure in a network may be defined formally in both
a weak and a strong sense. In these definitions, we will make use of the
terms kini and kouti , the intra-community and extra-community degree
of node i respectively. In other words, kini is the number of neighbors
node i has in its own community and kouti is the number of neighbors
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node i has outside of its own community. With these ideas in mind,
let’s now define strong and weak community structure.

Definition. A subset, X, of a vertex set is a community in the
weak sense if ∑

i∈X

kini (X) >
∑
i∈X

kouti (X)[24].

Now we have that weak community structure tells us there is higher
edge density within a community, X, than between X and the remain-
der of the network, because the quantity of edges joining nodes in X
to other nodes in X is greater than the quantity of edges joining nodes
in X to nodes outside of X. Weak community structure is important
and telling on its own, but an even more powerful statement may be
made if a network is found to have strong community structure.

Definition. A subset, X, of a vertex set is a community in the
strong sense if kini (X) > kouti (X) for every node i in X.

Strong community structure, then, tells us that if we select any
random vertex in X it will have more neighbors in X than outside of
X. For the purpose of this model, we will assume we are generating a
random network with weak community structure. When we generate
the network, as we will outline in Section 3 of this chapter, edges will be
drawn between nodes with assigned probabilities. Therefore, we can-
not be certain that every single node has more connections inside its
community than outside its community once we add in this element of
chance. However, we do have a way to quantify community structure,
and allow for varying degrees of strength, and this quantification will
be described in the next section.

2. Quantifying assortive mixing with mixing matrices

When we take a collection of nodes and assign each node to a par-
ticular type or category, such as we do when we divide a network into
communities, we say that selective connectivity by type is called as-
sortive mixing [33]. In order to quantify the magnitude of the commu-
nity structure present in our network, we can use a matrix that stores
information about the assortive mixing. There are a number of ways
to design a mixing matrix, but we will go through a few.
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Newman reviews a mixing matrix commonly used [33]. In this
matrix, E, we let Eij be the number of edges in the network which
connect nodes of type i to nodes of type j. From here, we can create
a normalized mixing matrix by dividing E by the number of nodes in
the network. In the normalized mixing matrix, entry eij tells us the
percent of edges in the network which fall between nodes of type i and
nodes of type j [33]. While it is important to understand this mixing
matrix in the context of network theory and assortive mixing, for the
purposes of this study we will design a slightly different mixing matrix.

An interpretation of a mixing matrix that I will use for this paper
is presented by Sattenspiel et al. [43]. Although Sattenspiel’s work
does not explicitly use the language of networks, it uses the idea of
mixing to discuss the relationship between groups in a population. We
will call this matrix M . In M , entry Mij is the probability that a
randomly selected neighbor of node u is of type j, given that u is of
type i. In our model of a random network with community structure,
we can create community structure by reserving a portion of a node’s
neighbors for inner-community connections, and then assigning the re-
maining neighbors randomly in proportion to community size. Let ρ
be the portion of reserved inner-community links. Now, we can use ρ
to define Mii and Mij for i 6= j where ni is the number of nodes in com-
munity i and N is the total number of nodes in the network, as follows:

Mii = ρ+ (1− ρ)
ni

N
,

Mij = (1− ρ)
nj

N
.

Using matrix M we will compose another matrix that represents
slightly different probabilities about intra and extra community links.
This additional matrix will be built because it provides us with in-
formation necessary to randomly generate a network with community
structure through the method outlined by Kitchovitch et al. [24]. Let
this new matrix be P , where PXY is the probability that a randomly
chosen node u in community X is adjacent to a randomly chosen node
v in community Y . To see how matrices M and P provide us with re-
lated, but different, information, let’s consider an example. If we divide
Bates College campus by graduating class, and Mjunior,senior = 0.5, then
if we take a junior and select one of this junior’s friends at random,
the probability that this friend is a senior is 50 percent. If instead we
are given that Pjunior,senior = 0.5, this means that if we select any junior
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at random and any senior at random there is a 50 percent chance that
they are friends. We have already given the formula for finding M in
terms of ρ, and now we can solve for PXY in terms of M . We achieve
this expression for PXY by multiplying MXY by the average degree, k,
to find the expected value for the number of neighbors u will have in
Y , and then dividing by the total number of nodes in Y , nY . Then we
have the following:

PXY =
kMXY

nY

.

The resulting mixing matrices, M and P , will become hugely im-
portant in the model used in this paper. By varying ρ between 0 and
1 we can vary the degree to which assortive mixing occurs — from a
completely mixed population to almost completely isolated communi-
ties — and analyze the effects of community structure on transmission
dynamics.

3. Generating a network with community structure

To begin to create a model to help us understand community struc-
ture in epidemics, let’s make a few definitions for a network on N nodes:

Table 2. Several definitions for variables used in a
model for community structure.

nX Number of nodes in community X
k Average degree in our network
ρ Portion of neighbors reserved for inner-community links
M Mixing matrix (outlined in Chapter 2.2)
P Second mixing matrix (outlined in Chapter 2.2)
ς Set of all communities in our network

After assigning k, ρ, and nX for each X in ς, we can randomly
construct a network in a way not too different from the configuration
model described in the previous chapter. In this random graph gen-
eration we consider each pair of distinct vertices in our network and
add an edge between them with an appropriate probability. Suppose
we have vertices a and b in a network G. If a and b are in the same
community, V , then an edge is added between them with probability
PV V . If a and b are in different communities, V and W respectively,
then an edge is added between them with probability PVW . With this
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randomly generated network in mind, we can begin to analyze trans-
mission dynamics in such a network.

4. Boundary nodes and transmission between communities

Now let’s consider how a disease may spread in a network with
community structure, where the network is generated by the method we
have just outlined. An infection may pass between members of a shared
community, or it may be transmitted along an edge that connects one
community to another. However, it is not a given that all nodes in
a community have the potential to spread disease to nodes in other
communities. For a node to have this potential it must be what we call
a boundary node. This concept of a boundary node was presented by
Kitchovitch et al. [24].

Definition. A node v in a community X is a boundary node if
v has at least one neighbor, u, such that u is not a node in X.

To visualize what a boundary node is more clearly, we can observe
the highlighted nodes in Figure 2.1. Note that not all the boundary
nodes are circled there, only a few to portray the idea.

In order to be able to discuss transmission dynamics in the entire
population, we must be able to quantify the number of boundary nodes
in a community, since it is only through these boundary nodes that an
infection may pass between two distinct communities. Using our de-
fined probabilities, we may calculate the expected value for BX , the
number of boundary nodes in a community, X, as follows.

Claim 2.1. In a network G where ς is the partition of G into com-
munities, and for community X with defined values for nX and matrix
P , the expected value for the number of boundary nodes in X is

BX = nX

[
1−

∏
Y ∈ς,Y 6=X

(1− PXY )nY

]
[24].

Proof. Let x and y be nodes in communities X and Y , respec-
tively. Then the probability that x is adjacent to y is PXY . Thus, the
probability that x and y are not adjacent to one another is 1 − PXY .
Next consider the probability that x is not only not adjacent to y, but
it is not adjacent to any node in Y . This will equal the probability that
x is not adjacent to an arbitrary node in Y raised to the number of
nodes in Y . Thus, the probability that x is not adjacent to any nodes
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Figure 2.1. A few examples of boundary nodes, circled
in red, in a network with community structure. The
original network image was generated by Kitchovitch et
al. and the red circles were added for the purposes of
this thesis [24].

in Y is (1− PXY )nY .

Now we have found the probability that x is not adjacent to any
node in Y , but in fact, we want to discuss the probability that x is not
adjacent to any node in any community other than X. To address this
we may take the product of the probabilities that x is not adjacent to
a node in Y for all Y ∈ ς such that Y 6= X. Subtracting this value
from one we arrive at the following probability that x is adjacent to at
least one node outside of its community, X:

1−
∏

Y ∈ς,Y 6=X

(1− PXY )nY .

Next, by multiplying by nX , the number of nodes in X, we get the
expected number of these nX nodes that will be adjacent to at least
one node outside of X. In other words, we find the expected number
of the nX nodes in X that are boundary nodes. This number is equal
to

nX

[
1−

∏
Y ∈ς,Y 6=X

(1− PXY )nY

]
as desired. �
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This value for the number of boundary nodes will be incorporated
into our SIR equations, and we will see that it decreases as we change
P by strengthening community structure through increasing ρ. This
trend and its implications for transmission dynamics will be explored in
the next chapter. For now, we will continue to develop the foundations
of our community structure SIR model by exploring the idea of force
of infection.

5. Force of Infection

In order for our model to work, we need to be able to talk about
how likely certain susceptible individuals are to become infected in a
given period of time. We can derive an equation to aid in this dis-
cussion, and we say that this function describes the force of infection
experienced by a susceptible individual. The force of infection will be
related to both the number of infectious contacts a person has and the
rate at which disease will spread along a contact between an infectious
and a susceptible individual. In Kermack and McKendrick’s model we
have that dS/dt = −βIS. In this model, βI represents the force of
infection experienced by one individual. Here, β is the rate at which
individuals make contacts sufficient to spread disease. We multiply β
by I — the portion of the population which is infected, and thus, the
portion of contacts expected to be with infected individuals. There-
fore, βI is the rate at which individuals make sufficient contact with
infected individuals such that disease transmission will occur.

We will now outline what is called the force of infection function
in Kitchovitch’s SIR-like model, and then propose modifications. In
this section we will use the parameters and variables as represented in
Table 3.

Now, we will derive the force of infection function that comes from
Kitchovitch et al. as follows.

Claim 2.2. The force of infection, f(k, i) experienced by a suscep-
tible individual with degree k, where i is the probability that a randomly
selected node is infected and τ is transmissibility, can be expressed as:

f(k, i) =
k∑

s=0

(
k

s

)
(1− [1− τ ]s)is(1− i)k−s.

Proof. Consider a susceptible node, u, with degree k. Ultimately,
we are trying to solve for P (T ), the probability that transmission oc-
curs between u and one of its neighbors in a unit of time. Note that
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Table 3. Parameters and variables for use in the devel-
opment of the force of infection function.

γ recovery rate – probability that an infected node recovers in
one unit of time

su number of infected neighbors of vertex u
ku degree of vertex u
λ(s) probability that a susceptible individual with s infected

neighbors becomes infected during one unit of time
τ transmissibility of the disease – the probability that infection

will spread during one unit of time along an edge joining an
infected and a susceptible individual

kX mean degree in community X
kinX mean number of neighbors in X for vertices in X
koutX mean number of neighbors outside of X for vertices in X
SX number of susceptible individuals in community X
IX number of infected individuals in community X
RX number of removed individuals in community X

P (T ) is conceptually equivalent to the force of infection, f(k, i), on
our node u with degree k. Let P (s) represent the probability that
s of u’s k neighbors are infected, and let i be the probability that
when we select a neighbor for u from our network the neighbor will
be infected. Think of this scenario as an experiment with k trials and
two possible outcomes — “success” and “failure.” The probability of
a “success” is i and a success is defined as a selected neighbor being
infected. It is easy to see now that P (s) follows a binomial probability
distribution. So the probability that s of u’s k neighbors are infected
is P (s) =

(
k
s

)
is(1− i)k−s.

Next consider the probability that u will become infected when s of
its k neighbors are infected. We will denote this P (T |s), the conditional
probability that transmission occurs given a value for s. Let τ be the
transmissibility, or probability that infection will spread along an edge
between an infected and a susceptible individual. Then 1 − τ is the
probability that infection will not spread along one of u’s s edges that
are incident with infected nodes. Consequently, (1− τ)s is the proba-
bility that infection will not spread along any of u’s s edges incident to
infected nodes. Thus, P (T |s) = 1 − (1 − τ)s is the probability that u
will be infected by at least one of its neighbors if s of its neighbors are
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infected.

From here, to find P (T ), the probability that u will become infected
during one unit of time when u has k neighbors and i is the probability
that a randomly selected node from the network is infected, we will
use the law of total probability. The law of total probability allows us
to say that P (T ) =

∑k
s=0 P (s)P (T |s). Substituting in what we have

already calculated, and using the function notation of f(k, i) instead
of our probability notation, P (T ), we get that P (T ) is equal to

f(k, i) =
k∑

s=0

(
k

s

)
(1− [1− τ ]s)is(1− i)k−s

as desired.
�

When applying this force of infection function in the community
structure model, Kitchovitch et al. propose using the average k val-
ues kinX and koutX depending on whether we are accounting for the force
of infection on a node from within its community or from outside its
community. However, in this force of infection function k must be
an integer, and so we must round the average values. While using
rounded average degrees might work when modeling flu-like epidemics
where degrees are large, this application becomes impractical at low k
values like the ones we might expect for sexually transmitted diseases.
To account for this, we will propose the following modification.

Claim 2.3. The internal force of infection f in
X and external force

of infection f out
X experienced by a susceptible individual in community

X, where i is the probability that a randomly selected node is infected,
τ is transmissibility, and pkXX and pkXY are the internal and external
degree distributions, can be expressed as:

f in
X =

∞∑
s=0

[
(1− [1− τ ]s)

(
∞∑
k=0

(
k

s

)
is(1− i)k−spkXX

)]
and

f out
X =

∞∑
s=0

[
(1− [1− τ ]s)

∑
Y ∈ς,Y 6=X

(
∞∑
k=0

(
k

s

)
iY

s(1− iY )k−spkXY

)]
where the internal degree distribution, pkXX , is

pkXX =

(
nX − 1

k

)
PXX

k(1− PXX)nX−1−k
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and the external degree distribution between communities X and Y ,
pkXY , is

pkXY =

(
nY

k

)
PXY

k(1− PXY )nY−k.

Proof. From the original force of infection function from Claim
2.2, we have that

P (T ) =
∞∑
s=0

P (T |s)P (s).

In this function, k is an input and so it is fixed. Now consider that
we allow k to have a degree distribution such that a node has degree
k with probability pk. Now we can apply the law of total probability
here a second time and substitute in for P (s) appropriately to obtain,

P (T ) =
∞∑
s=0

(
P (T |s)

∞∑
k=0

P (s|k)pk

)
.

Next, the values which have been previously calculated may be substi-
tuted in to afford

P (T ) = f(i) =
∞∑
s=0

(
(1− [1− τ ]s)

∞∑
k=0

(
k

s

)
is(1− i)k−spk

)
.

What is missing now is the degree distribution, pk, for this model.
Let’s consider the force of infection within and between communities
separately. First we will find the internal degree distribution. Let X
be an arbitrary community in our network and x an arbitrary node
in X. When we generated our random network, we considered every
node x′ in X such that x′ 6= x and added an edge between x and x′

with probability PXX . We can think of this as an experiment with
nX − 1 trials where a “success” is the addition of an edge and the
probability of success is PXX . Then, the probability of k successes is
the probability of x having degree k, and we have shown that it fits a
binomial distribution. Thus,

pkXX =

(
nX − 1

k

)
PXX

k(1− PXX)nX−1−k.

Now this degree distribution can be inserted into our force of infection
function, and the entire function has been defined. By inputting all of
the variables it will tell us the force of infection that a single node in



5. FORCE OF INFECTION 21

community X experiences from within its community.

When we discuss the external force of infection it becomes more
complicated. First consider the force of infection a node in X ex-
periences from another arbitrary community Y . So, we will find the
expected value for the number of neighbors our arbitrary node x in X
will have in community Y . This follows a similar binomial distribution
to the internal degree distribution of X, but now we have nY trials
instead of nX − 1 trials and our probability of success has changed to
PXY . Thus, we have the degree distribution for connections between
communities X and Y as

pkXY =

(
nY

k

)
PXY

k(1− PXY )nY −k.

However, we want to know about the force of infection on x from all
communities outside of its own, not just from community Y . So, when
we substitute in for P (s), the probability of having s infected neighbors,
we will sum the expected value of infected neighbors in each community
over all of the communities which are not X. The result is

f out
X =

∞∑
s=0

[
(1− [1− τ ]s)

∑
Y ∈ς,Y 6=X

(
∞∑
k=0

(
k

s

)
isY (1− iY )k−spkXY

)]
as desired.

�

One additional benefit of this proposed force of infection function
is that it incorporates a degree distribution. One of the great things
about using networks to model epidemics is that you can say that each
person does not have an equal number of interactions. As previously
outlined, this may be particularly applicable in the case of sexually
transmitted diseases. However, while this force of infection function
makes theoretical sense, high computational power is required to solve
and analyze differential equations with this function, as there are many
sums involved. Thus, I will propose the following simplification to be
used for the implementation of our model.

Claim 2.4. The external and internal force of infection in our com-
munity structure network model may be given by the following equa-
tions:

fin(X) = τPXXIX ,
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fout(X) = τ
∑

Y ∈ς,Y 6=X

PXY IY .

Proof. First I will derive the internal force of infection function
fin(X) for an arbitrary community X.

Again, consider an arbitrary susceptible node x in our arbitrary
community X. We will find the expected value for the number of in-
fected neighbors of x. The number of infective nodes in X is IX and the
probability that x is connected to any randomly chosen one of those
IX nodes is PXX . Therefore, the expected value for the number of in-
fective neighbors of x in X is PXXIX . Next if we multiply by τ , the
rate at which infection spreads along an edge between a susceptible
and an infected individual, we will have a force of infection function
fin(X) = τPXXIX , which describes the rate at which disease is trans-
mitted to x.

Now let’s consider the force of infection that our arbitrary suscep-
tible node x experiences from outside its community. Again, we will
calculate the expected value for the number of infective neighbors x
will have. In this case, we will calculate the number of infective neigh-
bors of x in an arbitrary community Y and then sum over all of the
communities Y in our network such that Y is not X. The probability
that x is adjacent to a randomly selected node in Y is PXY . Then,
by multiplying by IY , the number of infective nodes in Y , we obtain
the expected number of these IY infectives which are neighbors of x.
Summing over our set of communities gives the expected number of
external infective neighbors of x as∑

Y ∈ς,Y 6=X

PXY IY .

Then, as we did before, we multiply by τ to obtain the rate at which
infection spreads to x. This is our external force of infection function

fout(X) = τ
∑

Y ∈ς,Y 6=X

PXY IY

as desired.

�

Note that in these functions we are using the average degrees instead
of building in a degree distribution. We decided this was a problem
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before because the original force of infection function required k to be
an integer, and rounding the average would skew the results. However,
in these new force of infection functions we are not rounding to an
integer, and so using an average should be valid. Unfortunately this
method does not use a degree distribution to account for the range in
connectivity, but its simplicity makes for much greater computational
power, and we will build in complexities in other ways.

Also observe that we have just outlined several force of infection
functions. While each one should be justified and may take into ac-
count different factors, it is important to realize that there is no one
right answer, and that part of building a good model is choosing a force
of infection function that seems logical and makes realistic simplifica-
tions. With this in mind, we will take the final proposed internal and
external force of infection functions forward into the next section, to
build our SIR-like model.

6. Building the SIR-like model

Now, using these pieces that we have laid out, we will derive equa-
tions to represent the change in susceptibles, infectives, and removed
in a single community, X. We could create a set of differential equa-
tions like this for each community in the network. The SIR model, as
adapted from the paper by Kitchovitch et al. [24], is given by these
differential equations:

dSX

dt
= −

[
SXfin(X)+ BX

nX
SX [fin(X)−fin(X)fout(X)]

]
+ΛnX−µSX ,

dIX
dt

=
[
SXfin(X) + BX

nX
SX [fin(X)− fin(X)fout(X)]

]
− γIX − µIX ,

dRX

dt
= γIX − µRX .

Our force of infection function tells us about a single susceptible
node becoming infected. However, we are concerned with the dy-
namics of entire populations of susceptible individuals. Going back
again to Kermack and McKendrick’s model, we see that they gave
dS/dt = −βIS. Including S, the number of susceptible individuals,
along with βI, the force of infection on an individual, we get the force
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Figure 2.2. The three types of edges along which dis-
ease may spread: non-boundary node to non-boundary
node, boundary node to intra-community node, bound-
ary node to extra-community node. The original network
image was generated by Kitchovitch et al. and the red
highlights were added for the purposes of this thesis [24].

of infection on the whole population of susceptibles. For our network
model then, Sf may represent the force of infection experienced by
a whole population of susceptibles. However, to make sense of our
community structure we want to think of our susceptible population in
categories.

A population of susceptibles in X may lose members in several
ways: a node in X may be infected by another individual in X or a
boundary node may be infected by an individual not in X. Note that
boundary nodes may be infected either by nodes in X or by nodes
outside of X. Each of these types of links through which infection may
spread is highlighted in Figure 2.2.

First consider nodes in X which are infected by other nodes in X.
The number of susceptible nodes in X is SX and the internal force of
infection each of these nodes experiences is fin(X). This is where the
SXfin(X) term in our differential equations comes from.
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Now consider the boundary nodes. The expression BX

nx
SX is the ex-

pected value for the number of susceptible boundary nodes in X. Each
of these boundary nodes experiences both an external and an internal
force of infection. However, we have already accounted for boundary
nodes in X being infected by other nodes in X with our SXfin(X) term.
Therefore, when we develop an expression for the boundary nodes leav-
ing the susceptible group for the infective group we will subtract for the
potential that boundary nodes will be infected by an internal and an
external node simultaneously. In summary, our boundary node term
appears as BX

nX
SX [fin(X)− fin(X)fout(X)].

Putting these two parts together we have that the rate of change
of susceptibles in our community X is

−
[
SXfin(X) +

BX

nX

SX [fin(X)− fin(X)fout(X)]
]
.

Then, just as in Kermack and McKendrick’s model, the rate of change
in infectives over time is the opposite of the change in susceptibles,
with an added term to account for the infected individuals who be-
come removed — γIX .

The final component of these differential equations accounts for in-
dividuals who enter and leave the population through immigration or
birth/death. In models looking at the flu, or epidemics that cover short
time spans, these population dynamics may be less important because
they may not change significantly over the course of an outbreak. How-
ever, when modeling HIV we may consider how prevalence changes over
decades, and in this case, there is likely a significant inflow and outflow
of people from a population. We will define the birth and immigration
rate as Λ and assume that all incoming individuals are susceptible. To
represent this inflow, we add the term Λnx to our differential equation
for SX . Next define the death and emigration rate as µ. We will assume
that susceptible, infected, and removed individuals all leave the popu-
lation at the same rate, and so subtract µSX , µIX , and µRX from the
differential equations for SX , IX , and RX respectively. The parameters
Λ and µ may be chosen such that there is no net change in the size of
the overall population, because the terms representing the removal of
individuals may cancel with the terms representing the addition of in-
dividuals. In practice, trends in population dynamics should be taken
into consideration, as some populations are increasing or decreasing
in size, but this will be an acceptable assumption for the theoretical
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discussion of our model.

Now that the model is set up, we can turn to a discussion of analy-
sis and potential application. The use of computer tools to solve math
models is ubiquitous in the realm of epidemiology on networks. In the
remainder of this paper, computer technology will serve as a platform
through which we can solve challenging equations and address complex
questions about the affect of community structure on transmission dy-
namics and epidemic trends.



CHAPTER 3

Model Analysis and Application to HIV in
Washington, D.C.

One function of modeling epidemics is to predict the impact that
certain parameters, public health measures, or population characteris-
tics may have on the spread of disease. In this chapter, I will return
to my original inspiration — the HIV/AIDS epidemic in Washington,
D.C. — to look at the impact of community structure in a population
on the spread of disease. For this application of the model that was
outlined in the previous chapter, I divided the population of D.C. into
three communities by race — black, white, and Latino — and used
the resulting network as an example of how community structure may
impact long term HIV prevalence in the population, as well as the
disparity in HIV prevalence between the racial/ethnic groups. First,
however, I will demonstrate the model on a simple sample population
to analyze some of its properties and discuss a few potential effects of
community structure on transmission dynamics in a general epidemic.

1. Analysis of a generic community network

Consider a network made up of three communities — X, Y , and
Z — each containing 100 nodes. Start with two infectives in X and
one infective in Y and allow the remaining nodes to be susceptible.
Let the average degree be 1.5, suppose γ = 0.1, τ = 0.3, and that
there is no birth, death, or immigration. By implementing our model
in Mathematica® (see Appendix A) with these values, we obtain the
progression in number of infectives over time represented by Figure 3.1.

Qualitatively, we can begin to make observations from the plots.
When there is little or no community structure, each of the commu-
nities experiences a roughly equivalent rise and fall in number of in-
fectives. As we increase ρ to increase community structure the com-
munities begin to diverge, where each one has its maximum number
of infectives at a different time point (Figure 3.1A). The result of this
is that if we dramatically increase community structure by setting ρ

27
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A

B

Figure 3.1. Number of infectives as a function of time
in (A) communities X (solid), Y (dashed), and Z (thick)
and (B) the entire population. The mixing parameter ρ
is also varied, with red representing a fully mixed popu-
lation (ρ = 0) and mixing progressing in chromatic order
to black (ρ = 0.99).

to 0.99, and look at the number of infectives in the total population,
we see two spikes (Figure 3.1B). One is from the two communities (X
and Y ) that began with infectives and the other is from community Z,
which began with no infectives. It takes some time for the disease to
penetrate community Z, but after this delay Z experiences a pattern of
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A B

Figure 3.2. Average (A) internal degree, kin, and (B)
number of boundary nodes, B, for communities as a func-
tion of the mixing parameter ρ. Calculations are for a
sample network with average degree k = 1.5 in three
communities of 100 nodes each.

infective increase and decrease similar to that of communities X and Y .

We can calculate the average internal degree (k̄in) and the number
of boundary nodes (B) in each community as a function of ρ to help us
to understand these trends; these values are represented in Figure 3.2
(for Mathematica® notebook see Appendix B). Since communities X,
Y , and Z each have the same number of nodes and the same average
degree, k̄in and B will be the same in each community.

Notice that as ρ increases (community structure strengthens) the
average internal degree increases and the expected number of boundary
nodes decreases. Since the average degree is the same no matter what
ρ is but increasing ρ decreases the likelihood of having external connec-
tions, it makes sense that increasing ρ increases internal connections.
To make this more clear, we can consider an analogous scenario. If I set
out to make five friends at Bates College, and I could make a friend in
any graduating class with equal probability, I would likely have fewer
friends in my class than if the majority of my five new friends had
to be in my class year. Since the percentage of infectives is initially
higher in community X than in the entire population, increasing com-
munity structure and therefore increasing the average internal degree
effectively increases the likelihood that a given interaction for a suscep-
tible in X will be with an infective. This will cause the comparatively
rapid increase in infectives for X.
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The number of boundary nodes decreases with increasing ρ. This
means that as we strengthen community structure there are fewer nodes
in each community with external neighbors. As a result, there are fewer
avenues through which the infection can spread to community Z, which
started with zero infectives.

One previous study, by Sattenspiel et al., modeled HIV in a hypo-
thetical population that was divided by levels of sexual activity [43].
The population consisted of 50,000 individuals with one contact per
month, 33,000 with two contacts per month, 9000 with four contacts
per month, 2000 with eight contacts per month, and 1000 with sixteen
contacts per month. Although Sattenspiel’s study uses different pop-
ulations and parameters from this paper, it obtained similar results,
where multiple peaks in infectives occurred in cases with extreme com-
munity structure [43]. It is interesting to note, however, that the model
used by Sattenspiel et al. uses assortive mixing without using the lan-
guage of networks.

Looking to previous work provides validation that our model is pro-
ducing realistic trends. Even though the differential equations behind
the Sattenspiel plots are different from our differential equations, the
two models produce comparable results.

While the analysis of this simple network helps us to understand a
few basic ways community structure might affect transmission dynam-
ics, it may be more interesting to consider the application of the model
to a real world epidemic. Going forward, we will look at HIV in Wash-
ington, D.C., first by considering how we might choose the parameters
that organize our network and transmission through it, and second by
running the model and discussing the results and their context.

2. Choosing the parameters

Much of the information that can be pulled from the analysis of
a model depends on how parameters are chosen. In a model that is
meant to produce predictions for a current epidemic, these values can
be crucial to the integrity of the results. For this application, we will
try to make educated choices for the parameter values, while recogniz-
ing the limitations to their accuracy. However, even if the parameter
values do not reflect reality as closely as we may like, we can still draw
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trends, if not precise numerical predictions, from the model analysis.

The parameters and values that needed to be chosen for this study
were the average degree k, the birth/immigration rate Λ, the death/
emigration rate µ, the removal rate γ, the transmissibility τ , the popu-
lation size of each community, and the initial distribution of susceptible,
infected, and removed individuals. Each rate will go under the assump-
tion that our time scale is by months.

The interpretation of average degree k is the average number of
sexual partners an individual has in a given month. In most sexual
networks, we can expect that there will be a few individuals who are
highly sexually active, but the majority of individuals will have rela-
tively few sexual partners. In one study, data from a 1996 survey of
sexual behavior in Sweden was analyzed and it was found that the num-
ber of partners held by individuals in the population fit a power law
distribution — one that behaves as I have said, with the majority of in-
dividuals having few contacts and a small number of individuals having
many contacts [28]. In the model developed by Sattenspiel et al., as
mentioned in the previous section, the population of homosexual males
consisted of 50,000 individuals with one contact per month, 33,000 with
two contacts per month, 9000 with four contacts per month, 2000 with
eight contacts per month, and 1000 with sixteen contacts per month
[43]. We can see that in this study the overwhelming majority of in-
dividuals in the population were assigned to one or two contacts per
month, but that there is a smaller group of individuals with a relatively
high number of contacts. In my analysis, I will look at average k values
of 1, 1.5, and 2, to test a range and analyze the effect of k.

The birth/immigration rate Λ that I will use is 0.003. The birth
rate in the District of Columbia as of 2010 is 15.2 births per 1000,
meaning that for every 1000 people in the city, 15.2 people are born in
a year [15]. Then, dividing 15.2 by 12,000 gives us the birth rate per
month per single individual of 0.0013. Similarly, the immigration rate
is available from data and can be calculated to 0.0014 [11]. Summing
and rounding the birth and immigration rates gives a Λ value of 0.003.

This study will assume for simplification that the size of the total
population is unchanging. This will allow us to assess the effects of
community structure on transmission dynamics more clearly, because
changes in susceptible, infective, and removed populations will be due
to disease spread, not demographics. To fit this assumption, allow the
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death/emigration rate µ to equal Λ, which we have said will be
0.003. Then

ΛnX + (−µSX) + (−µIX) + (−µRX)

= ΛnX − µ(SX + IX +RX)

= 0,

so dSX

dt
+ dSX

dt
+ dSX

dt
= 0 and the total population size, SX + IX + RX ,

is unchanging.

It is worth taking a minute, however, to discuss the population
changes in Washington, D.C.. According to the United States Census
Bureau, the population of the city was 601,723 in 2010, and rose to
658,893 in 2014 [47]. This constitutes a 9.5 percent change in popu-
lation size. Furthermore, the composition of the population is chang-
ing over time. Figure 3.3 shows the racial make up of the District of
Columbia over the last 200 years [45]. It is clear that demographics
are dynamic, and strongly affected by current events, changing cul-
ture, politics, and many other factors. For example, in the 1950s the
white population of the city dropped off dramatically as white peo-
ple began to move to the suburbs. The black population experienced
a similarly sharp decline after Martin Luther King Jr.’s assassination
in 1968, when riots destroyed predominantly black neighborhoods and
prompted a black migration to the suburbs [45]. More recently there
has been a rise in Latino and Asian populations in the city. While there
are current trends, and the population dynamics should not be ignored,
it would be difficult to account for these changes in a long term model,
since it is clear that demographics are dynamic and unpredictable.

The next parameter to be selected was the removal rate γ. As
previously mentioned, for HIV models the removal rate translates to
the rate at which HIV positive individuals progress to AIDS. In people
who are HIV positive, the virus attacks the CD4 cells of the immune
system, leaving the person vulnerable to infection. When significant
damage has been done to the immune system such that opportunistic
infections are acquired, or CD4 counts drop below 200 cells per cu-
bic millimeter of blood (200 cells/mm3), a person is diagnosed with
Acquired Immune Deficiency Syndrome (AIDS). For reference, CD4
counts in a healthy individual are between 500 and 1600 cells/mm3.
Once a person meets these qualifications for AIDS, we can say that
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Figure 3.3. Dynamics of racial composition of the
Washington D.C. population between 1800 and 2010
[45].

the person will be sick enough that they are no longer likely to be sex-
ually active, and so will not participate in the spread of the disease.
Therefore, we can place these individuals with AIDS in the removed
compartment.

Now we will discuss the time between HIV diagnosis and progres-
sion to AIDS. In untreated individuals, this time is typically 10 -15
years, but can be shorter or longer [50] [48]. There are many factors
that affect the progression to AIDS. Among them are genetics, diet,
exercise, nutrition, age, stress, and co-infection with other viruses. Ad-
ditionally, treatment with Antiretroviral Therapy (ART) will slow the
progression of the disease. Therefore, early diagnosis of HIV and ad-
herence to treatment are critical for health and life expectancy [50]
[48]. For the purpose of this study the removal rate, γ, will be 0.008.
This means that in a given month, 8 people per thousand infectives
will develop AIDS, or 96 per year. A rate like this translates to an
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average removal time per individual of just over 10 years.

Transmissibility, τ , is similarly difficult to determine, since it de-
pends on more than just whether or not a person is HIV positive. For
example, being infected with another virus makes a person more vul-
nerable to contracting HIV [48]. Treatment with ART also lowers an
HIV positive individual’s risk of spreading the virus to a sexual part-
ner because it decreases the amount of virus in the body. Additionally,
transmissibility through sexual contact depends on what type of sexual
contact takes place. Transmission risks are estimated at 0.5-3.38 per-
cent for anal intercourse and 0.05-0.19 percent for vaginal intercourse
[37]. Assuming that most HIV transmission occurs from anal inter-
course between men having sex with men, that a person may likely
have intercourse more than once with a given sexual partner, but that
condoms may be used for some interactions, we will estimate that the
probability of an infective transmitting HIV to a susceptible partner in
a month is one percent. Therefore, we will say τ is 0.01.

Finally, the initial population sizes and distribution between
susceptible, infective, and removed compartments needs to be
determined. From the United States Census Bureau, we can obtain val-
ues for the total population of Washington, D.C., and the approximate
percentage of the population by race [47]. From the Kaiser Family
Foundation we can obtain the percentage of each demographic pop-
ulation which is HIV positive [15]. Calculations of community sizes
and initial S and I populations follow from there and are presented in
table 1. We will assume that the initial removed population is zero.
Although this is not true, what we will track is the change of invectives
over time, and the number of individuals in the removed category has
no impact on the rate of change of infectives (dI

dt
), so we will not focus

our attention on the accurate portrayal of the removed compartment.

Table 1. For blacks, Latinos, and whites in Washing-
ton, D.C., the estimated percent of overall population,
population, percent living with HIV, size of HIV popu-
lation, and size of susceptible population.

%Population Population % HIV+ HIV+ Population S Population
Black 50 323,000 4.3 13,890 309,110
Latino 10 64,600 1.8 1,160 63,440
White 40 258,400 1.2 3,100 255,300
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With these parameters and initial conditions for HIV spread in our
black, white, and Latino network communities, we can proceed to use
Mathematica® for computer simulation of disease progression within
and between the communities over time.

3. Analysis of the Washington, D.C. HIV model

Often when we discuss HIV epidemics we discuss prevalence, or the
portion of a population that is infected. HIV tends to persist at a low
level in populations, but there may be trends in increasing or decreas-
ing prevalence. The goal of any public health measure would be to
decrease prevalence of HIV or to improve the lives or prognosis of HIV
positive individuals. Taking this into consideration, what we will focus
on is the total number of infectives as a function of time. Implementa-
tion of our model and parameters in Mathematica® (see Appendix A)
affords the following figures for the number of infectives. From these
figures we can draw that both the degree of community structure, ρ,
and the average degree of the nodes, k, have an important impact on
transmission dynamics. Notably, community structure appears to af-
fect the initial behavior of the spread as well as the long term behavior
in number of infectives.
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A.i. A.ii.

B.i. B.ii.

C.i. C.ii.

Figure 3.4. For (A) k = 1, (B) k = 1.5, and (C) k = 2,
and varying values of ρ, the total number of infectives
in (i) black, white, and Latino communities and (ii) the
total population, as a function of months. The mixing
parameter ρ takes on the values 0, 0.1, 0.3, 0.5, 0.7, 0.9,
and 0.99 with 0 (red) being a fully mixed population and
0.99 (black) demonstrating the most segregated popula-
tion.
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A

B

Figure 3.5. For k = 1 and varying values of ρ, the
total number of infectives in (A) black, white, and Latino
communities and (B) the total population, as a function
of months. The mixing parameter ρ takes on the values
0, 0.1, 0.3, 0.5, 0.7, 0.9, and 0.99 with 0 (red) being a
fully mixed population and 0.99 (black) demonstrating
the most segregated population.
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B

Figure 3.6. For k = 1.5 and varying values of ρ, the
total number of infectives in (A) black, white, and Latino
communities and (B) the total population, as a function
of months. The mixing parameter ρ takes on the values
0, 0.1, 0.3, 0.5, 0.7, 0.9, and 0.99 with 0 (red) being a
fully mixed population and 0.99 (black) demonstrating
the most segregated population.
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Figure 3.7. For k = 2 and varying values of ρ, the
total number of infectives in (A) black, white, and Latino
communities and (B) the total population, as a function
of months. The mixing parameter ρ takes on the values
0, 0.1, 0.3, 0.5, 0.7, 0.9, and 0.99 with 0 (red) being a
fully mixed population and 0.99 (black) demonstrating
the most segregated population.

Looking at the initial behavior of each curve, one noticeable trend
is that the fully mixed populations represented by the red lines show a
narrowing in the gap between black and white HIV prevalence. In con-
trast, as community structure is strengthened we see that the trends
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instead work to maintain the differences between racial groups. We
can interpret these results as demonstrating that community structure
may work to perpetuate prevalence disparities between communities
when one community begins with a significantly higher initial preva-
lence than the others.

The second trend that becomes apparent is that as the curves sta-
bilize, the number of infectives in the total population is greater when
community structure is stronger. Note that in Figures 3.6B and 3.7B
the number of infectives at time 1200 is strongly dependent on the mix-
ing factor, ρ. However, we should be careful in this analysis because
our end behavior is being measured at 1200 months, or 100 years. A lot
can change in 100 years that could impact the dynamics of HIV trans-
mission. New treatments could be discovered, there could be a huge
shift in demographic composition, new public health measures or laws
could be put in place, etc. Additionally, forecasting out 100 years may
seem illogical for a disease that has only been officially recognized since
the early 1980s. Still, the time scale on this model may be affected by
more accurate calculations of the model parameters. Additionally, the
purpose of this model is not to make accurate numerical predictions,
but instead to study the trends that may arise as a consequence of
community structure in disease propagation on networks.

It becomes immediately apparent from the curves that the model
predicts dramatic changes when only the average degree k is varied. As
we increase the average degree in our network, we allow each person
to have more contacts, and this allows for more potential for disease
spread. The result is that when k = 1 each population experiences
an immediate decrease in HIV prevalence, when k = 1.5 the curves
are less dramatic, with gradual increases or decreases in prevalence de-
pending on time and ρ, and when k = 2 the overarching trend is a great
increase in prevalence followed by a decrease and stabilization in preva-
lence (Figure 3.4). Since we expect that the prevalence in Washington,
D.C., is not experiencing dramatic immediate changes, but rather a
more gradual change, we are supported in our choices for k. Another
thing to note is that when k = 1.5 (as compared to k = 1 and k = 2)
we see the greatest difference in long term behavior of HIV prevalence
as ρ is varied. Therefore, the model suggests that community struc-
ture may have the strongest impact on prevalence at a particular, and
relatively small, value of k. It may be that as k is increased, the num-
ber of boundary nodes in our communities is large enough that spread
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between communities is not inhibited. Even if there are still more con-
nections inside a network than between networks, transmission between
communities could occur freely and our curves would begin to behave
most like a fully mixed population even as ρ is increased. In light of
this observation, community structure analysis becomes even more rel-
evant to sexual contact networks, since these types of networks tend to
have smaller average degrees than friendship or acquaintance networks.

4. Further investigation of racial/ethnic HIV disparity

While I have posited that community structure may be present in
the D.C. sexual contact network, and that this may be related to the
disparity in HIV prevalence by race, there are other important social
factors that may be behind why certain populations are more heavily
affected than others.

Some differences between racial populations are associated with so-
cial network properties. Adimora and Schoenbach review several differ-
ences between sexual contact networks in white populations and similar
networks in black populations in the United States, and how that might
affect the spread of sexually transmitted diseases [2]. In black popu-
lations, sexual contact occurs more often between people with many
partners and people with fewer partners [26]. Additionally, black men
and women have been found to be more likely to have concurrent sex-
ual partnerships than white men and women [1]. Having overlapping
partnerships allows for a more rapid spread of disease, even if the total
number of partners is the same [31]. Each of these nuances is related
to network structure — who is connected to who. Patterns of this kind
vary between populations and are important, as this paper demon-
strates, to any analysis of disease spread, but in particular the spread
of sexually transmitted diseases like HIV since sexual contact networks
tend to be sparse (have less connectivity or fewer edges) and strongly
affected by social factors.

A further investigation of racial disparity in HIV prevalence re-
quires a deeper look into the underlying social factors that affect the
network patterns we see. A history of institutionalized racism has left
us with a population where socioeconomic status and race are linked by
trends (Figure 3.8). In 2008, the median household income in Washing-
ton, D.C., was $107,600 for non-Hispanic white households, $39,200 for
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black households, and $43,500 for Hispanic households [22]. Income in-
equality manifests itself in a number of other inequalities. Poorer fam-
ilies on average have lower quality education, experience more stress,
have less access to and knowledge of healthy food options, and have
less leisure time for activities and exercise. Poor sex-education and
reproductive health services lead to patterns of sexual behavior that
favor the spread of sexually transmitted diseases [2]. In addition to
decreasing the overall health of an individual, chronic stress may make
individuals more susceptible to HIV and may also speed up HIV dis-
ease progression after infection [27]. Lower socioeconomic status may
be a cause of instability in relationships, and promote the behavior of
taking on concurrent sexual partners [39]. The ability to form stable
relationships is also important because sexually transmitted diseases
are less likely to propagate in contact networks with long-term monog-
amous relationships [25]. For example, a network where everyone has
one partner a month will spread disease differently if we assume that
each month the individuals may take a different partner than if we as-
sume that each month most individuals are remaining with the same
partner as the previous month.

Racial division in social networks also reinforces cultural norms of
sexual behavior that may influence the spread of sexually transmitted
diseases. Geographical and relational racial segregation concentrates
issues like poverty and poor education in disadvantaged groups in a
parallel to the way segregation concentrates illness, in particular HIV.
Geographical separation into racially homogeneous neighborhoods may
also enhance community structure in sexual networks, because people
are more likely to choose partners from their own neighborhood [51].
Our residence also decides what school district our children will go to,
so it influences who adolescents interact with and what type of educa-
tion they are receiving.

Additionally, racial segregation may serve to propagate stigma that
can increase risky behavior and inhibit screening and treatment. Earn-
shaw et al. evaluate the impact of stigma on racial divides associated
with HIV [14]. Disadvantaged communities may have less access to
services for prevention and treatment, but they may also take less ad-
vantage of the services available to them. For example, medical mis-
trust and conspiracy theories in black populations may contribute to
negative attitudes towards condoms [4]. As compared to whites, mi-
norities are more likely to be tested and diagnosed at a later stage in
the HIV disease progression [8]. In many cases, this may be because
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Figure 3.8. Median household income in Washington,
D.C., in 2000, 2005, and 2008 by race/ethnicity [22].

stigma works as a barrier to HIV screening [35]. People may fear that
others will judge them for being tested because of the stigma attached
to the behaviors associated with HIV [14]. After diagnosis, we find that
stigma may also be a barrier to treatment. Latinos and blacks have
been found to delay treatment longer than whites [46]. Additionally,
once care has been sought, minorities are less consistently adherent to
the antiretroviral therapy they may receive [19]. Each of these factors
combined may play a role in the trends observed in Washington, D.C.
for newly diagnosed AIDS cases. While most of the cases of HIV in
the district are in black individuals, the number of AIDS diagnoses for
the black population is disproportionately high. This vast difference is
displayed in Figure 3.9.

While differences in socioeconomic status, education, perception
of stigma, access to services and treatments, and myriad other so-
cial factors may be enhanced by community structure, they could also
be considered in the construction of a community structure model.
Each of the upstream factors discussed could be built into the model
by conferring different properties to each population, or allowing each
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Figure 3.9. Newly diagnosed AIDS cases in Washing-
ton, D.C. by race [12].

community to take on different parameter values. For example, poor
education and stigma could reduce condom usage in a community and
increase risky sexual activity. The effect of these factors is essentially
an increase in average degree, k. Later testing in one group may also
effectively increase k or transmissibility τ , because if an infected indi-
vidual knows of their status as HIV positive, they may take steps to
reduce the likelihood of transmission to their partners. Additionally,
with diagnosis and proper treatment, ART can reduce an individual’s
viral load, therefore reducing the transmissibility for any sexual inter-
action the individual may have. So, we may expect that τ could be
varied between communities that are more or less likely to seek and ad-
here to treatment. The removal rate, or the rate at which HIV positive
individuals progress to an AIDS diagnosis, may also vary between com-
munities in relation to overall health and tendency to seek and adhere
to treatment as discussed previously. In this paper, the parameters
were kept consistent between communities, but it is conceivable that
the trends predicted in my model would be different or exaggerated
if different properties were conferred to each population. Varying the
properties of the communities could be an interesting extension to this
study, and I would suggest that it should be addressed if any serious
effort were made to find and fit comprehensive real world data to this
model. Some previous works, including the studies of Kitchovitch and
Lió [24] and Sattenspiel et al. [43] which we have already looked at,
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allow for differences between communities or even base the community
division lines on these property differences, and we will look at these
and select other papers as we conclude this thesis in the next chapter.



CHAPTER 4

Conclusions and Lessons from the Literature

While addressing the implications of my work, it is important to
understand the context in which it is produced. Using network theory
to address epidemics is a relatively new field, and incorporating ideas
of community structure into the dynamics is an even newer area of
study. Most of the related works available have been produced in the
last decade. This means that the discussion of community structure
in epidemic analysis is promising, and diverse and versatile in its ap-
plications. In this section, I will review a selection of works which are
related to my model, and discuss how they may inform my process or
potential future studies in the field.

Although a large part of my model is based off of the work by
Kitchovitch and Lio, what I have not previously discussed is that their
model introduces into the force of infection function a factor for aware-
ness, or perceived risk, and in fact this is where most of the emphasis
is placed in the analysis of the model [24]. This awareness factor may
be related to access to information, health care, preventative measures,
and more. As a consequence of awareness, an individual may engage in
less risky behavior or take steps to reduce the likelihood of contracting
a particular infection. The argument is that each community may take
on a different value for this awareness factor, and that through confer-
ring different properties to each community in this way we may change
the way community structure impacts transmission in the population.
This awareness factor could be related to each of the parameter affect-
ing sociological concepts discussed in the previous section in relation
to differences between each racial/ethnic community.

Sattenspiel et al., in the paper discussed in section 3.1, divides
individuals into separate communities based on sexual activity, and in-
vestigates the effect of sexual activity on risk of infection as well as
the effects of mixing between groups on individual risk and population
trends [43]. In this way the model addresses something my model does
not — the possibility of a degree distribution — and allows for the

46
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variance of a particular property between communities. Conclusions
drawn in this paper are that the initial spread of the disease and the
steady-state proportion of infected individuals are both influenced by
the degree of mixing [43].

Another study worth highlighting is the work by Kenah and Robins
to use probability generating functions, in a method not unrelated to
that explored in Chapter 1, to study mean outbreak size and final
epidemic size in percolation networks with random and proportionate
mixing [20]. In the discussion of proportionate mixing, the population
is divided into sub-populations, but the number of neighbors a node
will have in any given sub-population is proportionate to the size of the
sub-population. This is unlike our model with assortive mixing, where
there is a like-attracted-to-like factor. What makes the division into
categories useful, then, is the ability to allow parameters such as trans-
missibility and recovery rates to vary between sub-populations [20].

While many works I have discussed generate random networks guided
by particular patterns or parameters, some studies look at networks for
which connection data already exists. In Cuba, a contact-tracing de-
tection system has been in place since 1986, meaning that data for a
large network of HIV transmission exists [9]. This study used a net-
work of 5389 vertices and 4073 edges to study the spread of HIV on
a known network for Cubans diagnosed as HIV positive between 1986
and 2006. However, instead of trying to model disease progression over
time, the main goal of this paper was to examine the network properties
of the existing sexual contact network. This network is interesting in
contrast to my HIV network because in this case, edges only represent
sexual partnerships through which HIV has been transmitted. Degree
distributions, clustering/assortivity, and path lengths were studied us-
ing statistical analysis. Of note, it was determined that the network
demonstrated assortive mixing with preferential connections between
nodes that share geographical region, age, or mode of detection. Re-
verse analysis like this justifies and informs the work that we have
done which presumes community structure and assortive mixing ex-
ist. Additionally, with increasing data collection and computational
possibilities, this type of analysis may be promising for expansion of
community structure studies in the future.

In an example which even more clearly demonstrates the power of
big data and computer power, Coelho, Cruz, and Codeco present a
software called Epigrass, designed to simulate epidemics on networks
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[10]. In this software, data is stored for the state (susceptible, exposed,
infected, removed) and neighbors of each node. Then, in discrete time
steps, the software determines whether or not infection will spread
through any given edge that connects a susceptible and an infected
node. In the paper, Epigrass is demonstrated to analyze the spread
of respiratory disease between 76 Brazilian cities, which we can think
of as communities, by travelers along bus transportation routes. An
interesting addition in this model is the incorporation of travel time,
as it relates to the possibility of recovery en route [10]. This work is
a good example of using high computational power and programming
to store large data sets on known networks and simulate the spread
of disease. Additionally, this application demonstrates the range of
interpretations of what we think of as a community and a connection
between communities. The idea of having travelers that move between
geographically separated communities is a common one.

Another study that incorporates the idea of travelers is the work
by Apolloni, which develops a model with community structure and
non-homogeneous mixing and applies it to the case of H1N1 influenza
in Europe and Mexico in 2009 [3]. The populations are divided by
country and by age (adults and children), with adults having a higher
likelihood of travelling between countries. From there, an expression
is solved for the global invasion parameter R∗, which tells about the
number of communities a single infected community may infect. In
general, an epidemic may fail if spatial mobility is small enough such
that no travelers will make it to other sub-populations before a local
outbreak ends [3].

Sometimes, community structure and SIR models are used to study
applications where something other than disease is being spread. Huang,
Park, and Lai study the spread of information through a network with
modularity, or community structure, using concepts from SIR theory
[16]. The major conclusion drawn is that as the number of modules,
or communities, is increased, the lifespan of the information spread
increases to a point, hits a maximum, and then begins to decrease as
the number of communities is still increased. When translating this to
our conception of epidemics, we could say that initially an epidemic
will persist for longer in a population if the number of communities
is increased, but that after a point to duration of the epidemic would
decrease with increasing quantity of communities. The idea of increas-
ing the number of communities might be an interesting addition to
my model, where the number of communities represented is relatively
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small.

Often, one of the goals of building a model is to be able to suggest
the most efficient methods of allocating limited resources. For infec-
tious diseases, one common resource is vaccines, and in the case of
networks we can think of planned vaccination as the strategic removal
of selected nodes. Salathe and Jones conclude that immunization in-
terventions in populations with community structure may be most ef-
fective when targeted at individuals with the potential to spread in-
fection from one community to another – individuals who fit into our
understanding of boundary nodes [41]. This conclusion is interesting,
particularly as they claim that this concentration of resources may be
even more effective than a concentration on highly connected nodes.
Note that this proposed intervention is not a step to increase com-
munity structure in the network, since we can still allow individuals
to have the same number of internal and external links, it would be
an effort to limit the potential for disease spread along those external
links. The model generated in this paper is a SIR model on networks
with community structure where the number of communities is large
relative to the population of each community. Average epidemic size,
epidemic duration, and peak prevalence are investigated. It is argued
that community structure allows for persistent and low prevalence as
infection spreads from one community to another and we get a series
of small outbreaks spread across time [41]. Again, this model with a
large number of smaller communities provides an intriguing contrast to
my model with a small number of larger communities.

Moving in the opposite direction, some studies look at populations
which are divided into only two communities. Xiao-Long Peng et al.
demonstrate with a stochastic Susceptible-Infected-Susceptible (SIS)
model on a network of two communities, how recurrent outbreaks and
extinctions can happen in one population as a result of infection from
a separate population with endemic prevalence (Figure 4.1) [36]. The
paper gives the example of zoonotic infections, where an infectious
disease may remain endemic in animal populations while causing peri-
odic outbreaks in human populations by occasional animal to human
transmission. In this case, the two communities are the animals and
the humans, where disease is more likely to spread animal to animal
or human to human than animal to human. The expected value for
the length and frequency of outbreaks in the community where dis-
ease is emerging and re-emerging is evaluated, and it is found to be
dependent on factors such as average node degree in each community,
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Figure 4.1. Stochastic Susceptible-Infected-
Susceptible (SIS) model model for number of infectives
as a function of time in a network of two communities
[36].

the number of inter-community links, and other parameters such as
transmission rate and recovery rate. Peng et al. take the approach
of specifying the number of inter-community links in order to adjust
community structure, instead of adjusting the probability that a node
will take a neighbor in a community outside of its own as we did. One
observation from the paper is that as the number of inter-community
links is increased (or community structure is weakened), the periods of
extinction get shorter as more outbreaks overlap with one another [36].

To underscore the exciting recent growth and usage of community
structure models in epidemic analysis, we can see how one paper uses
community structure to look at one of the largest and most recent
global epidemics — the Ebola outbreak of 2014. Kiskowski sought to
model the early dynamics of the outbreak in Guinea, Sierra Leone, and
Liberia using a model with multiple dimensions of community struc-
ture [23]. For this model, the population was divided by households,
communities of households, and countries. Households were highly con-
nected and connections within a household were more likely to spread
infection than connections between two separate households. A dis-
crete, stochastic SEIR analysis of this network sought to explain why
each of the three countries exhibited qualitatively different early growth
dynamics. In particular, Ebola spread most rapidly in Liberia, then
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Sierra Leone, then Guinea. The conclusion was that the variations in
regional trends could be a product of mixing. Two individuals infected
by the same person are more likely to share the same neighbors in a
less mixed community, so local saturation effects may occur such that
contacts of infected individuals are more likely to have been infected al-
ready, thus limiting the spread and causing a linear trend in infections.
Exponential growth, conversely, may result from exposure to new com-
munities. Kiskowski was able to fit World Health Organization Ebola
data for each country only by varying community mixing parameters
for each country, while keeping the number daily interactions, trans-
mission rates, and R0 the same for all three countries [23]. This model
emphasized the importance of reducing contacts between exposed and
unexposed groups, and is an exciting application of creative commu-
nity structure to relevant and modern epidemics.

Just this short collection of studies demonstrates the range of meth-
ods used to analyze community structure in epidemics. Some works
use stochastic models, some use deterministic. Some use existing net-
works, and some use randomly generated networks. Computer pro-
grams have been produced to simulate disease spread in an agent-based
way that considers each node separately, while other researchers design
SIR equations or even ignore compartmental dynamics and instead use
probability generating functions to analyze long term behavior and
other epidemic properties. As much variety as there is in methods for
community structure analysis, there is in interpretation of community
structure. Each model chooses a different way to segregate a popula-
tion into sub-populations and the rationale behind the divisions guides
the questions being addressed in the study as well as the mathematics
behind the dynamic analysis of the model.

In this paper, a broad approach was taken to understand the foun-
dation and context of any of these community structure models. Meth-
ods of network epidemic analysis with generating functions and an in-
terpretation of R0 were outlined. Next, differential equations for SIR
dynamics on a community structured network were proposed, with
foundations in work by Kitchovitch et al. [24] and Sattenspiel et al.
[43], and each component of these equations was outlined to highlight
the process behind the development of a model. The model was run
in a sample population, for which it was demonstrated that commu-
nity structure changes the time point of maximum number of infectives
in each community, and in the case of extreme community structure,
peaks from different communities can be so offset such that multiple
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peaks in total population prevalence are observed. It was discussed
that the observed trends may be a result of the effect of the mixing
parameter, ρ, on mean internal degree and number of boundary nodes.
Finally, parameters were chosen to represent HIV in black, white, and
Latino populations in Washington, D.C.. The curves from this trial
suggest that the degree of community structure may impact initial and
long term behavior of prevalence, particularly in the case where average
degree is small, but just large enough for disease spread. Additionally,
it may be that a high degree of community structure works to per-
petuate HIV prevalence disparity between racial/ethnic groups in our
population. The model put forth in this paper is then an exploration of
network epidemics and heterogeneous mixing, and a part of an exciting
and ongoing investigation of the possibilities that community structure
analysis may provide.



Appendix A. Mathematica® notebook:
prevalence plots

(* This notebook takes the model put forth in this paper, and evaluates

it for parameters and data chosen to represent HIV in Washington, D.C..

The graphs that are generated represent the change in the number of

infectives in the BLACK, WHITE, and LATINO communities, and the overall

population, over a 100 year time span for varying levels of community

structure. A similar notebook, with different parameters and population

sizes, was used to run the model on the sample network of 300 nodes

discussed in Chapter 3. *)

Clear[k, kX, kY, kZ, Lambda, Gamma, Tau, BX, BY, BZ,

nX, nY, nZ, Ntot, P, M, Rho, tstart, tfinish, SXstart, SYstart,

SZstart, IXstart, IYstart, IZstart, ix, iy, iz, SX, SY, SZ, InfX,

InfY, InfZ, solSX, solSY, solSZ, solIXA, solIXB, solIXC, solIXD,

solIXE, solIXF, solIXG, solIYA, solIYB, solIYC, solIYD, solIYE,

solIYF, solIYG, solIZA, solIZB, solIZC, solIZD, solIZE, solIZF,

solIZG, solRX, solRY, solYZ, forceXin, forceXout, forceYin,

forceYout, forceZin, forceZout, solIALLA, solIALLB, solIALLC,

solIALLD, solIALLE, solIALLF, solIALLG];

k = 1; (*Average degree -- It is written here as 1, but this notebook

was also run with k values of 1.5 and 2*)

Lambda = 0.003; (*Birth/Immigration rate*)

mu = 0.003; (*Death/Emigration rate*)

Gamma = 0.01; (*Removal rate*)

Tau = 0.01 ; (*Transmissibility*)

nX = 323000; (* # of nodes in population X --> BLACK*)

nY = 64600; (* # of nodes in population Y --> LATINO*)

nZ = 258400; (* # of nodes in population Z --> WHITE*)

Ntot = nX + nY + nZ; (* total population size of the network *)

M = {{(Rho + (1-Rho)*nX/Ntot), (1-Rho)*nY/Ntot, (1-Rho)*nZ/Ntot},

{(1-Rho)*nX/Ntot, (Rho + (1-Rho)*nY/Ntot), (1-Rho)*nZ/Ntot},

{(1-Rho)*nX/Ntot, (1-Rho)*nY/Ntot, (Rho + (1-Rho)*nZ/Ntot)}};

(*Mixing matrix, Mij tells us the probability that a neighbor of

mine is from community j given that I am in community i*)

53
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P = {{k*M[[1, 1]]/nX, k*M[[1, 2]]/nY, k*M[[1, 3]]/nZ},

{k*M[[2, 1]]/nX, k*M[[2, 2]]/nY, k*M[[2, 3]]/nZ},

{k*M[[3, 1]]/nX, k*M[[3, 2]]/nY, k*M[[3, 3]]/nZ}};

(*Mixing matrix, Pij tells us the probability that a node in the

ith communitiy is adjacent to a node in the jth community*)

tstart = 0; (*Time will start at 0 months*)

tfinish = 1200; (*Count time from 0 to 1200 months - 100 years*)

SXstart = 309110; (*Initial BLACK susceptible population - from 2012 data*)

SYstart = 63440; (*Initial LATINO susceptible population - from 2012 data*)

SZstart = 255300; (*Initial WHITE susceptible population - from 2012 data*)

IXstart = 13890; (*Initial BLACK HIV positive population - from 2012 data*)

IYstart = 1160; (*Initial LATINO HIV positive population - from 2012 data*)

IZstart = 3100; (*Initial WHITE HIV positive population - from 2012 data*)

BX = nX (1 - ((1 - P[[2, 1]])^nY*(1 - P[[3, 1]])^nZ));

(*Expected value for # boundary nodes in BLACK population*)

BY = nY (1 - ((1 - P[[1, 2]])^nX*(1 - P[[3, 2]])^nZ));

(*Expected value for # boundary nodes in LATINO population*)

BZ = nZ (1 - ((1 - P[[1, 3]])^nX*(1 - P[[2, 3]])^nY));

(*Expected value for # boundary nodes in WHITE population*)

forceXin[ix_] := Tau *P[[1, 1]]*ix;

(*Internal force of infection for BLACK community*)

forceYin[iy_] := Tau *P[[2, 2]]*iy;

(*Internal force of infection for LATINO community*)

forceZin[iz_] := Tau *P[[3, 3]]*iz;

(*Internal force of infection for WHITE community*)

forceXout[iy_, iz_] := Tau*(P[[1, 2]]*iy + P[[1, 3]]*iz);

(*External force of infection for BLACK community *)

forceYout[ix_, iz_] := Tau*(P[[2, 1]]*ix + P[[2, 3]]*iz);

(*External force of infection for LATINO community *)

forceZout[ix_, iy_] := Tau*(P[[3, 1]]*ix + P[[3, 2]]*iy);

(*External force of infection for WHITE community *)

Rho = .0;

(* Portion of ones neighbors reserved for inner-community

connections. This mixing parameter is changed repeatedly and plots

are generated for each value. Later the plots are overlaid on top

of one another. *)

(* This section solves our system of SIR differential equations and

generates plots for the number of infectives over time for community

X (BLACK), community Y (LATINO), and community Z (WHITE), as well as

the overall network. The following blocks do the same evaluation,

only for different values of Rho. Note that we color and pattern

the curves such that curves representing the BLACK community are

normal lines, curves representing the LATINO community are dashed,

and curves representing the WHITE community are thick. Additionally,
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the curves progress in chromatic order from red to black as we

increase Rho.*)

solution = NDSolve[{

SX’[t] == -(SX[t]*forceXin[InfX[t]] + BX/nX *SX[t]*

(forceXout[InfY[t], InfZ[t]] - forceXin[InfX[t]]

*forceXout[InfY[t], InfZ[t]])) + Lambda*nX - mu*SX[t],

SY’[t] == -(SY[t]*forceYin[InfY[t]] + BY/nY *SY[t]*

(forceYout[InfX[t], InfZ[t]] - forceYin[InfY[t]]

*forceYout[InfX[t], InfZ[t]])) + Lambda*nY - mu*SY[t],

SZ’[t] == -(SZ[t]*forceZin[InfZ[t]] + BZ/nZ *SZ[t]*

(forceZout[InfX[t], InfY[t]] - forceZin[InfZ[t]]

*forceZout[InfX[t], InfY[t]])) + Lambda*nZ - mu*SZ[t],

InfX’[t] == (SX[t]*forceXin[InfX[t]] + BX/nX *SX[t]*

(forceXout[InfY[t], InfZ[t]] - forceXin[InfX[t]]

*forceXout[InfY[t], InfZ[t]])) - Gamma*InfX[t] - mu*InfX[t],

InfY’[t] == (SY[t]*forceYin[InfY[t]] + BY/nY *SY[t]*

(forceYout[InfX[t], InfZ[t]] - forceYin[InfY[t]]

*forceYout[InfX[t], InfZ[t]])) - Gamma*InfY[t] - mu*InfY[t],

InfZ’[t] == (SZ[t]*forceZin[InfZ[t]] + BZ/nZ *SZ[t]*

(forceZout[InfX[t], InfY[t]] - forceZin[InfZ[t]]

*forceZout[InfX[t], InfY[t]])) - Gamma*InfZ[t] - mu*InfZ[t],

SX[0] == SXstart,

SY[0] == SYstart,

SZ[0] == SZstart,

InfX[0] == IXstart,

InfY[0] == IYstart,

InfZ[0] == IZstart},

{SX, SY, SZ, InfX, InfY, InfZ}, {t, tstart, tfinish},

MaxSteps -> \infty];

solIXA = Plot[Evaluate[{InfX[t]} /. solution], {t, tstart, tfinish},

PlotRange -> {0, 15000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14], PlotStyle -> Red];

solIYA = Plot[Evaluate[{InfY[t]} /. solution], {t, tstart, tfinish},

PlotRange -> {0, 15000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14],

PlotStyle -> {Red, Dashed}];

solIZA = Plot[Evaluate[{InfZ[t]} /. solution], {t, tstart, tfinish},

PlotRange -> {0, 15000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14], PlotStyle -> {Red, Thick}];

solIALLA =

Plot[Evaluate[{InfX[t] + InfY[t] + InfZ[t]} /. solution], {t,

tstart, tfinish}, PlotRange -> {0, 20000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14], PlotStyle -> Red];
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Rho = .1;

solution = NDSolve[{

SX’[t] == -(SX[t]*forceXin[InfX[t]] + BX/nX *SX[t]*

(forceXout[InfY[t], InfZ[t]] - forceXin[InfX[t]]

*forceXout[InfY[t], InfZ[t]])) + Lambda*nX - mu*SX[t],

SY’[t] == -(SY[t]*forceYin[InfY[t]] + BY/nY *SY[t]*

(forceYout[InfX[t], InfZ[t]] - forceYin[InfY[t]]

*forceYout[InfX[t], InfZ[t]])) + Lambda*nY - mu*SY[t],

SZ’[t] == -(SZ[t]*forceZin[InfZ[t]] + BZ/nZ *SZ[t]*

(forceZout[InfX[t], InfY[t]] - forceZin[InfZ[t]]

*forceZout[InfX[t], InfY[t]])) + Lambda*nZ - mu*SZ[t],

InfX’[t] == (SX[t]*forceXin[InfX[t]] + BX/nX *SX[t]*

(forceXout[InfY[t], InfZ[t]] - forceXin[InfX[t]]

*forceXout[InfY[t], InfZ[t]])) - Gamma*InfX[t] - mu*InfX[t],

InfY’[t] == (SY[t]*forceYin[InfY[t]] + BY/nY *SY[t]*

(forceYout[InfX[t], InfZ[t]] - forceYin[InfY[t]]

*forceYout[InfX[t], InfZ[t]])) - Gamma*InfY[t] - mu*InfY[t],

InfZ’[t] == (SZ[t]*forceZin[InfZ[t]] + BZ/nZ *SZ[t]*

(forceZout[InfX[t], InfY[t]] - forceZin[InfZ[t]]

*forceZout[InfX[t], InfY[t]])) - Gamma*InfZ[t] - mu*InfZ[t],

SX[0] == SXstart,

SY[0] == SYstart,

SZ[0] == SZstart,

InfX[0] == IXstart,

InfY[0] == IYstart,

InfZ[0] == IZstart},

{SX, SY, SZ, InfX, InfY, InfZ}, {t, tstart, tfinish},

MaxSteps -> \infty];

solIXB = Plot[Evaluate[{InfX[t]} /. solution], {t, tstart, tfinish},

PlotRange -> {0, 15000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14], PlotStyle -> Orange];

solIYB = Plot[Evaluate[{InfY[t]} /. solution], {t, tstart, tfinish},

PlotRange -> {0, 15000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14],

PlotStyle -> {Orange, Dashed}];

solIZB = Plot[Evaluate[{InfZ[t]} /. solution], {t, tstart, tfinish},

PlotRange -> {0, 15000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14],

PlotStyle -> {Orange, Thick}];

solIALLB =

Plot[Evaluate[{InfX[t] + InfY[t] + InfZ[t]} /. solution], {t,

tstart, tfinish}, PlotRange -> {0, 20000},
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AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14], PlotStyle -> Orange];

Rho = .3;

solution = NDSolve[{

SX’[t] == -(SX[t]*forceXin[InfX[t]] + BX/nX *SX[t]*

(forceXout[InfY[t], InfZ[t]] - forceXin[InfX[t]]

*forceXout[InfY[t], InfZ[t]])) + Lambda*nX - mu*SX[t],

SY’[t] == -(SY[t]*forceYin[InfY[t]] + BY/nY *SY[t]*

(forceYout[InfX[t], InfZ[t]] - forceYin[InfY[t]]

*forceYout[InfX[t], InfZ[t]])) + Lambda*nY - mu*SY[t],

SZ’[t] == -(SZ[t]*forceZin[InfZ[t]] + BZ/nZ *SZ[t]*

(forceZout[InfX[t], InfY[t]] - forceZin[InfZ[t]]

*forceZout[InfX[t], InfY[t]])) + Lambda*nZ - mu*SZ[t],

InfX’[t] == (SX[t]*forceXin[InfX[t]] + BX/nX *SX[t]*

(forceXout[InfY[t], InfZ[t]] - forceXin[InfX[t]]

*forceXout[InfY[t], InfZ[t]])) - Gamma*InfX[t] - mu*InfX[t],

InfY’[t] == (SY[t]*forceYin[InfY[t]] + BY/nY *SY[t]*

(forceYout[InfX[t], InfZ[t]] - forceYin[InfY[t]]

*forceYout[InfX[t], InfZ[t]])) - Gamma*InfY[t] - mu*InfY[t],

InfZ’[t] == (SZ[t]*forceZin[InfZ[t]] + BZ/nZ *SZ[t]*

(forceZout[InfX[t], InfY[t]] - forceZin[InfZ[t]]

*forceZout[InfX[t], InfY[t]])) - Gamma*InfZ[t] - mu*InfZ[t],

SX[0] == SXstart,

SY[0] == SYstart,

SZ[0] == SZstart,

InfX[0] == IXstart,

InfY[0] == IYstart,

InfZ[0] == IZstart},

{SX, SY, SZ, InfX, InfY, InfZ}, {t, tstart, tfinish},

MaxSteps -> \infty];

solIXC = Plot[Evaluate[{InfX[t]} /. solution], {t, tstart, tfinish},

PlotRange -> {0, 15000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14], PlotStyle -> Yellow];

solIYC = Plot[Evaluate[{InfY[t]} /. solution], {t, tstart, tfinish},

PlotRange -> {0, 15000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14],

PlotStyle -> {Yellow, Dashed}];

solIZC = Plot[Evaluate[{InfZ[t]} /. solution], {t, tstart, tfinish},

PlotRange -> {0, 15000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14],

PlotStyle -> {Yellow, Thick}];

solIALLC =

Plot[Evaluate[{InfX[t] + InfY[t] + InfZ[t]} /. solution], {t,

tstart, tfinish}, PlotRange -> {0, 20000},
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AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14], PlotStyle -> Yellow];

Rho = .5;

solution = NDSolve[{

SX’[t] == -(SX[t]*forceXin[InfX[t]] + BX/nX *SX[t]*

(forceXout[InfY[t], InfZ[t]] - forceXin[InfX[t]]

*forceXout[InfY[t], InfZ[t]])) + Lambda*nX - mu*SX[t],

SY’[t] == -(SY[t]*forceYin[InfY[t]] + BY/nY *SY[t]*

(forceYout[InfX[t], InfZ[t]] - forceYin[InfY[t]]

*forceYout[InfX[t], InfZ[t]])) + Lambda*nY - mu*SY[t],

SZ’[t] == -(SZ[t]*forceZin[InfZ[t]] + BZ/nZ *SZ[t]*

(forceZout[InfX[t], InfY[t]] - forceZin[InfZ[t]]

*forceZout[InfX[t], InfY[t]])) + Lambda*nZ - mu*SZ[t],

InfX’[t] == (SX[t]*forceXin[InfX[t]] + BX/nX *SX[t]*

(forceXout[InfY[t], InfZ[t]] - forceXin[InfX[t]]

*forceXout[InfY[t], InfZ[t]])) - Gamma*InfX[t] - mu*InfX[t],

InfY’[t] == (SY[t]*forceYin[InfY[t]] + BY/nY *SY[t]*

(forceYout[InfX[t], InfZ[t]] - forceYin[InfY[t]]

*forceYout[InfX[t], InfZ[t]])) - Gamma*InfY[t] - mu*InfY[t],

InfZ’[t] == (SZ[t]*forceZin[InfZ[t]] + BZ/nZ *SZ[t]*

(forceZout[InfX[t], InfY[t]] - forceZin[InfZ[t]]

*forceZout[InfX[t], InfY[t]])) - Gamma*InfZ[t] - mu*InfZ[t],

SX[0] == SXstart,

SY[0] == SYstart,

SZ[0] == SZstart,

InfX[0] == IXstart,

InfY[0] == IYstart,

InfZ[0] == IZstart},

{SX, SY, SZ, InfX, InfY, InfZ}, {t, tstart, tfinish},

MaxSteps -> \infty];

solIXD = Plot[Evaluate[{InfX[t]} /. solution], {t, tstart, tfinish},

PlotRange -> {0, 15000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14], PlotStyle -> Green];

solIYD = Plot[Evaluate[{InfY[t]} /. solution], {t, tstart, tfinish},

PlotRange -> {0, 15000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14],

PlotStyle -> {Green, Dashed}];

solIZD = Plot[Evaluate[{InfZ[t]} /. solution], {t, tstart, tfinish},

PlotRange -> {0, 15000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14],

PlotStyle -> {Green, Thick}];

solIALLD =

Plot[Evaluate[{InfX[t] + InfY[t] + InfZ[t]} /. solution], {t,
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tstart, tfinish}, PlotRange -> {0, 20000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14], PlotStyle -> Green];

Rho = .7;

solution = NDSolve[{

SX’[t] == -(SX[t]*forceXin[InfX[t]] + BX/nX *SX[t]*

(forceXout[InfY[t], InfZ[t]] - forceXin[InfX[t]]

*forceXout[InfY[t], InfZ[t]])) + Lambda*nX - mu*SX[t],

SY’[t] == -(SY[t]*forceYin[InfY[t]] + BY/nY *SY[t]*

(forceYout[InfX[t], InfZ[t]] - forceYin[InfY[t]]

*forceYout[InfX[t], InfZ[t]])) + Lambda*nY - mu*SY[t],

SZ’[t] == -(SZ[t]*forceZin[InfZ[t]] + BZ/nZ *SZ[t]*

(forceZout[InfX[t], InfY[t]] - forceZin[InfZ[t]]

*forceZout[InfX[t], InfY[t]])) + Lambda*nZ - mu*SZ[t],

InfX’[t] == (SX[t]*forceXin[InfX[t]] + BX/nX *SX[t]*

(forceXout[InfY[t], InfZ[t]] - forceXin[InfX[t]]

*forceXout[InfY[t], InfZ[t]])) - Gamma*InfX[t] - mu*InfX[t],

InfY’[t] == (SY[t]*forceYin[InfY[t]] + BY/nY *SY[t]*

(forceYout[InfX[t], InfZ[t]] - forceYin[InfY[t]]

*forceYout[InfX[t], InfZ[t]])) - Gamma*InfY[t] - mu*InfY[t],

InfZ’[t] == (SZ[t]*forceZin[InfZ[t]] + BZ/nZ *SZ[t]*

(forceZout[InfX[t], InfY[t]] - forceZin[InfZ[t]]

*forceZout[InfX[t], InfY[t]])) - Gamma*InfZ[t] - mu*InfZ[t],

SX[0] == SXstart,

SY[0] == SYstart,

SZ[0] == SZstart,

InfX[0] == IXstart,

InfY[0] == IYstart,

InfZ[0] == IZstart},

{SX, SY, SZ, InfX, InfY, InfZ}, {t, tstart, tfinish},

MaxSteps -> \infty];

solIXE = Plot[Evaluate[{InfX[t]} /. solution], {t, tstart, tfinish},

PlotRange -> {0, 15000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14], PlotStyle -> Blue];

solIYE = Plot[Evaluate[{InfY[t]} /. solution], {t, tstart, tfinish},

PlotRange -> {0, 15000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14],

PlotStyle -> {Blue, Dashed}];

solIZE = Plot[Evaluate[{InfZ[t]} /. solution], {t, tstart, tfinish},

PlotRange -> {0, 15000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14],

PlotStyle -> {Blue, Thick}];

solIALLE =

Plot[Evaluate[{InfX[t] + InfY[t] + InfZ[t]} /. solution], {t,
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tstart, tfinish}, PlotRange -> {0, 20000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14], PlotStyle -> Blue];

Rho = .9;

solution = NDSolve[{

SX’[t] == -(SX[t]*forceXin[InfX[t]] + BX/nX *SX[t]*

(forceXout[InfY[t], InfZ[t]] - forceXin[InfX[t]]

*forceXout[InfY[t], InfZ[t]])) + Lambda*nX - mu*SX[t],

SY’[t] == -(SY[t]*forceYin[InfY[t]] + BY/nY *SY[t]*

(forceYout[InfX[t], InfZ[t]] - forceYin[InfY[t]]

*forceYout[InfX[t], InfZ[t]])) + Lambda*nY - mu*SY[t],

SZ’[t] == -(SZ[t]*forceZin[InfZ[t]] + BZ/nZ *SZ[t]*

(forceZout[InfX[t], InfY[t]] - forceZin[InfZ[t]]

*forceZout[InfX[t], InfY[t]])) + Lambda*nZ - mu*SZ[t],

InfX’[t] == (SX[t]*forceXin[InfX[t]] + BX/nX *SX[t]*

(forceXout[InfY[t], InfZ[t]] - forceXin[InfX[t]]

*forceXout[InfY[t], InfZ[t]])) - Gamma*InfX[t] - mu*InfX[t],

InfY’[t] == (SY[t]*forceYin[InfY[t]] + BY/nY *SY[t]*

(forceYout[InfX[t], InfZ[t]] - forceYin[InfY[t]]

*forceYout[InfX[t], InfZ[t]])) - Gamma*InfY[t] - mu*InfY[t],

InfZ’[t] == (SZ[t]*forceZin[InfZ[t]] + BZ/nZ *SZ[t]*

(forceZout[InfX[t], InfY[t]] - forceZin[InfZ[t]]

*forceZout[InfX[t], InfY[t]])) - Gamma*InfZ[t] - mu*InfZ[t],

SX[0] == SXstart,

SY[0] == SYstart,

SZ[0] == SZstart,

InfX[0] == IXstart,

InfY[0] == IYstart,

InfZ[0] == IZstart},

{SX, SY, SZ, InfX, InfY, InfZ}, {t, tstart, tfinish},

MaxSteps -> \infty];

solIXF = Plot[Evaluate[{InfX[t]} /. solution], {t, tstart, tfinish},

PlotRange -> {0, 15000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14], PlotStyle -> Purple];

solIYF = Plot[Evaluate[{InfY[t]} /. solution], {t, tstart, tfinish},

PlotRange -> {0, 15000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14],

PlotStyle -> {Purple, Dashed}];

solIZF = Plot[Evaluate[{InfZ[t]} /. solution], {t, tstart, tfinish},

PlotRange -> {0, 15000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14],

PlotStyle -> {Purple, Thick}];

solIALLF =

Plot[Evaluate[{InfX[t] + InfY[t] + InfZ[t]} /. solution], {t,
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tstart, tfinish}, PlotRange -> {0, 20000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14], PlotStyle -> Purple];

Rho = .99;

solution = NDSolve[{

SX’[t] == -(SX[t]*forceXin[InfX[t]] + BX/nX *SX[t]*

(forceXout[InfY[t], InfZ[t]] - forceXin[InfX[t]]

*forceXout[InfY[t], InfZ[t]])) + Lambda*nX - mu*SX[t],

SY’[t] == -(SY[t]*forceYin[InfY[t]] + BY/nY *SY[t]*

(forceYout[InfX[t], InfZ[t]] - forceYin[InfY[t]]

*forceYout[InfX[t], InfZ[t]])) + Lambda*nY - mu*SY[t],

SZ’[t] == -(SZ[t]*forceZin[InfZ[t]] + BZ/nZ *SZ[t]*

(forceZout[InfX[t], InfY[t]] - forceZin[InfZ[t]]

*forceZout[InfX[t], InfY[t]])) + Lambda*nZ - mu*SZ[t],

InfX’[t] == (SX[t]*forceXin[InfX[t]] + BX/nX *SX[t]*

(forceXout[InfY[t], InfZ[t]] - forceXin[InfX[t]]

*forceXout[InfY[t], InfZ[t]])) - Gamma*InfX[t] - mu*InfX[t],

InfY’[t] == (SY[t]*forceYin[InfY[t]] + BY/nY *SY[t]*

(forceYout[InfX[t], InfZ[t]] - forceYin[InfY[t]]

*forceYout[InfX[t], InfZ[t]])) - Gamma*InfY[t] - mu*InfY[t],

InfZ’[t] == (SZ[t]*forceZin[InfZ[t]] + BZ/nZ *SZ[t]*

(forceZout[InfX[t], InfY[t]] - forceZin[InfZ[t]]

*forceZout[InfX[t], InfY[t]])) - Gamma*InfZ[t] - mu*InfZ[t],

SX[0] == SXstart,

SY[0] == SYstart,

SZ[0] == SZstart,

InfX[0] == IXstart,

InfY[0] == IYstart,

InfZ[0] == IZstart},

{SX, SY, SZ, InfX, InfY, InfZ}, {t, tstart, tfinish},

MaxSteps -> \infty];

solIXG = Plot[Evaluate[{InfX[t]} /. solution], {t, tstart, tfinish},

PlotRange -> {0, 15000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14], PlotStyle -> Black];

solIYG = Plot[Evaluate[{InfY[t]} /. solution], {t, tstart, tfinish},

PlotRange -> {0, 15000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14],

PlotStyle -> {Black, Dashed}];

solIZG = Plot[Evaluate[{InfZ[t]} /. solution], {t, tstart, tfinish},

PlotRange -> {0, 15000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14],

PlotStyle -> {Black, Thick}];

solIALLG =
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Plot[Evaluate[{InfX[t] + InfY[t] + InfZ[t]} /. solution], {t,

tstart, tfinish}, PlotRange -> {0, 20000},

AxesLabel -> {"Time (months)", "Number of Infectives"},

LabelStyle -> Directive[FontSize -> 14], PlotStyle -> Black];

Show[solIXA , solIYA, solIZA, solIXB , solIYB, solIZB, solIXC ,

solIYC, solIZC, solIXD , solIYD, solIZD, solIXE , solIYE, solIZE,

solIXF , solIYF, solIZF, solIXG , solIYG, solIZG]

(*Shows the plots for the number of infectives across time for

each of our communities and each value of Rho. *)

Show[solIALLA, solIALLB, solIALLC, solIALLD, solIALLE, solIALLF,

solIALLG]

(*Shows the plots for the number of infectives across time for the

total population and each value of Rho. *)



Appendix B. Mathematica® notebook: internal
degree and boundary nodes

(* This notebook plots the average internal degree and the expected

number of boundary nodes in a sample network of three communities of

100 nodes as a function of the mixing parameter, Rho. *)

Clear[k, nX, nY, nZ, Ntot, M, P, kinX, BX];

k = 1.5; (* average degree *)

nX = 100; (* # of nodes in population X*)

nY = 100; (* # of nodes in population Y*)

nZ = 100; (* # of nodes in population Z*)

Ntot = 300; (* total network size *)

M = {{(Rho + (1-Rho)*nX/Ntot), (1-Rho)*nY/Ntot, (1-Rho)*nZ/Ntot},

{(1 - Rho)*nX/Ntot, (Rho + (1 - Rho)*nY/Ntot), (1-Rho)*nZ/Ntot},

{(1-Rho)*nX/Ntot, (1-Rho)*nY/Ntot, (Rho + (1-Rho)* nZ/Ntot)}};

(*Mixing matrix, Mij tells us the probability that a neighbor of mine

is from community j given that I am in community i*)

P = {{k*M[[1, 1]]/nX, k*M[[1, 2]]/nY, k*M[[1, 3]]/nZ},

{k*M[[2, 1]]/nX, k*M[[2, 2]]/nY, k*M[[2, 3]]/nZ},

{k*M[[3, 1]]/nX, k*M[[3, 2]]/nY, k*M[[3, 3]]/nZ}};

(*Mixing matrix, Pij tells us the probability that a node in the ith

communitiy is adjacent to a node in the jth community*)

kinX = P[[1, 1]]*nX; (*Average # inner community links in X*)

BX = nX (1 - ((1 - P[[2, 1]])^nY*(1 - P[[3, 1]])^nZ));\\

(*Expected value for # boundary nodes in X*)

Plot[kinX, {Rho, 0, 1}, PlotRange -> {0, 1.5},

AxesLabel -> {"Rho", "kin"},

LabelStyle -> Directive[FontSize ->14]]

(*Plots the internal degree in our communities as a function of Rho*)

Plot[BX, {Rho, 0, 1}, AxesLabel -> {"Rho", "B"},

LabelStyle -> Directive[FontSize -> 14]]

(*Plots the expected number of boundary nodes in our communities

as a function of Rho*)

63



Bibliography

[1] Adimora AA, Schoenbach VJ, Bonas DM, Martinson FEA, Donaldson KH,
Stancil TR (2002) Concurrent sexual partnerships among women in the United
States. Epidemiology 13.3: 320–327.

[2] Adimora AA, Schoenbach VJ (2005) Social context, sexual networks, and racial
disparities in rates of sexually transmitted infections. J Infect Dis 191 Supple-
ment 1: S115–S122.

[3] Apolloni A, Poletto C, Ramasco JJ, Jensen P, Colizza V (2014) Metapopula-
tion epidemic models with heterogeneous mixing and travel behaviour. Theor
Biol Med Model 11.3. doi:10.1186/1742-4682-11-3

[4] Bogart LM, Thorburn S (2005) Are HIV/AIDS conspiracy beliefs a barrier to
HIV prevention among African Americans?. J Acq Immun Ded Synd 38.2:213–
218.

[5] Boily M, Bastos FI, Desai K, Masse B (2004) Changes in the transmission
dynamics of the HIV epidemic after the wide-scale use of antiretroviral therapy
could explain increases in sexually transmitted infections. Sex Transm Dis
31.2:100–113. doi: 10.1097/01.OLQ.0000112721.21285.A2

[6] Brauer F (2008) Mathematical Epidemiology. Berlin: Springer.
[7] Catania JA, Coates TJ, Kegels S, Fullilove MT (1992) Condom use in multi-

ethnic neighborhoods of San Francisco: the population-based AMEN (AIDS
in Multi-Ethnic Neighborhoods) Study. Am J Public Health 82:284287. doi:
10.2105/AJPH.82.2.284

[8] Chen NE, Gallant JE, Page KR (2012) A systematic review of HIV/AIDS
survival and delayed diagnosis among Hispanics in the United States. J Immigr
Minor Health 14.1:65–81. doi: 10.1007/s10903-011-9497-y
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