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CHAPTER 1

Introduction

In origami, the artist uses intersections of folds as reference points

to make new folds. This kind of construction can be extended to points

on the complex plane. That is, given a set of reference points and a

set of lines we can fold along, we can construct new reference points

by adding intersections of lines to our set of reference points. These

Origami Constructions are the subject of my thesis.

The order in which I present information is supposed to be the path

of least resistance. However, that is not the order in which I engaged

with the material. The chronological beginning of my thesis is with

the paper: Origami Rings by Joe Buhler, Steve Butler, Warwick de

Launey, and Ron Graham. Some friends of mine were working with

origami rings over the summer, and I became curious. In order to

understand the proofs and implications in the paper, I had to do some

digging. Though I had already had classes that dealt with a lot of the

algebra involved, I still needed to look things up frequently and find

a thread that showed why the results in Origami Rings were novel.

1



1. INTRODUCTION 2

After getting enough background information, I set out to extend these

results.

The first chapter of my thesis will cover all of the background in-

formation required to understand the proofs in [1] and why they are

important. In particular, start with basic ring theory, and show how

the theory is motivated by the problem of solving polynomials. This

narrative will result in an exploration of rings of algebraic integer rings

in different extensions of the rational numbers. Most of this chapter

consists of theorems and proofs from [2]. All of the proofs have been

rewritten in my own words and I filled in some gaps in the logic. Most of

the lemmas, were left as “exercises for the reader”. I did those exercises

and included the proofs. The sections on quadratic field extensions is

mostly from [3]; some of the section on cyclotomic fields also comes

from [3]. However, due to the target audience of that book, and the

relative level of ease, those proofs had lots of holes for me to fill.

The second chapter is entirely a reconstruction of [1]. As in the

background chapter, I make an effort to rewrite as many of the proofs

in my own words. In many cases, the authors suggested a proof by

induction, and left the details out almost completely. I have filled

these in. The major result of [1] is that the origami constructions yield



1. INTRODUCTION 3

rings that are very close to the rings of algebraic integers for cyclotomic

fields.

In the third chapter, I begin to explore how the assumptions for

the origami rings paper can be relaxed, while still getting a ring under

the origami construction. This chapter is heavily guided by the logic of

discovery. My hope is that this chapter shows how I came to formulate

a new theorem that I prove in the fourth chapter. If these results are

not new, I at least arrived at them independently.



CHAPTER 2

Background

The goal of this chapter is to provide background information and

motivation for origami ring constructions. Section 1 deals with com-

plex numbers and is attributed primarily to [4]. Sections 2 through

5 contains work done in [2]. The contributions of [3] are mostly con-

tained in section 6, however, there is some overlap of sources in section

5.

1. Complex Numbers

The major parts of my thesis will deal with numbers in the complex

plane. There is some notation and background knowledge about the

complex numbers that will be extremely helpful down the line.

First, we define the complex plane C = {x + ıy|x, y ∈ R} where

ı2 = −1. For each z ∈ C we can define z̄ ∈ C to be the conjugate of

z. In particular, if z = x + ıy, then z̄ = x − ıy. The reason we like

conjugates of complex numbers is that zz̄ = x2 + y2 ∈ R. One case

of conjugates is particularly near and dear to a mathematician’s heart,

4



1. COMPLEX NUMBERS 5

namely,

(x+ ı)(x− ı) = x2 + 1.

It is worth noting that conjugacy distributes. Let p = a + ıb and

q = c+ ıd. Then

p+ q = a+ ıb+ c+ ıd

= a+ c+ ı(b+ d)

= a+ c− ı(b+ d)

= a− ıb+ c− ıd

= p̄+ q̄

Addition in the complex numbers is defined as follows

(a+ ıb) + (c+ ıd) = a+ c+ ı(b+ d)

In other words, addition is component wise.

Multiplication in the complex numbers is defined as

(a+ ıb)(c+ ıd) = ac− bd+ ı(ad+ bc)

This is essentially the foil method. We define the modulus of a complex

number as |z| =
√
x2 + y2 where z = x+ ıy.
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Multiplying complex numbers by foiling them is cumbersome. There-

fore, we would like to find a different notation that is easier to manage.

Recall the following series expansions from calculus:

ex =
∞∑
n=0

xn

n!

cos(x) =
∞∑
n=0

(−1)nx2n

(2n)!

sin(x) =
∞∑
n=1

(−1)n−1x2n−1

(2n− 1)!

In particular, notice that

cos(x) + sin(x) =
∞∑
n=0

(−1)nx2n

(2n)!
+
∞∑
n=1

(−1)n−1x2n−1

(2n− 1)!
=
∞∑
n=0

xn

n!
= ex

Furthermore, recall the equations for polar coordinates

x = r cos θ

y = r sin θ

where r =
√
x2 + y2. The result is that x+ ıy = cos θ+ ı sin θ for some

θ. We define the argument of z as follows:

arg z = {θ ∈ R : |z| cos θ + ı|z| sin θ = z}
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Notice that arg z is not well-defined. To make up for this we define the

principal argument of z as follows:

Arg z = {θ ∈ (−π, π] : |z| cos θ + ı|z|θ = z}

We can combine all of these facts to naturally rewrite complex numbers

in exponential form. In particular, given z = x+ ıy we have,

z = x+ ıy

= |z| cos θ + ı|z| sin θ

= |z|

[
∞∑
n=0

(−1)nθ2n

(2n)!
+ ı

∞∑
n=1

(−1)n−1θ2n−1

(2n− 1)!

]

Notice that ı2n = (−1)n and (−1)n−1ı2n−1 = −ı or ı

= |z|

[
∞∑
n=0

ı2nθ2n

(2n)!
+
∞∑
n=1

(−1)n−1ı2n−1θ2n−1

(2n− 1)!

]

= |z|
∞∑
n=0

(ıθ)n

n!

= |z|eıθ

In particular, we have the following equation.

(Euler’s Formula) eıθ = cos θ + ı sin θ
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Notice that when θ = π we have

eıπ + 1 = 0

which relates the constants e, ı, π, 1, 0 to each other. However, the ma-

jor impact of Euler’s Formula is that we can find roots of polynomials

more easily.

Euler’s formula makes it easy to find zeros of polynomials in the

complex numbers. Let’s consider an example:

zn − 1 = 0

If we rewrite z = reıθ, where r = |z| and z 6= 0, then we have the

equations

zn − 1 = 0

(reıθ)n = 1

rneınθ = 1

eınθ =
1

rn
.

Notice that |eınθ| = 1, therefore, we know that r = 1.

eınθ = 1

cosnθ + ı sinnθ = 1
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Since the imaginary component of 1 is 0, we know that sinnθ = 0.

Thus, we can reduce the equation to

cosnθ = 1

nθ = 2πk for k ∈ Z

θ =
2πk

n
for k ∈ Z.

The result is that all complex solutions to zn−1 = 0 are of the form

eıθ where θ = 2πk
n

for some k ∈ Z. Notice that zn−1 has more zeros in

C than it does in R. In particular, we can see that zn−1 has n distinct

zeros in C. This is nice because the degree of zn−1 is also n. However,

this is not true in R. In fact, all we can say is that if m is the number

of solutions to zn − 1 in R then m ≤ deg zn − 1. The implication is

that the real numbers are not as complete as the complex numbers. In

particular, we cannot solve all polynomials with real coefficients in the

real numbers. The remainder of the background section will formalize

how we get from the real numbers to the complex numbers in a natural

way.

2. Rings, Integral Domains, Fields, and Factor Rings

Polynomials require both addition and multiplication. That is, if

f(x) is a polynomial, then f(a) with a ∈ R must be defined. Since
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polynomials often multiply and add elements together, we need to make

sure that addition and multiplication are defined over a set R. In

particular, we have the following definition of a ring.

Definition 2.1. A ring R is a set with two binary operations,

addition and multiplication, such that for all a, b, c ∈ R:

(1) a+ b = b+ a

(2) (a+ b) + c = a+ (b+ c)

(3) There is an additive identity, 0 ∈ R

(4) for all a ∈ R, there exists −a ∈ R such that a+ (−a) = 0

(5) a(bc) = (ab)c

(6) a(b+ c) = ab+ ac and (b+ c)a = ba+ ca

Here are a few examples of rings and properties of rings. The inte-

gers, Z are a ring under normal addition and multiplication. However,

Z also has a multiplicative identity. We call the multiplicative identity

the unity of Z and we say that Z is a ring with unity. Furthermore, Z

has two units, namely 1 and −1. That is 1 and −1 are the only two

elements in Z with a multiplicative inverse.

Next consider Z[x]. This is the ring of polynomials with integer

coefficients. The typical element in Z[x] has the form

anx
n + an−1x

n−1 + · · ·+ a1x+ a0
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where ai ∈ Z and an 6= 0. Notice that these rings are commutative.

That is, ab = ba for all elements in the ring. This is not true in general.

In some sense, rings are the bare minimum amount of structure

required to solve a polynomial. Since not all rings are created equal, it

would be nice if we had many of them. One natural place to look for

a new ring is within an old ring. In particular, looking at subsets of a

ring is a good place to start.

Definition 2.2. A subset S of a ring R is a subring of R if S is

itself a ring with the operations inherited from R.

Consider the Gaussian integers denoted as Z[ı]. A typical Gaussian

integer is of the form a+ bı where a, b ∈ Z. The Gaussian integers are

a subring of the complex numbers C.

Rings were meant to be a generalization of the integers. That is,

any set that was a ring would have the same properties as the integers.

However, this is not true. There are properties of the integers that are

not true of all rings. The most obvious one is that the integers are

commutative. However, there are other important properties of the

integers that we would like to abstract.

Definition 2.3. A zero-divisor is a nonzero element a of a commu-

tative ring R such that there is a nonzero element b ∈ R with ab = 0.
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The definition of zero-divisors lets us define integral domains.

Definition 2.4. An integral domain is a commutative ring with

unity and no zero-divisors.

In other words, a commutative ring is an integral domain if it has

unity, and if ab = 0 for some a, b, then either a = 0 or b = 0. Obviously,

the integers, rational numbers, and real numbers are integral domains.

We can use this fact to show that the Gaussian integers are also an

integral domain.

Proof. Assume that |r1|eıθ1 and |r2|eıθ2 are elements in Z[ı] such

that |r1||r2|eıθ1θ2 = 0. Notice that eıθ1θ2 6= 0. This implies that

|r1||r2| = 0. Since |r1|, |r2| ∈ R either |r1| = 0 or |r2| = 0. Therefore,

either |r1|eıθ1 = 0 or |r2|eıθ = 0. Thus, Z[ı] is an integral domain. �

It is worth noting that this proof generalizes to show that Z[
√
m]

is an integral domain for any m ∈ Z. This will be nice to know later.

The reason we like integral domains is because they make it easy

to solve polynomial equations. For example, consider

x2 − 2x− 3 = 0

We can factor the polynomial to get

(x− 3)(x+ 1) = 0
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Now if we restrict x to be either an integer, rational, or real number

then we know that

(x− 3)(x+ 1) = 0

if and only if either

x− 3 = 0

or

x+ 1 = 0

since the integers, rationals, and reals are all integer domains.

However there is an even more fundamental use for integer domains,

namely, the cancellation law.

Theorem 2.1 (Cancellation). Let a, b, c belong to an integral do-

main. If a 6= 0 and ab = ac, then b = c.

Proof. Assume that a, b, c belong to an integral domain, a 6= 0

and ab = ac. This implies that ab− ac = 0. Furthermore, a(b− c) = 0.

Since a, b, c belong to an integral domain, we know that either a = 0

or b − c = 0. However, a 6= 0 by assumption, therefore, b − c = 0 and

b = c. Thus, the theorem is proven. �

Another property that would make solving equations much easier

is if every element in a ring was a unit. This would allow us to divide
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by multiplying both sides of an equation by the inverse of an element.

Fortunately, such beautiful things exist and they are called fields.

Definition 2.5. A field F is a commutative ring with unity in

which every nonzero element is a unit.

We will come back to fields because they arise naturally in ring

theory. For groups, we can take a normal subgroup, and create a

factor group. That is, we create a new group which is essentially the

way elements of the normal subgroup behave in the context of the

larger group. We can extend this idea to rings as well. However, it will

not suffice to take a subring to create a factor ring. Instead, we need

ideals.

Definition 2.6. A subring A of a ring R is called a (two sided)

ideal of R if for every r ∈ R and every a ∈ A both ra and ar are in A.

In essence, an ideal I of a ring R defines equivalence classes of

elements in R in a similar way that reducing numbers by modulo n

defines equivalence classes of integers. That is, ideals identify sets of

elements with the same remainder within a ring. The idea here is that

ideals absorb elements from R, the way mod n absorbs n’s out of other

integers. That is, if we apply any element from r multiplicatively to
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the entire set A, we do not change the set A. This is important for

showing that multiplication for a factor ring is well defined.

Like cosets for groups, ideals let us look at how elements in a ring

interact given their equivalence class. That is, factor rings are rings

where we factor out by an equivalence class.

Definition 2.7. Let A be a two sided ideal of R. Then we call

R/A = {r + A|r ∈ R} a factor ring.

It is nontrivial to show that factor rings actually exist. This is be-

cause multiplication does not fall out of the definition of a factor ring

as nicely as addition follows from the definition of a factor group. How-

ever, multiplication in a factor ring will be reminiscent of multiplication

in modular groups.

Proof. Let A be an ideal of a ring R. Since A is a normal subgroup

of the group R, the additive properties of the factor ring R/A are

obvious. Furthermore, we do not need to check that multiplication

is associative or distributive because these properties follow from the

fact that multiplication in R/A is inherited from R. Suppose we have

elements s + A = s′ + A and t + A = t′ + A. That is, s and s′ are

different representatives for the same coset. Similarly, t and t′ are

different representatives for the same coset. By definition of ideals,
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there exists an element a ∈ A such that s = s′ + a. Similarly, there

exists an element b ∈ A such that t = t′ + b. Consider,

st = (s′ + a)(t′ + b)

st = s′t′ + s′b+ at′ + ab

st+ A = s′t′ + s′b+ at′ + ab+ A

Notice that s′b, at′, ab are all elements in A, and are absorbed by

A. Therefore, we have the following:

st+ A = s′t′ + A

This means that multiplication is well defined in factor rings. That is,

we can take different representatives for a coset and still get the same

element back if we multiply using that representative.

We can see that this proof relies on the fact that A can absorb any

ra, ar where r ∈ R and a ∈ A. Thus, the proof would fail if there

existed an ar /∈ A. Therefore, we are entitled to the fact that R/A is a

ring if and only if A is an ideal of R. �

Let’s look at an example of a factor ring. Consider the polynomial

ring with real coefficients

R[x] = {anxn + an−1x
n−1 + · · ·+ a1x+ a0|an 6= 0, ai ∈ R}
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Notice that〈x2 + 1〉 = {f(x)(x2 + 1)|f(x) ∈ R[x]} is an ideal by defini-

tion. We call it the principle ideal generated by x2 + 1. Let’s examine

the typical element in 〈x2 + 1〉.

Let f(x) ∈ R[x] be arbitrary but fixed. Consider, f(x) + 〈x2 + 1〉.

By the division algorithm, we know that there exists q(x), r(x) ∈ R[x]

such that q(x)(x2 + 1) + r(x) = f(x). Notice that the degree of r(x)

must be strictly less than 2. Now,

f(x) + 〈x2 + 1〉 = q(x)(x2 + 1) + r(x) + 〈x2 + 1〉

Notice that q(x)(x2 + 1) ∈ 〈x2 + 1〉, so we have

f(x) + 〈x2 + 1〉 = r(x) + 〈x2 + 1〉

where r(x) is of the form ax+ b, a, b ∈ R.

Notice that we treat x2 +1+ 〈x2 +1〉 the same as 0+ 〈x2 +1〉. This

implies that

x2 + 〈x2 + 1〉 = −1 + 〈x2 + 1〉

In other words, x+ 〈x2 + 1〉 behaves just like ı ∈ C. The result is that

we can define a ring isomorphism between R[x]/〈x2 + 1〉 and C. In

particular, consider ϕ : R[x]/〈x2 + 1〉 → C given by

ϕ(ax+ b+ 〈x2 + 1〉) = b+ aı
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Furthermore, a ring can have many ideals. For example, any ele-

ment a in a commutative ring R will define an ideal of R. In particular

〈a〉 = {ba|b ∈ R} is an ideal of R. Furthermore, every integral domain

is commutative by definition. It is no surprise that there are some ideals

we care about more than others, because the corresponding factor rings

are nicer. Let’s take a look at some nice ideals.

Definition 2.8. A prime ideal A of a commutative ring R is a

proper ideal of R such that a, b ∈ R and ab ∈ A implies that a ∈ A or

b ∈ A.

Prime ideals are nice because their factor rings are integral domains.

In particular, we have the following theorem.

Theorem 2.2. Let R be a commutative ring with unity and let A

be an ideal of R. Then R/A is an integral domain if and only if A is

prime.

Definition 2.9. A maximal ideal A of a commutative ring R is a

proper ideal of R such that, whenever B is an ideal of R and A ⊂ B ⊂

R, then B = A or B = R.

This is where we naturally stumble upon fields. In particular, we

have the following theorem.
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Theorem 2.3. Let R be a commutative ring with unity and let A

be an ideal of R. Then R/A is a field if and only if A is maximal.

For the proofs of Theorems 2.2 and 2.3 refer to [2] pg. 268. Showing

that an ideal is maximal is tough. However, the general strategy is to

show that adding any element from I − R to I requires adding all

elements from I − R to I. The obvious question is for which a ∈ R is

〈a〉 an ideal. This is the topic of the next section.

3. Polynomial Rings and Field Extensions

Though most undergraduates are familiar with polynomials with

real coefficients over x as functions, we can also consider polynomials

as elements of a ring. In particular, we will use the following abstract

approach to polynomials.

Definition 2.10. Let R be a commutative ring. The set of formal

symbols

R[x] = {anxn + an−1x
n−1 + · · ·+ a1x+ a0|ai ∈ R, n ∈ N an 6= 0}

is called the ring of polynomials over R in the indeterminate x.

Under this definition, two polynomials p(x) and q(x) are considered

equivalent if and only if for all n ∈ N, the nth coefficient of p(x) is the

same as the nth coefficient of q(x).
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As one might think, the properties of R[x] are in part determined

by the properties of R. In particular, we care about the properties

of R[x] when R is a field. The next theorem shows that we have

a division algorithm for F [x] when F is a field. Recall the analogy

between factoring by ideals and looking at the integers under modulo

p. When we define n ∼= k mod p we mean that there exists unique

q, r ∈ Z such that n = qp + r and r = k. Having a division algorithm

for polynomial rings will help formalize the analogy from factoring by

ideals and “moding out” by p.

Theorem 2.4. Let F be a field and let f(x) and g(x) ∈ F [x] with

g(x) 6= 0. Then there exist unique polynomials q(x) and r(x) ∈ F [x]

such that f(x) = g(x)q(x) + r(x) and either r(x) = 0 or deg r(x) <

deg g(x).

Proof. Notice that the theorem is trivial if f(x) = 0 or deg f(x) <

deg g(x). In particular, f(x) = 0g(x)+f(x). Thus we will assume that

n = deg f(x) ≥ deg g(x) = m. Let ai be the coefficient of xi in f(x).

Define bi similarly. We will proceed by strong induction.

Base Case: Let N = 1. The base case is taken care of by the case

we examined at the beginning of the proof. That is, if f(x) = 0 or

deg f(x) < deg g(x), then f(x) = 0g(x) + f(x). Assume that f(x) = c
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where c ∈ F and g(x) = d where d ∈ F . Since F is a field, there exists

a unique element c
d
∈ F [x] such that f(x) = g(x) c

d
. In this case, r(x)

is 0 and the base case is satisfied.

Induction Hypothesis: For all f(x) such that n < N , we have

q(x), r(x) ∈ F [x] such that f(x) = g(x)q(x) + r(x) and deg r(x) <

deg g(x).

Induction Step: Let N be fixed. Assume deg f(x) = N . Using

long division, we get

f1(x) = f(x)− anb−1
m xn−mg(x)

Notice that deg f1(x) < N . Either f1(x) = 0 or deg f1(x) < deg f(x).

In either case, apply the induction hypothesis to f1(x) to get

f1(x) = q1(x)g(x) + r1(x)

We combine equations to get

f(x) = q1(x)g(x) + anb
−1
m xn−mg(x) + r1(x)

= (q1(x) + anb
−1
m xn−m)g(x) + r1(x)

Therefore, we have found q(x) = q1(x) + anb
1
m and r(x) = r1(x) such

that f(x) = q(x)g(x) + r(x), concluding the induction step.
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Uniqueness: We must still show that each factorization is unique.

Suppose

f(x) = q(x)g(x) + r(x)

and

f(x) = q′(x)g(x) + r′(x)

By subtracting these two equations from each other we get

g(x)(q(x)− q′(x)) = r(x)− r′(x)

Either r(x) − r′(x) = 0 or deg r(x) − r′(x) ≥ deg g(x). The latter is

impossible, therefore, r(x)− r′(x) = 0 which implies that r(x) = r′(x).

This in turn implies that g(x)(q(x) − q′(x)) = 0. Since g(x) 6= 0 by

assumption, we have q(x) = q′(x). This completes the proof. �

Recall we are interested in finding elements f(x) ∈ R[x] such that

〈f(x)〉 is a nice ideal. In particular, we want 〈f(x)〉 to be a maximal

ideal of R[x]. The corollaries of Theorem 2.4 will provide the infras-

tructure for a characterization of a maximal ideal of a polynomial ring.

We will prove each corollary in turn. The proofs for these corollaries

and the required lemmas are going to come fast and furious. Each

proof builds on the previous corollary.



3. POLYNOMIAL RINGS AND FIELD EXTENSIONS 23

Corollary 2.4.1. Let F be a field, a ∈ F , and f(x) ∈ F [x]. Then

f(a) is the remainder in the division of f(x) by x− a.

Proof. Let F be a field, a ∈ F , and f(x) ∈ F [x]. By Theorem

2.4, there exists q(x), r(x) ∈ F [x] such that

f(x) = q(x)(x− a) + r(x)

Consider f(a). Notice that q(a)(a−a) = 0. Therefore, we have f(a) =

r(a). �

Corollary 2.4.2. Let F be a field, a ∈ F , and f(x) ∈ F [x]. Then

a is a zero of f(x) if and only if x− a is a factor of f(x).

Proof. Let F be a field, a ∈ F , and f(x) ∈ F [x]. By Theorem

2.4, there exists q(x), r(x) ∈ F [x] such that

f(x) = q(x)(x− a) + r(x)

Assume that f(a) = 0. By Corollary 2.4.1, we have r(a) = 0. This

implies that f(x) = q(x)(x− a). Assume f(x) = q(x)(x− a) for some

q(x) ∈ F [x]. This implies that f(a) = q(a)(a − a) = 0. Thus, both

directions of the corollary have been shown. �

To prove the next corollary we will need the following two lemmas.
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Lemma 2.1 (Degree Rule). LetD be an integral domain and f(x), g(x) ∈

D[x]. Then deg(f(x) · g(x)) = deg f(x) + deg g(x).

Proof. Let D be an integral domain and f(x), g(x) ∈ D[x]. Let

n = deg f(x) and m = deg g(x). By definition of degree, the exponent

of x in the leading term of f(x) and g(x) is n and m respectively.

By definition of polynomial ring multiplication, the leading term of

f(x) · g(x) = anbmx
m+n. Since D is an integral domain anbm 6= 0.

Therefore,

deg f(x) · g(x) = m+ n = deg f(x) + deg g(x)

proving the degree rule. �

Lemma 2.2. Let f(x) belong to F [x], where F is a field. Let a be

a zero of f(x) with multiplicity k, and write f(x) = (x − a)kq(x). If

b 6= a is a zero of q(x), then b has the same multiplicity as a zero of

q(x) as it does for f(x).

Proof. Let f(x) belong to F [x], where F is a field. Let a be a zero

of f(x) with multiplicity k, and write f(x) = (x − a)kq(x). Assume

b 6= a is a zero of q(x) with multiplicity n. By Corollary 2.4.2, (x− b)

divides q(x) n times. That is q(x) = (x− b)nq̄(x) for some q̄(x) ∈ F [x].
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We can use this equation to see that

f(x) = (x− a)k(x− b)nq̄(x)

Thus, by Corollary 2.4.2, we know that b is a zero of f(x) with multi-

plicity n. �

Corollary 2.4.3. A polynomial of degree n over a field has at

most n zeros, counting multiplicity.

Proof. Let F be a field. Let f(x) ∈ F [x] and n = deg f(x). We

will prove this corollary by strong induction on the degree n.

Base Case: Assume n = 0. This suggests that f(x) = a where

a 6= 0 and a ∈ F . Thus, f(x) does not have any zeros.

Induction Hypothesis: Let f(x) ∈ F [x] such that deg f(x) ≤ N .

Then f(x) has at most N zeros, counting multiplicity.

Induction Step: Let deg f(x) = N + 1. Assume that a ∈ F is a

zero of f(x) with multiplicity k. By Corollary 2.4.2, we have

f(x) = (x− a)kq(x)

for some q(x) ∈ F [x]. By Lemma 2.1

deg f(x) = deg(x− a)k deg q(x) = k + deg q(x)
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If k = N + 1 we are done. Otherwise, we know that 0 < deg q(x) <

N+1. Therefore, we can apply the induction hypothesis to q(x) to find

that q(x) has at most deg q(x) zeros. By Lemma 2.2, we know that any

zero of q(x) is a zero of f(x) with the same multiplicity. Therefore, f(x)

has at most k+ deg q(x) zeros. Notice that k+ deg(x) = N + 1. Thus,

f(x) has at most N + 1 zeros and the induction step is complete. �

Now that we have a division algorithm for polynomials over a field,

it is natural to ask if every polynomial in a field can be factored. Like

prime numbers in the integers, there are polynomials that cannot be

factored. We call these polynomials irreducible. As it turns out, ir-

reducible polynomials will give us maximal ideals of their polynomial

ring.

Definition 2.11. Let D be an integral domain. A polynomial f(x)

from D[x] that is neither the zero polynomial nor a unit in D[x] is said

to be irreducible over D if, whenever f(x) is expressed as a product

f(x) = g(x)h(x), with g(x), h(x) ∈ D[x], then g(x) or h(x) is a unit in

D[x].

Notice, that if F is a field, then every element in F [x] is either 0

or a unit. Thus, f(x) being irreducible over a field F is equivalent to

saying that f(x) cannot be written as the product of two lower degree
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polynomials in F [x]. The following theorem and its corollary will show

that every irreducible polynomial over a field F , will give us an ideal

I whose corresponding factor ring is also a field. In order to prove

Theorem 2.5, we need the following lemma:

Lemma 2.3. If A is an ideal of a ring R and 1 belongs to A, then

A = R.

Proof. Let A be an ideal of a ring R and assume that 1 ∈ A. By

definition of ideal, ra ∈ A for all r ∈ R and a ∈ A. Since 1 ∈ A, it

follows that there exists a−1 ∈ R. Let r ∈ R be arbitrary. Notice that

r = ra−1a ∈ A by definition. Therefore, it follows that r ∈ A and

R ⊂ A. Furthermore, A ⊂ R by definition of ideal. Therefore, A = R

proving the result. Thus, if 1 ∈ A, then A = R. �

The utility of Lemma 2.3 comes from its contrapositive in the con-

text of polynomial rings. In particular, if A = 〈a(x)〉 where a(x) ∈ R[x]

and A is maximal in R[x], then A 6= R[x] by definition. Therefore, by

Lemma 2.3 a(x) is not a unit. Recall that in order for a(x) to be

irreducible, a(x) cannot be a unit.

Theorem 2.5. Let F be a field and let p(x) ∈ F [x]. Then 〈p(x)〉

is a maximal ideal in F [x] if and only if p(x) is irreducible over F .
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Proof. Let F be a field and let p(x) ∈ F [x]. Assume that 〈p(x)〉

is a maximal ideal. Since neither {0} nor F [x] are maximal ideals by

definition, p(x) 6= 0 and p(x) is not a unit. If p(x) where a unit, then

1 ∈ 〈p(x)〉, and 〈p(x)〉 = F [x] by Lemma 2.3. We will proceed by

contraction. Assume that p(x) is reducible. That is p(x) = g(x)h(x)

for some g(x), h(x) ∈ F [x] such that deg g(x), deg h(x) < deg p(x).

This implies that 〈p(x)〉 ⊆ 〈g(x)〉 ⊆ F [x]. Since 〈p(x)〉 is maximal,

there are two cases: either 〈p(x)〉 = 〈g(x)〉 or 〈g(x)〉 = F [x].

Case I: Assume 〈p(x)〉 = 〈g(x)〉. This implies that deg g(x) =

deg p(x), which is a contradiction.

Case II: Assume that 〈g(x)〉 = F [x]. By the degree rule, this

implies that deg g(x) = 0 and deg h(x) = deg p(x), which is a contra-

diction.

In either case, we have a contradiction. Therefore, p(x) is irre-

ducible.

Now assume that p(x) is irreducible over F . Let I be an ideal

of F [x] such that 〈p(x)〉 ⊆ I ⊆ F [x]. Since F [x] is a principle ideal

domain, I = 〈g(x)〉 for some g(x) ∈ F [x]. Therefore, we have that

p(x) = g(x)h(x) for some h(x) ∈ F [x]. Since p(x) is irreducible, either

g(x) or h(x) is a constant. If g(x) is a constant, then 〈g(x)〉 = F [x]. If
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h(x) is a constant, then 〈p(x)〉 = 〈g(x)〉. Therefore, 〈p(x)〉 is maximal

by definition. Thus, the theorem has been shown. �

Corollary 2.5.1. Let F be a field and p(x) be an irreducible

polynomial over F . Then F [x]/〈p(x)〉 is a field.

Proof. The corollary follows from the previous theorem and The-

orem 2.3. �

Notice, that if we have a polynomial p(x) ∈ F [x] that is irreducible

over F , and deg p(x) = 1, then p(x) has exactly 1 zero. In particular,

if deg p(x) = 1 then p(x) is of the form ax + b where a, b ∈ F . Since

F is a field, −a1b ∈ F and is a zero of p(x). However, if deg p(x) ≥ 2

and p(x) is irreducible over F , then p(x) will have strictly fewer than

deg p(x) zeros in F . This follows from Corollary 2.4.2. That is, if a is

a zero of p(x) then (x − a) is a factor of p(x). However, if p(x) has a

factor, then it is reducible. Thus, irreducible polynomials over a field

F cannot have any zeros in the field F . Notice that we are beginning

to address the problem raised at the end of section 1. In particular, it

is weird that x2 + 1 has two zeros in C, but no zeros in R. Part of this

mystery has been solved: x2 + 1 doesn’t have any zeros in R because

it is irreducible over R. We still have to explain how x2 + 1 gets zeros

in C. This is where field extensions come in.
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Definition 2.12. A field E is an extension field of a field F if

F ⊆ E and the operations of F are those of E restricted to F .

Recall the factor ring R[x]/〈x2 +1〉. Notice that x2 +1 is irreducible

over R. However, x2+1 has a zero in R[x]/〈x2+1〉, namely, x+〈x2+1〉.

Furthermore, we showed that R[x]/〈x2 + 1〉 ∼= C. Here is the kicker, C

is an extension field of R. The remainder of this section will formalize

this fact, and generalize it to other irreducible polynomials over a field

F .

Theorem 2.6. Let F be a field and let f(x) be a nonconstant

polynomial in F [x]. Then there is an extension field E of F in which

f(x) has a zero.

Proof. Let f(x) ∈ F [x] where F is a field. By Theorem 2.4,

f(x) must have an irreducible factor p(x). By Lemma 2.2, if we can

find a zero for p(x), then we have found a zero for f(x). That is, we

want to construct a field E such that p(x) has a zero in E. Consider

F [x]/〈p(x)〉. We know that F [x]/〈p(x)〉 is a field by Corollary 2.5.1.

Notice that the map φ : F → F [x]/〈p(x)〉 given by φ(a) = a + 〈p(x)〉

is an isomorphism between F and elements of F [x]/〈p(x)〉 of the form

a + 〈p(x)〉 where a ∈ F . That is, F is isomorphic to a subfield of

F [x]/〈p(x)〉.
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Now we must show that p(x) has a zero in F [x]/〈p(x)〉. Consider

p(x+ 〈p(x)〉) = p(x) + 〈p(x)〉

= 0 + 〈p(x)〉

Thus, we have shown that F [x]/〈p(x)〉 is a field extension of F in which

f(x) has a zero. �

Theorem 2.6 lets us find at least one zero of an irreducible polyno-

mial. However, this is only part of our goal. We want to be able to

find all zeros of a polynomial such that the number of zeros in a field

is the same as the polynomial’s degree. This kind of field is a splitting

field of a polynomial.

Definition 2.13. Let E be an extension field of F and let f(x) ∈

F [x]. We say that f(x) splits in E if f(x) can be factored as a product

of linear factors in E[x]. We call E the splitting field for f(x) over F

if f(x) splits in E but in no proper subfield of E.

Finding the splitting field for polynomial f(x) over F amounts to

applying Theorem 2.6 enough times to find all of the zeros. In partic-

ular, we get the following theorem:

Theorem 2.7. Let F be a field and let f(x) be a nonconstant

element in F [x]. Then there exists a spiting field E for f(x) over F .
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Proof. Let F be a field and let f(x) be a nonconstant element in

F [x]. We will use strong induction on n = deg f(x).

Base Case: Assume deg f(x) = 1. This implies that f(x) = ax+b

for some a, b ∈ F . Thus, F is a splitting field for f(x) over F .

Induction Hypothesis: If deg f(x) ≤ N , then there exists a

splitting field E for f(x) over F .

Induction Step: Assume that deg f(x) = N+1. By Theorem 2.6,

there exists an extension E of F such that f(a1) = 0 for some a1 ∈ E.

By the division algorithm, we can write

f(x) = (x− a1)q(x)

for some q(x) ∈ E[x]. Notice, that by Lemma 2.1 deg q(x) = N .

Therefore, we may apply the induction hypothesis to q(x) to find an

extension field K that contains all zeros of q(x) over E. Call these

zeros, a2, . . . , aN+1. By Lemma 2.2, all the zeros of q(x) are also zeros

of f(x). Thus, K = F (a1, . . . , aN+1) is a splitting field for f(x) over F ,

and the induction step is complete. �

Theorem 2.7 lets us find a spitting field for any polynomial f(x)

over a field F . However, we still don’t know exactly what these fields

look like. Of course they are of the form F [x]/〈p(x)〉. But given the

fact that we must repeatedly extend fields by factoring out maximal
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ideals, the exact structure of these fields gets pretty messy. Before

we can show that the splitting fields for f(x) over F is F (a1, . . . , an)

— F (a1, . . . , an) is the smallest field containing all elements of F and

a1, . . . an— we need two lemmas. The first lemma relates particular

representatives of elements in F [x]/〈p(x)〉 to elements in F [x]. The

second lemma shows that 〈p(x)〉 is the kernel for the homomorphism

from F [x] to the factor ring F [x]/〈p(x)〉.

Lemma 2.4. Let F be a field and let p(x), f(x), g(x) ∈ F [x] such

that deg f(x) < deg p(x) and deg g(x) < deg p(x). If f(x) + 〈p(x)〉 =

g(x) + 〈p(x)〉 then f(x) = g(x).

Proof. Let F be a field and let p(x), f(x), g(x) ∈ F [x] such that

deg f(x) < deg p(x) and deg g(x) < deg p(x). Assume that f(x) +

〈p(x)〉 = g(x) + 〈p(x)〉. Since deg f(x), deg g(x) < deg p(x), there is

nothing for 〈p(x)〉 to absorb. This suggest that

f(x) + 〈p(x)〉 = anx
n + · · · a1x+ a0 + 〈p(x)〉

where ai ∈ F and an 6= 0. Similarly,

g(x) + 〈p(x)〉 = bmx
m + · · · b1x+ b0 + 〈p(x)〉

where bi ∈ F and bm 6= 0. Combining the equations yields,

anx
n + · · · a1x+ a0 + 〈p(x)〉 = bmx

m + · · · b1x+ b0 + 〈p(x)〉
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which implies that n = m and ai = bi. Thus, f(x) = g(x). �

Lemma 2.5. Let F be a field and let p(x) be irreducible over F . If

E is a field that contains F and there is an element a in E such that

p(a) = 0, then the map φ : F [x]→ E given by φ(f(x)) = f(a) is a ring

homomorphism with kernel, 〈p(x)〉.

Proof. Let F be a field and let p(x) be irreducible over F . Assume

that E ⊃ F and that there exists a ∈ E such that p(a) = 0. Let

φ : F [x]→ E be given by φ(f(x)) = f(a). Let f(x), g(x) ∈ F [x].

First, we will show that φ preserves addition. Clearly,

φ(f(x) + g(x)) = f(a) + g(a).

Second, we will show that φ preserves multiplication. Consider

φ(f(a)g(a)) = φ(cnbmx
n+m + · · ·+ c0b0)

= cnbma
n+m + · · ·+ c0b0

= (cna
n + · · ·+ c0)(bna

m + · · · b0)

= φ(f(a)) + φ(g(a).

Therefore, φ : F [x]→ E is a ring homomorphism.
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Now, let f(x) ∈ 〈p(x)〉. By definition, f(x) = h(x)p(x) for some

h(x) ∈ F [x]. Consider

φ(f(x)) = φ(h(x)p(x))

= h(a)p(a)

= h(a)0

= 0

Thus, 〈p(x)〉 is the kernel of φ and the lemma has been shown. �

Theorem 2.8. Let F be a field and let p(x) ∈ F [x] be irreducible

over F . If a is a zero of p(x) in some extension E of F , then F (a) is

isomorphic to F [x]/〈p(x)〉. Furthermore, if deg p(x) = n, then every

member of F (a) can be uniquely expressed in the form

cn−1a
n−1 + cn− 2an−2 + · · ·+ c1a+ c0

where c0, . . . , cn−1 ∈ F .

Proof. Let F be a field and let p(x) ∈ F [x] be irreducible over

F . Assume that a is a zero of p(x) in some extension E of F . Let

φ : F [x] → F (a). By Lemma 2.5, we know that 〈p(x)〉 ⊂ kerφ. By

Theorem 2.5, we know that 〈p(x)〉 is a maximal ideal of F [x]. In

other words, kerφ is either 〈p(x)〉 or F [x]. Notice that 1 /∈ kerφ by
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Lemma 2.3. This implies that kerφ 6= F [x]. Therefore, kerφ = 〈p(x)〉.

Thus, by the First Isomorphism Theorem for Rings, we have that

F [x]/〈p(x)〉 ∼= φ(F [x]). Notice that φ(F [x]) contains all of F and

the element a. The smallest such field is F (a), therefore, by Corollary

2.5.1 F [x]/〈p(x)〉 ∼= F (a).

By Lemma 2.4, we know that the typical element in F [x]/〈p(x)〉 is

uniquely given by

cn−1x
n−1 + cn− 2xn−2 + · · ·+ c1x+ c0 + 〈p(x)〉

where ci ∈ F . Notice that the isomorphism φ takes cix
i + 〈p(x)〉 to

cia
i. Thus, the theorem has been shown. �

Theorem 2.8 gives us the last result we need to explain why x2 + 1

has two zeros over C. To summarize, we have shown that every polyno-

mial has a splitting field over which it has as many zeros as its degree.

Using field extensions, we can find splitting fields and identify their

elements. In particular, the splitting field for a polynomial p(x) where

p(x) is irreducible over F is F (a1, . . . , an), the field of polynomials with

coefficients in F over the variables a1, . . . , an.
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4. Algebraic Extensions

Definition 2.14. Let E be an extension field of a field F and let

a ∈ E. We call a algebraic over F if a is the zero for some nonzero poly-

nomial in F [x]. If a is not algebraic over F , it is called transcendental

over F . Similarly, an extension E of F is called algebraic extension of

F if every element of E is algebraic over F . If E is not an algebraic ex-

tension of F , it is called a transcendental extension of F . An extension

of F of the form F (a) is called a simple extension of F .

Theorem 2.9. Let E be an extension field of F and let a ∈ E.

If a is transcendental over F , then F (a) ∼= F (x). If a is algebraic

over F , then F (a) ∼= F [x]/〈p(x)〉, were p(x) is a polynomial in F [x] of

minimum degree such that p(a) = 0. Moreover, p(x) is irreducible over

F .

Proof. Let E be an extension field of F and let a ∈ E. Let

φ : F [x]→ E be given by φ(f(x)) = f(a).

Assume that a is transcendental over F . By definition of tran-

scendental, f(a) 6= 0 for all nonzero polynomials in F [x]. This im-

plies that kerφ = {0}. Therefore, we can define an isomorphism

φ′ : F (x)→ F (a) where

φ

(
f(x)

g(x)

)
=
f(a)

g(a)
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Assume that a is algebraic over F . By definition of algebraic, f(a) =

0 for some f(x) ∈ F [x]. This suggests that kerφ 6= {0}. There are two

cases: either f(x) is irreducible over F , or it is not.

Case I: Let f(x) be irreducible over F . Then 〈f(x)〉 is a maximal

ideal of F [x] and 〈f(x)〉 = kerφ. By the First Isomorphism Theorem,

φ′ : F [x]/〈f(x)〉 → F (a) given by φ′(f(x) + 〈f(x)〉) → f(a) is an

isomorphism. Furthermore, notice that if f(x) wasn’t of minimum

degree such that f(a) = 0, then 〈f(x)〉 would not be maximal.

Case II: Let f(x) be reducible over F [x]. By definition, there

exists g(x), h(x) ∈ F [x] such that f(x) = g(x)h(x) and deg f(x) >

deg g(x), deg h(x) ≥ 1. Since F is a field, either g(a) = 0 or h(a) = 0.

Without loss of generality, we may assume that g(a) = 0. Notice that

if g(x) is irreducible, then we are done by Case I. Otherwise, we may

repeat the arguments of Case II. Notice this process must bottom out

because we are every time we factor f(x) (or g(x)), we are reducing

the degree of the polynomial we are considering. Thus, we are done

with this case.

Therefore, all statements of the theorem have been proven. �

Theorem 2.10. If a is algebraic over a field F , then there is a

unique monic irreducible polynomial p(x) in F [x] such that p(x) = 0.



5. CYCLOTOMIC FIELDS 39

Proof. Assume that a is algebraic over a field F . By Theorem 2.9,

there exists an irreducible polynomial of minimal degree, p(x) ∈ F [x]

such that p(a) = 0. Let b be the leading coefficient of p(x). Since F is

a field, there exists an element b−1 ∈ F [x]. The polynomial b−1p(x) is

monic and unique by construction. �

Theorem 2.11. Let a be algebraic over F , and let p(x) be the

minimal polynomial for a over F . If f(x) ∈ F [x] and f(a) = 0, then

p(x) divides f(x) in F [x].

Proof. Let a be algebraic over F , and let p(x) be the minimal

polynomial for a over F . By Theorem 2.10, p(x) is unique. Assume

that f(x) ∈ F [a] and f(a) = 0. Recall φ from the proof of Theorem

2.9. We apply this theorem to p(x) to get that, 〈p(x)〉 is the kernel of

φ. Since f(a) = 0, f(a) ∈ 〈p(x)〉. By definition of ideal, there exists

g(x) ∈ F [x] such that g(x)p(x) = f(x). Therefore, p(x) divides f(x)

by definition. �

5. Cyclotomic Fields

Irreducible polynomials aren’t the only polynomials that don’t have

as many zeros as their degree. In particular, if a polynomial has an

irreducible factor, then it will not have as many zeros as its degree. In

section 1 we saw an example of this kind of polynomial, namely xn−1.
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In fact, this is an entire family of polynomials that don’t have n zeros

over Q.

Definition 2.15. The irreducible factors of xn−1 over Q are called

the cyclotomic polynomials.

From complex analysis we know that the complex zeros of the poly-

nomial xn − 1 are 〈eı 2πn 〉 = {1, eı 2πn , eı 4πn , eı 6πn , . . . , eı
(n−1)2π

n }. In other

words Q(eı
2π
n ) is the splitting field for xn− 1 over Q. Any generator of

the cyclic group 〈eı 2πn 〉 is called a primitive nth root of unity. In par-

ticular, eık
2π
n where k is relatively prime to n is a generator of 〈eı 2πn 〉.

Let φ(n) denote the number of integers 0 < k < n such that k and n

are relatively prime.

Definition 2.16. We can then define the nth cyclotomic polyno-

mial as the polynomial Φn = (x− ω1)(x− ω2) · · · (x− ωφ(n)) where ωi

are the nth primitive roots of unity.

Notice that the nth cyclotomic polynomial is monic. That is, the

leading coefficient is 1. Since we are interested in cyclotomic field

extensions over Q, we need to show that the cyclotomic polynomials

are irreducible over Q. First, we will show that the pth cyclotomic

polynomial where p is prime is irreducible over Q. This result is actually

a corollary of Eisenstein’s Criterion for irreducibility.
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Theorem 2.12 (Eisenstein’s Criterion (1850)). Let

f(x) = anx
n + an−1x

n−1 + · · ·+ a0 ∈ Z[x]

If there is a prime p such that p 6 |an, p|an−1, . . . , p|a0 and p2 6 |a0, then

f(x) is irreducible over Q.

Proof. Let

f(x) = anx
n + an−1x

n−1 + · · ·+ a0 ∈ Z[x]

Assume that there exists a prime p such that p 6 |an, p|an−1, . . . , p|a0

and p2 6 |a0. We will proceed by contradiction. Assume that f(x) is

reducible over Q. Let deg f(x) = n. It is a fact that if a polynomial

is reducible over Q, then it is reducible over Z. Therefore, there exists

g(x), h(x) ∈ Z[x] such that

f(x) = g(x)h(x)

and 1 ≤ deg g(x), deg h(x) < n. Let

g(x) = brx
r + · · ·+ b0

and

h(x) = csx
s + · · ·+ c0.

By assumption p|a0 but p2 6 |a0. Furthermore, a0 = b0c0. This implies

that p can divide at most b0 or c0 but not both. Without loss of
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generality, assume that p|b0 but p 6 |c0. Notice that p 6 |an = brcs

implies that p 6 |br. Let t be the least integer such that p 6 |bt. Now

consider,

at = btc0 + bt−1c1 + · · ·+ b0ct

Since, p|bi for t ≥ i ≥ 0, we know that p|at. In particular, p|btc0 which

is a contradiction because we assumed that p 6 |bt and p 6 |c0. Thus, the

theorem is shown. �

Corollary 2.12.1. For any prime p, the pth cyclotomic polyno-

mial

Φp(x) =
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ x+ 1

is irreducible over Q.

Proof. Consider

f(x) = Φp(x+1) =
(x+ 1)p − 1

x+ 1− 1
= (x)p−1+

p
1

 (x)p−2+· · ·+

p
2

x+

p
1


Notice, that by Theorem 2.12 f(x) is irreducible over Q. For the sake

of contradiction, assume that Φp(x) is reducible over Q. By definition

of reducible, there exists g(x), h(x) ∈ Q[x] such that Φp(x) = g(x)h(x).

However, this implies that Φp(x + 1) = g(x + 1)h(x + 1) would also

be a nontrivial factorization of f(x) over Q. This is a contradiction.

Therefore, Φp(x) is irreducible over Q. �
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We would like to show that the nth cyclotomic polynomial is ir-

reducible over Q even when n is not prime. To show that the nth

cyclotomic polynomial is irreducible over Q, we will show that it is ir-

reducible over Z. For the nth cyclotomic polynomial to be irreducible

over Z it must have coefficients in Z. The proof for this requires in-

duction on n. Since induction on n is nicer for xn − 1 than the nth

cyclotomic polynomial, we will relate the former to the latter with the

following theorem.

Theorem 2.13. For every positive integer n, xn − 1 =
∏

d|n Φd(x),

where the product runs over all positive divisors d of n.

Proof. Let n be a positive integer. Notice that both xn − 1 and∏
d|n Φd(x) are monic. That means it suffices to show that both poly-

nomials have the same zeros with the same multiplicity. Let ω = eı
2π
n .

By Lagrange’s theorem, we know that for all j, |ωj| divides |〈ω〉| = n.

This implies that (x−ωj) is a zero of Φ|ωj |(x). This shows that (x−ωj)

is a factor for
∏

d|n Φd(x), where j is arbitrary. In other words, if x−α

is a linear factor of xn − 1, then x− α is a linear factor of
∏

d|n Φd(x).

Now, let d|n. Assume that x − α is a linear factor of Φd(x). This

implies that α ∈ 〈ω〉. Therefore, αd = 1 and αn = 1. Thus, x− α is a
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linear factor of xn − 1. That is, every linear factor of
∏

d|n Φd(x) is a

linear factor of xn − 1. �

Notice that xn − 1 has integer coefficients. So far we know don’t

much about
∏

d|n and Φd(x) except that they are both monic. This

leaves open the possibility for
∏

d|n and Φd(x) to have rational coeffi-

cients. The following lemma shows why this is not the case.

Lemma 2.6. Let g(x) and h(x) belong to Z[x] and let h(x) be monic.

If h(x) divides g(x) in Q[x], then h(x) divides g(x) in Z[x].

Proof. Let g(x), h(x) ∈ Z[x] such that h(x) is monic. Assume

that h(x) divides g(x) in Q[x]. By the division algorithm in poly-

nomial rings, this implies that there exists q(x) ∈ Q[x] such that

q(x)h(x) = g(x). Let m = deg q(x) and n = deg h(x). By the de-

gree rule, m + n = deg g(x). Let gi, hi, qi denote the coefficient of the

ith term in g(x), h(x), and q(x) respectively. By the polynomial ring

multiplication,

gi =
∑

0 ≤ l ≤ n

0 ≤ k ≤ m

l + k = i

hlqk
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for all 0 ≤ i ≤ m+ n. We are going to show that qm−t is an integer by

induction on t from 0 to m.

Base Case: Consider t = 0. We know that gn+m = hnqm. Since

hn = 1, we know that qm is an integer.

Induction Hypothesis: For all t < T , we know that qm−t is an

integer.

Induction Step: Consider

gn+m−(T+1) = hnqm−(T+1) + hn−1qm−T + · · ·+ hn−(T+1)qm

Note that hi = 0 where i < 0. Since all variables in this equation except

qm−(T+1) are integers by the induction hypothesis and hn = 1, qm−(T+1)

must be an integer. This concludes the proof of the lemma. �

Theorem 2.13 and Lemma 2.6 round out the relationship xn − 1 =∏
d|n Φd(x). In particular, if any Φd(x) is monic then the others cyclo-

tomic polynomials have integer coefficients. This paves the way for an

induction proof for the next theorem.

Theorem 2.14. For every positive integer n, Φn(x) has integer

coefficients.

Proof. We are going to prove the theorem by induction on n.
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Base Case: Consider Φ1(x) = x − 1. Clearly, Φ1(x) only has

integer coefficients.

Induction Hypothesis: Assume that for all n ≤ N , Φn(x) has

integer coefficients.

Induction Step: Let g(x) =
∏

d|n,d<n Φd(x). Consider

xN+1 − 1 = ΦN+1g(x)

Since g(x) is monic, we know that ΦN+1 has integer coefficients by

Lemma 2.6. This concludes the proof of this theorem. �

Now that we know that the nth cyclotomic polynomials are ele-

ments in Z[x] it makes sense to ask whether or not they are irreducible

over Z. Showing that the nth cyclotomic polynomials are irreducible

over Z is actually a stronger theorem than what I want for my thesis. I

just care whether they are irreducible over Q. However, Gauss’s proof

for the irreducibility of the cylotomic polynomials over Z ties together

many of the ideas in Chapter 1. Furthermore, it is by far the craziest

proof I have seen in any class at Bates. I think both are compelling

reasons to take a look at it. The irreducibility of the cyclotomic poly-

nomials over Q is a corollary.

Theorem 2.15. The cyclotomic polynomials Φn(x) are irreducible

over Z.
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Proof. Let f(x) ∈ Z[x] be a monic irreducible factor of Φn(x).

Since Φn(x) is monic and does not have multiple zeros, if all of the

zeros of Φn(x) are zeros of f(x), then Φn(x) = f(x) and Φn(x) is

irreducible over Z.

Since Φn(x) divides xn−1 in Z[x] by definition, and f(x) is a factor

of Φn(x), we can write

xn − 1 = f(x)g(x)

for some g(x) ∈ Z[x]. Let ω be an nth root of unity that is a zero

of f(x). Since f(x) is irreducible over Z, f(x) is irreducible over Q.

This implies that f(x) is a minimal polynomial for ω over Q. Let p

be a prime that does not divide n. Since p 6 |n we know that ωp is

a generator of 〈ω〉 and thus a primitive root of unity. Therefore, by

definition

0 = (ωp)n − 1 = f(ωp)g(ωp).

Since Z[x] is an integral domain f(ωp) = 0 or g(ωp) = 0.

For the sake of contradiction, assume that f(ωp) 6= 0. Then g(ωp) =

0, and ω is a zero of g(xp). By Theorem 2.11, f(x) divides g(xp)

in Q[x]. Now, by Lemma 2.6 we know that f(x) divides g(xp) in

Z[x]. In particular, g(xp) = f(x)h(x) for some h(x) ∈ Z[x]. Let

ḡ(x), f̄(x), h̄(x) ∈ Zp[x] be obtained by reducing g(x), f(x), h(x) by
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modulo p respectively. Notice that ψ : Z[x] → Zp[x] is a ring homo-

morphism. This implies that ḡ(x) = f̄(x)h̄(x) in Zp[x]. By Fermat’s

Little Theorem, we have that

(ḡ(x))p = ḡ(xp) = f̄(x)h̄(x).

Since Zp[x] is a unique factorization domain, f̄(x) and ḡ(x) are irre-

ducible and have a factor in common. Therefore, we have

f̄(x) = k1(x)m(x)

and

ḡ(x) = k2(x)m(x)

where k1(x), k2(x) ∈ Zp[x]. We can use these equalities to write

xn − 1 = k1(x)k2(x)m(x)2

in Zp[x]. However, this suggests that xn− 1 has multiple zeros in some

extension over Zp[x]. Consider nxn−1 the derivative of xn − 1. By

the multiple zeros criterion, xn − 1 has multiple zeros if and only if

nxn−1 and xn − 1 have a factor of positive degree in common in Zp[x].

Since p 6 |n, we know that nxn−1 does not reduce to zero in Zp[x].

Furthermore, Zp does not have any zero divisors, so nxn−1 and xn − 1

cannot share a factor of positive degree. This implies that xn−1 cannot

have multiple zeros, which is a contradiction. Therefore, f(ωp) = 0.
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Thus, if ω is a primitive root of unity and f(ω) = 0, then f(ωp) = 0

where p is prime and p 6 |n.

Let 1 < k < n be relatively prime to n. Let k = p1p2 · · · pt. Since

k and n are relatively prime pi 6 |n. Therefore, ω, ωp1 , ωp1p2 , . . . , ωk are

zeros of f(x). Notice that every zero of Φn(x) is of the form ωk, where

1 < k < n and k is relatively prime to n. Therefore, every zero of

Φn(x) is a zero of f(x). Thus, Φn(x) = f(x) which was assumed to be

irreducible over Z. �

Corollary 2.15.1. The cyclotomic polynomials Φn(x) are irre-

ducible over Q.

Proof. It is a fact that if a polynomial is reducible over Z, then it is

reducible over Q. Therefore, the corollary easily follows from Theorem

2.15. �

The upshot of all of these theorems is that there is a special family

of fields called the cyclotomic field extensions over Q. In particular, the

nth cyclotomic field is the smallest field that contains all the rational

numbers and the nth roots of unity. By finding cyclotomic fields, we

begin to see how we can build the complex numbers out of the rationals.

Though this is not a formal treatment of the matter, I picture the
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solution being something like this:

Q ⊂ Q(ωn) ⊂ Q(ω2n) ⊂ C

where ωn a primitive nth root of unity, for all n ∈ N. In this relation,

we see that even though the degree of Q(ωn) and Q(ω2n) is the same,

the former is a “smaller” subset of the complex numbers.

6. Quadratic Number Fields

Definition 2.17. Let p(x) = x2+m be an element in Q[x] where m

is not a perfect square in Z. Then Q[x]/〈p(x)〉 ∼= Q(
√
m) is a quadratic

field extension over Q. If m > 0, Q(
√
m) is called a real quadratic field

extension. If m < 0, then Q(
√
m) is called an imaginary quadratic

field extension.

Theorem 2.16. Let p2|m for some p,m ∈ Z, where p is not a unit.

Then Q(
√
m′) = Q(

√
m) where p2m′ = m.

Proof. Let p2|m for some p,m ∈ Z, where p is not a unit. Con-

sider Q(
√
m). Notice that

√
m = p

√
m′ where p2m′ = m. Therefore,

Q(
√
m) ⊆ Q(

√
m′). Let a + b

√
m′ be some element in Q(

√
m′). Con-

sider the element b−1a
p

+
√
m ∈ Q(

√
m′). We know that b−1a

p
+
√
m =

b−1ap
p

+ p
√
m′ and that b

p
∈ Q(

√
m). Therefore,

b

p
(
b−1ap

p
+ p
√
m′) = a+ b

√
m′ ∈ Q(

√
m)
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Thus, Q(
√
m) ⊇ Q(

√
m′), concluding the proof. �

Recall the definition of a prime ideal.

Definition 2.18. A prime ideal A of a commutative ring R is a

proper ideal of R such that a, b ∈ R and ab ∈ A implies that a ∈ A or

b ∈ A.

This is similar to the definition of a prime element.

Definition 2.19. Let a, b, c be elements of an integral domain D.

Then we say that a is prime if a is not a unit and a|bc implies either

a|b or a|c.

In fact, an ideal 〈a〉 is prime if and only if a is prime. Notice that

〈x2 +m〉 is a prime ideal of Q[x] when m ∈ Z is square free. Therefore,

x2 + m is prime in Q[x]. Furthermore, x2 + m is irreducible in Q[x]

by Theorem 2.12. This implies that 〈x2 + m〉 is maximal, allowing us

to consider the field Q[x]/〈x2 + m〉 ∼= Q(
√
m). However, notice that

y2 + m (indeterminate y) has a zero in Q[x]/〈x2 + m〉, and therefore,

has a factor; namely x+〈x2 +m〉. Alternatively, we can say that y2 +m

has y −
√
−m and y +

√
−m as factors. This suggests that y2 + m is

no longer prime in Q(
√
m). Now it is interesting to ask which elements

are prime in Q(
√
m). As it turns out the answer depends on m.
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Definition 2.20. A complex number is an algebraic integer if and

only if it is the root of some monic polynomial with coefficients in Z.

Lemma 2.7. Let f(x) be a monic polynomial with coefficients in

Z, and suppose f(x) = g(x)h(x) where g(x) and h(x) are monic poly-

nomials with coefficients in Q. Then g(x), h(x) ∈ Z[x].

Notice that Lemma 2.7 is similar to a lemma we used in a previous

section. For a detailed proof of it, refer to page 14 in [3].

Theorem 2.17. Let α be an algebraic integer and let f(x) be a

monic polynomial over Z of least degree having α as a root. Then f(x)

is irreducible over Q.

Proof. Let α be an algebraic integer and let f(x) be a monic

polynomial over Z of least degree such that f(α) = 0. If deg f(x) =

1 then we are done. Therefore, let deg f(x) ≥ 2. For the sake of

contradiction, assume that f(x) is reducible in Q[x]. By definition of

irreducible, there exist g(x), h(x) ∈ Q[x] such that f(x) = g(x)h(x)

where g(x) and h(x) are not units. Since f(x) is monic, the product of

the leading coefficients of g(x) and h(x) must be one. We can scale both

g(x) and h(x) to make both of them monic. By Lemma 2.7, g(x) and

h(x) have coefficients in Z. Notice that either g(α) = 0 or h(α) = 0. In

either case, we have a contradiction because we assumed that f(x) is
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a least degree polynomial over Z such that f(α) = 0. Therefore, f(x)

is irreducible over Q. �

Corollary 2.17.1. Let m be a squarefree integer. The set of

algebraic integers in the quadratic field Q(
√
m) is

{a+ b
√
m : a, b ∈ Z} if m ≡ 2 or 3 mod 4

{a+ b
√
m

2
: a, b ∈ Z, a ≡ b mod 2} if m ≡ 1 mod 4

Proof. Let m be a squarefree integer. Let r + s
√
m ∈ Q(

√
m).

We want to find the conditions under which r + s
√
m is an algebraic

integer in Q(
√
m). If s 6= 0 then p(x) = x2−rx+r2−ms2 is the monic

irreducible polynomial over Z. In particular

p(r + s
√
m) = (r + s

√
m)2 − 2r(r + s

√
m) + r2 −ms2

= r2 + s2m+ 2rs
√
m− 2r2 − 2rs

√
m+ r2 −ms2

= 0

Notice that r + s
√
m is algebraic if and only if it is a zero for a poly-

nomial with coefficients in Z. In other words, r + s
√
m is algebraic if

−2r ∈ Z and r2−ms2 ∈ Z. In order to find possible algebraic integers,

we will assume that −2r ∈ Z and r2 −ms2 ∈ Z. There are two cases,

either m ≡ 2 or 3 mod 4, or m ≡ 1 mod 4. Notice that if m ≡ 0

mod 4 then m would not be squarefree.
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Case I: Assume that m ≡ 2 or 3 mod 4. Notice that if r ∈ Z,

then ms2 ∈ Z. Since m is squarefree, s ∈ Z. However, r could equal

k
2

where 2 6 |k. This implies that k2

4
= ms2. Since 2 6 |k, we know that

k2 ≡ 1 mod 4. Therefore s2 must be of the form p2

4
. Now the equality

k2

4
=
mp2

4

only holds if k2 ≡ mp2 mod 4. However, mp2 6≡ 1 mod 4. Therefore,

r cannot be of the from k
2

where 2 6 |k. The conclusion of Case I is that

if m ≡ 2 or 3 mod 4, then the set

{a+ b
√
m : a, b ∈ Z}

consists of the algebraic integers of Q(
√
m).

Case II: Assume that m ≡ 1 mod 4. First, assume that r ∈ Z.

Then ms2 ∈ Z. As in Case I, this implies that s ∈ Z Second, assume

that k
2

where 2 6 |k. This implies that k2

4
= ms2. Since m ≡ 1 mod 4,

this equation is satisfied any time s = p
2

where 2 6 |p. The result of Case

II is that if m ≡ 1 mod 4, then

{a+ b
√
m

2
: a, b ∈ Z, a ≡ b mod 2}

consists of the algebraic integers of Q(
√
m). �
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The ring of algebraic integers is closed, and essentially forms the

set of primes in the corresponding quadratic field extension. With this

in mind, we have a special interest in these rings.



CHAPTER 3

Origami Rings

In origami, the artist uses intersections of folds as reference points

to make new folds. This kind of construction can be extended to points

on the complex plane. That is, given a set of reference points and a

set of lines we can fold along, we can construct new reference points by

adding intersections of lines to our set of reference points. This chapter

formalizes the notion of an origami construction, and presents known

results. All of the work in this chapter is attributed to [1], however,

the proofs have been rewritten in my own words and some details have

been filled in. I created all of the images myself. The only images

containing my own work and interpretation are in section 3.

1. Definitions and Notation

We will denote the seed set of our construction as S ⊂ C. Let

T ⊂ C be the set of points on the unit cicle in the complex plane. We

let U ⊂ T be a set denoting the lines or folds we get to use. The angle

between the line containing 0 and u ∈ U and a the line containing 0

and 1 is the angle along which we may fold. To be more precise, we

56
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can start a fold at any point we have constructed (or from our seed set)

and fold along the angle as given by u in the previously stated way.

To formalize what we have just introduced, we can write a line or

fold as

Lu(p) = {p+ ru|r ∈ R}

where p has been constructed or is in S, and u is the angle given by

u ∈ U . Here it might be best to think of u as a vector. The intersections

and, therefore, new points can be written as

Iu,v(p, q) = Lu(p) ∩ Lv(q)

where p, q have been constructed or are in S and u, v are the angles

given by u, v ∈ U . Notice that Iu,v(p, q) is in essence a point on the

complex plane defined by two other points and lines going through

them.

Definition 3.1. We let R(S, U) denote the smallest subset of

points in C containing S such that R(S, U) is closed under Iv,u(p, q) for

u, v ∈ U and p, q ∈ R(S, U).

2. Properties of Intersections

Let S = {0, 1} and U ⊂ T. Notice that we have defined a particular

seed set. We have chosen this particular seed set because 0, 1 are nice
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elements to have in rings. We will assume that S = {0, 1} unless

otherwise noted. Furthermore, we will assume that U is a group. There

are interesting properties of the Iu,v(p, q) operator that are integral

for us to prove more theorems about R(S, U). However, before we

get into proving the properties of Iu,v(p, q) we will express this point

algebraically.

Let u, v ∈ U be two distinct angles. Let p, q be points in R(S, U).

Consider the pair of intersecting lines Lu(p) and Lv(q). By definition of

these sets, we can express Iu,v(p, q) as the point satisfying the equation

(3.1) p+ ru = q + sv

where r, s ∈ R. By doing some algebra, we can rewrite equation 3.1 as

follows:

p+ ru = q + sv(3.2)

p+ ru− q = sv(3.3)

v−1(p+ ru− q) = s(3.4)
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Notice that we have v−1 in equation 3.4. Recall that we assumed that

U is a group, v must have an inverse, v−1. We will also let v−1 = 1/v.

Since we know that s ∈ R, we know that =(s) = 0, where =(x)

is the imaginary component of x. If we apply =(x) to both sides of

equation 3.4 and solve for r as follows:

0 = =(v−1(p+ ru− q))(3.5)

0 = =((p− q)/v) + =(ru/v)(3.6)

=(ru/v) = =((p− q)/v)(3.7)

Since r ∈ R we have =(ru/v) = r=(u/v). We can substitute this back

into equation 3.7 and isolate r to get

(3.8) r =
=((p− q)/v)

=(u/v)

For the sake of simplifying equation 3.8 we will introduce the fol-

lowing notation:

(3.9) [x, y] = xȳ − x̄y = 2i|y|2=(x/y)



2. PROPERTIES OF INTERSECTIONS 60

At first, we will be most interested in the part of the equality that

contains the =(z) operator. Notice that both the top and the bottom

parts of the fraction in equation 3.8 are of the form =(x/y). More

particularly, v is in the denominator inside both =(z) operators. This

allows us to multiply the left hand side of equation 3.8 by

2ı|v|2

2ı|v|2
= 1

to get

(3.10) r =
2ı|v|2=((p− q)/v)

2ı|v|2=(u/v)

Now we actually apply equation 3.9 to equation 3.10 to get

(3.11) r =
[p− q, v]

[u, v]

Since we have a value for r that depends only on p, q, v, and u we

can find the point specified in equation 3.1 without actually solving the

equation. That is, the solution to p+ ru = q + sv is given by

(3.12) Iu,v(p, q) = p+
[p− q, v]

[u, v]
u



2. PROPERTIES OF INTERSECTIONS 61

Unfortunately, the notation introduced in equation 3.9 is opaque

despite its aesthetic appeal. Therefore, we will embark on another

adventure in algebraic manipulation to get a new equation of Iu,v(p, q)

from which we can easily derive some crutial properties of points in an

origami ring on C.

Iu,v(p, q) = p+
[p− q, v]

[u, v]
u(3.13)

=
p[u, v] + [p− q, v]u

[u, v]
(3.14)

We will now apply equation 3.9 to get

Iu,v(p, q) =
p(uv̄ − ūv)−

(
(p− q)v̄ − (p− q)v

)
u

uv̄ − ūv
(3.15)

=
puv̄ − pūv − (pv̄u− qv̄u− p̄vu+ q̄vu)

uv̄ − ūv
(3.16)

=
puv̄ − pūv − pv̄u+ qv̄u+ p̄vu− q̄vu

uv̄ − ūv
(3.17)

=
−pūv + qv̄u+ p̄vu− q̄vu

uv̄ − ūv
(3.18)

=
p̄vu− pūv + qv̄u− q̄vu

uv̄ − ūv
(3.19)

The biggest jump in the algebra is arguably from 3.15 to 3.16.

The jump comes from the fact that conjugacy of complex numbers
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distributes. Returning to equation 3.19, we see that

Iu,v(p, q) =
p̄vu− pūv − q̄vu+ qv̄u

uv̄ − ūv
=

[u, p]

[u, v]
v +

[v, q]

[v, u]
u

In order to prove some properties about the intersection operator,

it is useful to keep the following equation in mind

(Algebraic Closed form of Iu,v(p, q))

Iu,v(p, q) =
up̄v − ūpv
uv̄ − ūv

+
qv̄u− q̄vu
ūv − uv̄

=
[u, p]

[u, v]
v +

[v, q]

[v, u]
u

From the algebraic closed form of the intersection operator, we can

easily see that the following properties hold for for p, q, u, v ∈ C.

Symmetry: Iu,v(p, q) = Iv,u(q, p)

Reduction: Iu,v(p, q) = Iu,v(p, 0) + Iv,u(q, 0)

Linearity: Iu,v(p+ q, 0) = Iu,v(p, 0) + Iu,v(q, 0) and rIu,v(p, 0) =

Iu,v(rp, 0) where r ∈ R.

Projection: Iu,v(p, 0) is a projection of p on the line {rv : r ∈

R} in the u direction.

Rotation: For w ∈ T, wIu,v(p, q) = Iwu,wv(wp,wq).

3. Examples of Origami Constructions

Constructing a point in an origami set has a very nice visual and

geometric interpretation. In figure 3.1, we see how the point 2 can be
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generically constructed with the assumption that we have at least three

angles, one of which is 1.

Figure 3.1. The construction in this figure shows how

2 can be constructed in any R(S, U).

Of course, when we are trying to close an origami set under the

intersection operator, we would like to add points faster than just one

by one. In figure 3.2, we can see how an origami set expands. In

particular, we can take the seed set S0 and add all points to S0 that

can be constructed given U to create S1. Then we have the recurrence

relation

Si = {p = Iu,v(q, r) : u, v ∈ U, q, r ∈ Si−1}
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Figure 3.2. Here we see how the intersection operator

expands the origami set, R(S, U). Each generation adds

all points that can be generated from some combination

of points and angles from the previous generation. In

this example, S = {0, 1} and U = {1, ı, eı pi4 }.

Notice that the set that is closed under the origami operator, is the

limit of the sequence Si. Symbolically, this means that

R(S0, U) = lim
n→∞

Sn
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Hopefully, this way of thinking about origami sets is helpful.
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4. Proof that R(S, U) is a subring of C

Recall that there are a handful of conditions a set with two bi-

nary operators must meet in oder to count as a ring. This section is

dedicated to showing that R(S, U) satisfies those conditions.

Theorem 3.1. If U is a group and |U | ≥ 3, then R(S, U) is a

subring of C.

Identity and Unity. Since 0, 1 are elements in S, 0, 1 will defi-

nitely be in R(S, U). �

Associativity and Distribution. Since R(S, U) is a subset of

the complex plane, we know that the inherited operations from C(+, ·)

are associative and distributive over R(S, U). �

Lemma 3.1. For any U ⊂ T/{1,−1} such that |U | ≥ 3, −1, 2 ∈

R(S, U).

The proof for Lemma 3.1 is best illustrated graphically.
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Figure 3.3. The construction in this figure shows how

−1 can be constructed in any R(S, U).

Figure 3.4. The construction in this figure shows how

2 can be constructed in any R(S, U).

Additive Closure. Assume that p, q ∈ R(S, U). This implies

that there exists a sequence of intersections that constructs p and q.
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In particular, let

p = P (0, 1) = Iu,v(Iu′,v′(...), Iu′′,v′′(...))

and

q = Q(0, 1) = Iu,v(Iu′,v′(...), Iu′′,v′′(...)).

An example for these constructions is given in figure 3.5. The 0, 1 in

P (0, 1) denote that the construction started at 0, 1. By Lemma 3.1, we

know that 2 ∈ R(S, U). Notice that we can construct p+ 1 = P (1, 2),

shown on the left of figure 3.6. By the same logic, we can construct p+q

by starting from p, p+ 1, shown on the right of figure 3.6. In particular

Q(p, p+ 1) = p+ q. Thus, R(S, U) is closed under addition. �

Figure 3.5. The graph on the left gives an example of

a construction for a point p. The graph on the right gives

an example of a construction for a point q.
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Figure 3.6. The graph on the left shows the construc-

tion of p + 1 given the construction for p. The graph

on the right shows the construction of p + q given the

construction of q and the points p, p+ 1.

Additive Inverse. Assume that p ∈ R(S, U). We want to show

that −p ∈ R(S, U). That is, there exists a construction

p = P (0, 1) = Iu,v(Iu′,v′(...), Iu′′,v′′(...)).

An example is given in figure 3.7. Recall that −1 is an element in

R(S, U). Furthermore, we know that

Iu,v(p, q) = −Iv,u(−q,−p)

This implies that

−p = P (−1, 0)

This step is illustrated in figure 3.8. Thus, R(S, U) contains additive

inverses for all elements. �
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Figure 3.7. In this figure we see the construction of

some point p.

Figure 3.8. By reversing the steps of construction, we

can use the construction of point p and the initial points

0,−1 to construct −p.

Definition 3.2. We say that a point p is a monomial of length n if

p can be written in the form Iun,vn(pn−1, 0) such that pn−1 is a monomial

of length n−1. Monomials of length 1 are elementary monomials. Refer

to figure 3.9 for an example.
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Figure 3.9. Monomials for R(S, U) where U = {1, eıπ4 , eıπ2 , eı 3π4 }.

Lemma 3.2. The set R(S, U) consists of finite integer linear com-

binations of monomials.

Proof. Since R(S, U) is closed under addition and has additive

inverses for all elements, it is clear that R(S, U) contains all integer

linear combinations of monomials. Therefore, we have that the set of

all integer linear combinations of monomials is a subset of R(S, U).

We will show that every element of R(S, U) is a integer linear com-

bination of monomials.

Base Case: If Iu,v(p, q) is constructed out of one intersection, then

it is an elementary monomial.
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Induction Hypothesis: If a point is constructed in n intersec-

tions, then it is the linear combination of two monomials length at

most n.

Induction Step: Assume Iu,v(p, q) can be constructed n+ 1 oper-

ations. By linearity and reduction, Iu,v(p, q) = Iu,v(p, 0)+Iv,u(q, 0). By

applying the induction hypothesis to p and q are monomials of length

at most n. Therefore, Iu,v(p, q) is the linear combination of monomials

and is of length at most n + 1. Thus, we have shown that R(S, U)

consists of finite integer linear combinations of monomials. �

Lemma 3.3. The product of any two monomials is a monomial and

all monomials are the product of elementary monomials.

Proof. We will prove this lemma by induction in each direction.

That is, first we will induct on the length of two monomials that we

are multiplying together. Second, we will induct on the length of a

monomial we will factor into the product of two smaller monomials.

Base Case: Let p = Iu,v(1, 0) and q = Iu′,v′(1, 0) be elementary

monomials. Using the algebraic closed form for the intersection oper-

ator, we see that

Iu,v(1, 0)Iu′,v′(1, 0) =
[u, 1]

[u, v]
vIu′,v′(1, 0)
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by the rotation property we get

Iu,v(1, 0)Iu′,v′(1, 0) =
[u, 1]

[u, v]
Ivu′,vv′(v, 0)

notice that r = [u,1]
[u,v]
∈ R, so by linearity

Iu,v(1, 0)Iu′,v′(1, 0) = Ivu′,vv′(rv, 0)

since rv = Iu,v(1, 0) and u, v, u′, v′ ∈ U

Iu,v(1, 0)Iu′,v′(1, 0) = Ivu′,vv′(Iu,v(1, 0), 0)

which is a monomial of length 2. This concludes the base case.

Induction Hypothesis: If m and m′ are monomials such that the

sum of their length is at most N then mm′ is a monomial.

Induction Step: Let m,m′ ∈ R(S, U) such that m = Ix,w(m0, 0)

is a monomial of length a and m′ = Ix′,w′(m
′
0, 0) is a monomial of length

b such that a+ b = N . Consider

mIu,v(m
′, 0) = rwIu,v(m

′, 0)

where r ∈ R and w ∈ U . By rotation and linearity, we get

mIu,v(m
′, 0) = Iwu,wv(rwm

′, 0)

mIu,v(m
′, 0) = Iwu,wv(mm

′, 0).
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Therefore, we know that if m,m′ are monomials, then mm′ is a mono-

mial by strong mathematical induction.This is the only place in which

U being a group is relevant. In particular, U being a group guarantees

that wu ∈ U .

Base Case: Let p = Iu,v(q, 0) be a monomial of length 2. Since q

must also be a monomial by definition, we have

Iu,v(q, 0) = Iu,v(rw, 0)

where r ∈ R and w ∈ U . By linearity, we get

Iu,v(q, 0) = rIu,v(w, 0).

Next, rotation gives us

Iu,v(q, 0) = rwIw−1u,w−1v(1, 0)

Iu,v(q, 0) = qIw−1u,w−1v(1, 0)

Notice that q and Iw−1u,w−1v(1, 0) are elementary. This concludes the

base case.

Induction Hypothesis: If m is a monomial of length at most N ,

then m is the product of two shorter monomials.
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Induction Step: Let m = Iu,v(q, 0) be a monomial of length N+1.

Since q must also be a monomial by definition, we have

Iu,v(q, 0) = Iu,v(rw, 0)

where r ∈ R and w ∈ U . By linearity, we get

Iu,v(q, 0) = rIu,v(w, 0).

Next, rotation gives us

Iu,v(q, 0) = rwIw−1u,w−1v(1, 0)

Iu,v(q, 0) = qIw−1u,w−1v(1, 0).

Notice that q and Iw−1u,w−1v(1, 0) are monomials of length at most

N . This is the only place in which U being a group is relevant. In

particular, U being a group guarantees that w−1u ∈ U . Therefore, by

the induction hypothesis m is the product of two monomials. Thus,

we know that if m is a monomial, then it is the product of two shorter

monomials by strong mathematical induction.

Combining the results of the two induction proofs, we have that

the product of any two monomials is a monomial and any monomial

is a product of two monomials. By lemma, 3.2 any monomial is the

product of elementary monomials. �
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Multiplicative Closure. Let p, q ∈ R(S, U). By Lemma 3.2,

p = anpn + an−1pn−1 + · · ·+ a1p1

and

q = bmqm + bm−1qm−1 + · · ·+ b1q1

where ai, bi ∈ Z and pi, qi are elementary monomials. Consider

pq = (anpn + · · ·+ a1p1)(bmqm + · · ·+ b1q1)

=
∑

1 ≤ i ≤ n

1 ≤ j ≤ m

aibjpiqj

Notice that aibj ∈ Z. We may apply Lemma 3.3 to each piqj to see

that piqj is also a linear combination of monomials. Therefore, we can

distribute aibj over piqj to get a really long integer linear combination of

monomials. That is, pq is an integer linear combination of monomials.

Thus, by Lemma 3.2, pq ∈ R(S, U).

�

To conclude this section, we have proven Theorem 3.1 by showing

that when |U | ≥ 3 is a group and S = {0, 1}, then R(S, U) is a subring

of the complex numbers.
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5. Classifying R(S, U)

In order for us to pinpoint exactly which rings R(S, U) can be when

U is a group, we need to be more specific about the form of each element

inR(S, U). In the remainder of this section, I will let U be a subgroup of

T/{1,−1} such that |U | ≥ 3. In particular, we will let U be the cyclic

group of angles generated by eı
π
n . Now let us examine the algebraic

closed form expression for intersections.

Let u = eıπa, c = eıπb, and w = eıπc. Consider

[u,w]

[u, v]
=
eıπae−ıπc − e−ıπaeıπc

eıπae−ıπb − e−ıπaeıπb

=
eıπ(a−c) − eıπ(c−a)

eıπ(a−b) − eıπ(b−a)

=
cos(π(a− c)) + ı sin(π(a− c))− cos(π(c− a)) + ı sin(π(c− a))

cos(π(a− b))− ı sin(π(a− b))− cos(π(b− a))− ı sin(π(b− a))

=
ı sin(π(a− c))− ı sin(π(c− a))

ı sin(π(a− b))− ı sin(π(b− a))

=
2ı sin(π(a− c))
2ı sin(π(a− b))

=
sin(π(a− c))
sin(π(a− b))

.

The upshot of this break down is that [u,w]
[u,v]

is a real number, which

is a glossed over fact used in the proofs of lemmas 3.2 and 3.3. However,

we get a little more out of this as well. Recall that by Lemma 3.3, every
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monomial is the product of elementary monomials. In other words, if

p is a monomial, then

p =
[u1, 1]

[u1, v1]

[u2, u1]

[u2, v2]
· · · [un, un−1]

[un, vn]
vn.

Now that we know that [u,w]
[u,v]

is a real number, we can see that a mono-

mial is just a scaled point from our group U . This is consistent with

figure 3.9.

Now let’s integrate this notation with the intersection for a mono-

mial.

Iu,v(1, 0) =
[u, 1]

[u, v]
v

=
u− ū
uv̄ − ūv

v.

Notice that v = 1
v̄
. Thus

Iu,v(1, 0) =
u− ū
uv̄ − ūv

1

v̄

=
u− ū

uv̄2 − ūvv̄
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We also know that uū = 1 since u is on the unit circle. The same holds

for v. Hence

Iu,v(1, 0) =
u− ū
uv̄2 − ū

u

u

=
u2 − 1

u2v̄2 − 1

=
u2 − 1

u2/v2 − 1
.

Since u, v,−1 are all in U ⊂ T/{1,−1} factor out by −1 to get

Iu,v(1, 0) =
1− u2

1− (u/v)2
.

The result is that every elementary monomial is of the form

1− u
1− v

where u, v ∈ V and V = {u2 : u ∈ U}. Using this fact, and lemmas 3.2

and 3.3 Theorem 3.2.

Theorem 3.2. Let U be a group of angles with at least three ele-

ments, and let V ⊂ T be the group of squares of angles. Then R(S, U)

is the subring of C consisting of integer linear combinations of mono-

mials, were monomials are products of elements of the form

1− u
1− v

for u, v ∈ V , v 6= 1.
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Upon closer examination, we get a much more exciting corollary.

Notice that V ⊂ Q(ω) where ω is the generator of U . In other words,

1− u
1− v

for u, v ∈ V , v 6= 1 is a element in the nth cyclotomic field where

n = |U |. Since the ring R(S, U) consists of integer linear combinations

of elements of this form, we can see that R(S, U) is very close to being

Z[ω].

Corollary 3.2.1. For every group U ⊂ T/{−1, 1} with order n,

R(S, U) ⊂ Q(ωn).

We can be even more precise about origami rings generated by U .

However, we have quite a bit of work to do before we get there.

Theorem 3.3. Fix n > 3, and let ω = eı
π
n . Let a, b 6≡ 0 mod n.

a: If n is prime, then (1− ωa)/(1− ωb) is an algebraic integer.

b: If n is non-prime, then (1 − ωa)/(1 − ωb) has denominator

dividing n.

c: If n is non-prime and p is a prime divisor of n, then some

product of an element of Z[ω] by a product of quotients of the

form (1− ωa)/(1− ωb) is equal to 1
p
.
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Proof. (a) Assume that n is prime. Notice that n and b are rel-

atively prime. Therefore, a + rn = bs for some integers r and s. Now

consider

1− ωa

1− ωb
=

1− ωa+rn

1− ωb

=
1− ωbs

1− ωb

= −(ωb(s−1) + ωb(s−2) + · · ·+ ωb + 1)

Since this is a polynomial in ω with integer coefficients, it is an element

of Z[ω]. That is, it is algebraic over Q(ω). �

Proof. (b) let n be non-prime. Recall the identity

xn − 1 =
n−1∏
k=0

(x− ωk)

Now we can divide both sides by x− 1 to get the following

xn − 1 =
n−1∏
k=0

(x− ωk)

xn − 1

x− 1
=

n−1∏
k=1

(x− ωk)

xn−1 + · · ·+ x+ 1 =
n−1∏
k=1

(x− ωk)
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Taking the limit as x→ 1, we get

n =
n−1∏
k=1

(1− ωk)

This suggests that 1− ωk divides n as long as k 6≡ 0 mod n; in which

case ωk = 1. �

Proof. (c) Assume that n is not prime and p is a prime divisor of

n. Let d be a divisor of n. All we need to show is that (c) holds for

the cases n = pq and n = p2 where p, q are prime. Equivalently, we

can show that (c) holds for quotients (1− ωa)/(1− ωb) where a, b are

multiples of n/d.

Assume that n = pq. Consider

n =
n−1∏
k=1

(1− ωk)

divide both sides by pq to get

n

pq
=

∏
gcd(k,n)

(1− ωk)

1 =
∏

gcd(k,n)

(1− ωk)
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Notice that this suggests that 1 − ω is a unit. Let u−1 be the inverse

of
∏p−1

k=1(1− ω).

p−1∏
k=1

(1− ω) = u

divide both sides by p

p−1∏
k=1

1− ω
1− ωqk

=
u

p
.

Notice that ωq is a primitive root of unity because q is prime and,

therefore, relatively prime to n. Furthermore, u is a unit, so u−1 exists.

Thus,

1

p
=

p−1∏
k=1

1− ω
1− ωqk

u−1

and the claim is shown in the case that n = pq.

Assume that n = p2. Given that p =
∏p−1

k=1(1 − ωk) and p2 =∏p2−1
k=1 (1− ωk), consider

p2−1∏
k=1,k 6=p

=
1

pp−1
.

Notice, that we can multiply this quotient by pp−2 to get 1/p. For more

details turn to [1]. This completes the proof. �

We use all of these results to show the next theorem.
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Theorem 3.4 (Buhler, Butler, de Laundey, Graham (2010)). If

n = p is prime, then R(S, U) = Z[ωn] where |U | = n. If n is non-

prime, then R(S, U) = Z[ 1
n
, ωn].

Proof. Let n = p be prime. Recall that −1 ∈ R(S, U). Since part

(a) of Theorem 3.3 states that all products of elementary monomials

are algebraic integers in Q(ω) and all elements in R(S, U) are products

of elementary monomials, it follows that R(S, U) = Z[ω].

Let n be non-prime. In this case, part (b) of Theorem 3.3 shows that

R(S, U) ⊂ Z[ 1
n
, ω]. Part (c) of Theorem 3.3 shows that every element

in Z[ 1
n
, ω] in particular 1

n
can be constructed using the intersection

operations. Therefore, it follows that R(S, U) = Z[ 1
n
, ω]. �

Notice that Theorem 3.4 states that if U is a group, then R(S, U)

is almost the ring of algebraic integers for some cyclotomic field. In

particular, if the order of U is prime, then we have R(S, U) = Z[ω]

which is a nice result. However, if the order of U is not a prime, the

resulting origami ring is a little bigger than a ring of algebraic integers.

That is, if the order of U is not a prime, the origami construction in

some sense is over-generating points for it to be a real nice ring.



CHAPTER 4

Converse of the Origami Ring Theorem

The most natural conjecture would be that for every subring R

of the complex numbers, there exists a group U ⊂ T/{1,−1} such

that R(S, U) = R. However, this conjecture is almost trivially false.

Consider the Gaussian integers, Z[ı]. By the contrapositive of Theorem

3.4, there does not exist a U ⊂ T/{1,−1} such that R(S, U) = Z[ı].

In light of this fact, we ask a different question. For which subrings

R of the complex number do there exist sets of angles U such that

R(S, U) = R? In particular, we are no longer are restricting U to be a

group.

1. Exploring the impact of U

Before making a conjecture, we will explore what happens under the

intersection operator for arbitrary pairs of angles in a group. This will

give us an idea about why requiring U to be a group is so restricting. In

particular, we are going to play around with origami rings in reference

to the Gaussian integers.

85
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Lemma 4.1. Let u, v ∈ C such that u 6= v and are not of the form

rı or r for any r ∈ R. If the sign of the real components of u and v are

different but the sign of the imaginary components of u and v are the

same, then Iu,v(0, 1) is not a Gaussian integer.

Proof. Let u, v ∈ C such that u 6= v and are not of the form rı or

r for any r ∈ R. Assume that the sign of the real components of u and

v are different but the sign of the imaginary components of u and v

are the same. This implies that the real component of the intersection

Iu,v(0, 1) is strictly between 0 and 1. Thus, Iu,v(0, 1) is not a Gaussian

integer. �

The result of Lemma 4.1 is if we pick angles that are not parallel to

the real or imaginary line, then the first point those angles generate is

not in a nice location. With a little bit of visualizing, we can see that for

any z such that <(z) ∈ (0, 1) there exists u, v such that Iu,v(1, 0) = z.

As a result, it is pretty clear why we cannot find a group U such that

R(S, U) = Z[ı].

Theorem 4.1. There does not exist a group U ⊂ T/{1,−1} such

that R(S, U) is the Gaussian integers.

Proof. Consider the Gaussian integers as as subring of the com-

plex plane. Let U be a finite subgroup of T/{1,−1} such that R(S, U)
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is the Gaussian integers. Notice that 1 ∈ U because it is the iden-

tity. In order for R(S, U) to be non-empty there must exists at least

2 non-identity elements in U ; call these two elements u, v. We will let

n ≥ 3 denote the order of U . Given that |U | ≥ 3, we can find u, v ∈ U

such that u 6= v and neither u nor v are ı or 1. This implies that

p = Iu,v(1, 0) is not a Gaussian integer by Lemma 4.1. �

The next natural question to ask is whether we can find a subset U

of T/{−1, 1} that is not necessarily a group such that R(S, U) is the

Gaussian integers. We find that there does exist such a set of angles,

namely,

U = {1, ı, eı
π
4 }

The reasons this set of angles seems to work is that all of the angles

are in the first quadrant. We saw in Lemma 4.1 that when we have

two angles in T/{1,−1} that are not in the same quadrant, then we

get a point with the real component in (0, 1).

Theorem 4.2. Let U = {1, ı, eıπ4 }. Then R(S, U) is the Gaussian

integers.

Proof. Let U = {1, ı, eıπ4 }. We will first show that Iu,v(p, q) where

u, v ∈ U is a Gaussian integer if p and q are Gaussian integers. Assume
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that p = a + bı and q = c + ı are Gaussian integers. Since U has 3

elements and order matters, there are six cases.

(1) I1,ı(p, q) = c+ bı

(2) I
1,eı

π
4
(p, q) = c− d+ b+ bı

(3) Iı,1(p, q) = a+ dı

(4) I
ı,eı

π
4
(p, q) = a+ (a− c+ d)ı

(5) I
eı
π
4 ,1

(p, q) = a− b+ d+ dı

(6) I
eı
π
4 ,ı

(p, q) = c+ (−a+ b+ c)ı

Since both p and q are assumed to be Gaussian integers, we can see

that all six possible intersections of are also Gaussian integers.

Now, consider R(S, U). Notice that all elements in S are Gaussian

integers. Therefore, S1 consists of Gaussian integers. In fact, this

iterative construction will only yield Gaussian integers, because those

are the only reference points we ever have. Thus, we have shown that

R(S, U) is a subset of the Gaussian integers.
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It remains to be shown that any Gaussian integer can be con-

structed using S and U . Let a + bı be a Gaussian integer. Notice,

that if we can construct bı and 1 + bı by starting at S, and we can

construct a by starting at S, then we can construct a + bı by starting

at {bı, 1 + bı}. We can further reduce the problem by showing that

given points {n + kı, n + 1 + kı} we can construct both n − 1 + kı

and n + 2 + kı, and that given {n + kı, n + 1 + kı} we can construct

n + (k + 1)ı, n + 1 + (k + 1)ı, n + (k − 1)ı, and n + 1 + (k − 1)ı. We

will now construct the desired points using the appropriate reference

points.

Constructing n+ 2 + kı: Consider

Iı,1(I
1,eı

π
4
(I
eı
π
4 ,ı

(n+ kı, n+ 1 + kı), n+ 1 + kı)), n+ 1 + kı)

Notice that we can evaluate this expression using the six cases

enumerated above. In particular, we apply case (6) first to get

Iı,1(I
1,eı

π
4
(n+ 1 + (k + 1)ı, n+ 1 + kı), n+ 1 + kı)

Next, we apply case (2) to get

Iı,1(n+ 2 + (k + 1)ı, n+ 1 + kı)
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Finally, we use case (3) to get

n+ 2 + kı

Constructing n− 1 + kı: Consider

Iı,1(I
1,eı

π
4
(I
ı,eı

π
4
(n+ kı, n+ 1 + kı), n+ kı), n+ kı)

First, we apply case (4) to get

Iı,1(I
1,eı

π
4
(n+ (k − 1)ı, n), n)

Next, we apply case (2) to get

Iı,1(n− 1 + (k − 1)ı, n)

Finally, we apply case (3) to get

n− 1 + kı

Constructing n+ (k + 1)ı and n+ 1 + (k + 1)ı: Consider

I
eı
π
4 ,ı

(n+ kı, n+ 1 + kı)

Using case (6) we get

n+ 1 + (k + 1)ı

Now consider

Iı,1(n+ kı, n+ 1 + (k + 1)ı)
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Using case (3) we get

n+ (k + 1)

Constructing n+ (k − 1)ı and n+ 1 + (k − 1)ı: Consider

I
ı,eı

π
4
(n+ kı, n+ 1 + kı)

Using case (4) we get

n+ (k − 1)ı

Consider

Iı,1(n+ 1 + kı, n+ (k − 1)ı

Using case (3) we get

n+ 1 + (k − 1)ı

Thus, we have shown that any Gaussian integer can be constructed

using S and U . Combining the previous two results shows that R(S, U)

is the Gaussian integers. �

The general construction of the Gaussian integers is similar to the

constructions of −1 and 2 in figures 3.3 and 3.4. However, there are

two differences worth noting. First, the construction in the proof of

Theorem 4.2 is general, not just for a particular point. Second, and
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this is more interesting, is that the construction for −1 in the proof

of Theorem 4.2 works down and not up. Consider figure 3.4. We can

see that constructing −1 uses the inverse of the construction used for

2 and applies it to the points 0, 1.

Figure 4.1. This construction uses U = {1, ı, eıπ4 } to

generate the point −1

2. Revisiting Rings of Algebraic Integers

Let’s summarize what we have learned so far about origami rings.

At the end of the paper Origami Rings, we see Theorem 3.4. This the-

orem states that if U ⊂ T/{1,−1} with |U | = n ≥ 3, then R(S, U) =

Z[ω] for prime n, and R(S, U) = Z[ 1
n
, ω] for composite n. These rings

are remarkably close to the integer rings for the cyclotomic fields. No-

tice that the Theorem 4.2 constructs the Gaussian integers, which are
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the algebraic integers of Q(ı). Algebraic integers are of interest in their

own right. Therefore, it would be nice if we could construct as many

of them as possible. In particular, I will show that we can construct

Z[
√
m] for any Q(

√
m). Recall the following corollary.

Corollary. Let m be a squarefree integer. The set of algebraic

integers in the quadratic field Q(
√
m) is

{a+ b
√
m : a, b ∈ Z} if m ≡ 2 or 3 mod 4

{a+ b
√
m

2
: a, b ∈ Z, a ≡ b mod 2} if m ≡ 1 mod 4

I had success in constructing the Gaussian integers with the angle

set

U = {1, eı
π
4 , ı}

Notice that eı
π
4 is the principal argument for 1+ı which is the Gaussian

integer in the first quadrant closest to the origin. A natural question

to ask at this point is whether or not other rings of algebraic integers

can be constructed as well. With this in mind, we will set out to prove

the following theorem in the next section.
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Theorem. Let m < 0 be a squarefree integer. The set of algebraic

integers in the quadratic field Q(
√
m) is R(S, U) where

U = {1, ı, eıθ} if m ≡ 2 or 3 mod 4

U = {1, eıθ, eı(π−θ)} if m ≡ 1 mod 4.

Notice that this theorem extends only to m < 0 because origami

constructions are inherently in the complex plane. If m ≥ 0 then the

corresponding rings of algebraic integers would only have real elements,

and thus, cannot be constructed by origami folds.



CHAPTER 5

Constructing Rings of Algebraic Integers for

Imaginary Q(
√
m)

In chapter 4, I posit that there are essentially two cases for con-

structing the algebraic integers for imaginary quadratic extensions.

One case seems easier, because it is directly analogous to the con-

struction for the Gaussian integers. However, the second case seems

harder. In particular, we need to ensure that the parity of a, b in a+b
√
m

2

is the same. The result is that we need different sets of angles, and

that the origami rings develop in different patterns. In the remainder

of this chapter I will prove both cases of theorem 5.1. Along the way,

we will examine the way each origami ring develops from generation to

generation.

1. The m ≡ 2 or 3 mod 4 Case

The proof for the following lemma is essentially the same as the

proof for Theorem 4.2. The key for the proof is that we replace the

angle
√

2+
√

2ı
2

= ei
π
4 with the principal argument of 1 +

√
m.

95
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Lemma 5.1. Let m ≡ 2 or 3 mod 4 and m < 0. Let U = {1, ı, eıθ}

where θ is the principal argument of 1 +
√
m. Then

R(S, U) = {a+ b
√
m : a, b ∈ Z}

Proof. Let m ≡ 2 or 3 mod 4 and m < 0. Let U = {1, ı, eıθ}

where θ is the principal argument of 1 +
√
m. First, we will show that

Iu,v(p, q) ∈ Z[
√
m] where u, v ∈ U and p, q ∈ Z[

√
m]. As in the proof

for theorem 4.1, there are six cases.

(1) I1,ı(p, q) = c+ b
√
m

(2) I1,eıθ(p, q) = b+ c− d+ b
√
m

(3) Iı,1(p, q) = a+ d
√
m

(4) Iı,eıθ(p, q) = a+ (a− c+ d)
√
m

(5) Ieıθ,1(p, q) = a− b+ d+ d
√
m

(6) Ieıθ,ı(p, q) = c+ (−a+ b+ c)
√
m
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This concludes the proof for the closure of the intersection operator.

In other words, as long as our seed set starts with elements in Z[
√
m],

then the intersections will also be in Z[
√
m]. We can also express this

claim as R(S, U) ⊂ Z[
√
m]. It remains to be shown that any element

in Z[
√
m] is also an element in R(S, U).

Let a + b
√
m be an element in in Z[

√
m]. Notice, that if we can

construct b
√
m and (1 + b)

√
m by starting at S, and we can construct

a by starting at S, then we can construct a + b
√
m by starting at

{b
√
m, (1 + b)

√
m}. We can further reduce the problem by showing

that given points {n + k
√
m,n + 1 + k

√
m} we can construct both

n−1+k
√
m and n+2+k

√
m, and that given {n+k

√
m,n+1+k

√
m}

we can construct both n + (k − 1)
√
m and n + 1 + (k + 1)

√
m. We

will now construct the desired points using the appropriate reference

points.

Constructing n+ 2 + k
√
m: Consider

Iı,1(I1,eıθ(Ieıθ,ı(n+ k
√
m,n+ 1 + k

√
m), n+ 1 + k

√
m), n+ 1 + k

√
m)

Notice that we can evaluate this expression using the six cases

enumerated above. In particular, we apply case (6) first to get

Iı,1(I1,eıθ(n+ 1 + (k + 1)
√
m,n+ 1 + k

√
m), n+ 1 + k

√
m)
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Next, we apply case (2) to get

Iı,1(n+ 1 + (k + 1)
√
m,n+ 1 + k

√
m)

Finally, we use case (3) to get

n+ 2 + k
√
m

Constructing n− 1 + k
√
m: Consider

Iı,1(I1,eıθ(Iı,eıθ(n+ k
√
m,n+ 1 + k

√
m), n+ k

√
m), n+ k

√
m)

First, we apply case (4) to get

Iı,1(I1,eıθ(n+ (k − 1)
√
m,n+ k

√
m), n+ k

√
m)

Next, we apply case (2) to get

Iı,1(n− 1 + (k − 1)
√
m,n)

Finally, we apply case (3) to get

n− 1 + k
√
m

Constructing n+ (k + 1)
√
m and n+ 1 + (k + 1)

√
m: Consider

Ieıθ,ı(n+ k
√
m,n+ 1 + k

√
m)

Using case (6) we get

n+ 1 + (k + 1)
√
m
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Now consider

Iı,1(n+ k
√
m,n+ 1 + (k + 1)

√
m)

Using case (3) we get

n+ (k + 1)
√
m

Constructing n+ (k − 1)
√
m and n+ 1 + (k − 1)

√
m: Consider

Iı,eıθ(n+ k
√
m,n+ 1 + k

√
m)

Using case (4) we get

n+ (k − 1)
√
m

Consider

Iı,1(n+ 1 + k
√
m,n+ (k − 1)

√
m)

Using case (3) we get

n+ 1 + (k − 1)
√
m

With this we have shown that Z[
√
m] ⊂ R(S, U), completing the

proof. �
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2. The m ≡ 1 mod 4 Case

The proof for lemma 5.2 employs the same strategy as the proof

for lemma 5.1. However, there is a difference. Generally, the strategy

the proof uses is finding general solutions to the possible intersection

functions in the component variables of the input points. In the proof of

lemma 5.2, we will see that restricting input points to have components

with the same parity still does the trick. f

Lemma 5.2. Let m ≡ 1 mod 4 and m < 0. Let U = {0, θ, π − θ}

where θ is the principal argument of 1+
√
m

2
. Then

R(S, U) = {a+ b
√
m

2
: a, b ∈ Z, a ≡ b mod 2} = H

Proof. Let m ≡ 1 mod 4 and m < 0. Let U = {1, eıθ, eı(π−θ)}

where θ is the principle argument of 1+
√
m

2
. First, we will show that

Iu,v(p, q) ∈ H where u, v ∈ U and p, q ∈ H. As in the proof for lemma

5.1, there are six cases.

(1) I1,eıθ(p, q) = b+ c− d+ b
√
m

(2) I1,eı(π−θ)(p, q) = c+ d− b+ b
√
m

(3) Ieıθ,1(p, q) = a− b+ d+ d
√
m
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(4) Ieıθ,eı(π−θ)(p, q) = (a−b+c+d)+(b−a+c+d)
√
m

2

(5) Ieı(π−θ),1(p, q) = a+ b− d+ d
√
m

(6) Ieı(π−θ),eıθ(p, q) = (a+b+c−d)+(a+b−c+d)
√
m

2

Notice that if a, b have the same parity, then a+ b, a− b, and b− a

are all even. Furthermore, if c is even, then c + d, d− c, and c− d all

have the same parity as d. Using these facts, we can confirm that the

closed form of each of the six intersections above result in elements in

H as long as p and q are elements in H.

This concludes the proof for the closure of the intersection operator.

In other words, as long as our seed set starts with elements in H, then

the intersections will also be in H. We can also express this claim as

R(S, U) ⊂ H. It remains to be shown that any element in H is also an

element in R(S, U).

Let a+b
√
m

2
be an element in in H. Notice, that if we can construct

b
√
m

2
and (2+b)

√
m

2
by starting at S, and we can construct a

2
by starting

at S, then we can construct a+b
√
m

2
by starting at

{
b
√
m

2
,
(2 + b)

√
m

2

}
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We can further reduce the problem by showing that given points{
n+ k

√
m

2
,
n+ 2 + k

√
m

2

}

we can construct both n−2+k
√
m

2
and n+4+k

√
m

2
, and that given{

n+ k
√
m

2
,
n+ 2 + k

√
m

2

}

we can construct both n+1+(k−1)
√
m

2
and n+1+(k+1)

√
m

2
. We will now

construct the desired points using the appropriate reference points.

Constructing n+1+(k−1)
√
m

2
: Consider

Ieıθ,eı(π−θ)

(
n+ k

√
m

2
,
n+ 2 + k

√
m

2

)

By applying case (4) from above, we see that

Ieıθ,eı(π−θ)

(
n+ k

√
m

2
,
n+ 2 + k

√
m

2

)
=
n+ 1 + (k − 1)

√
m

2

Constructing n+1+(k+1)
√
m

2
: Consider

Ieı(π−θ),eıθ

(
n+ k

√
m

2
,
n+ 2 + k

√
m

2

)

By applying case (6) from above, we see that

Ieı(π−θ),eıθ

(
n+ k

√
m

2
,
n+ 2 + k

√
m

2

)
=
n+ 1 + (k + 1)

√
m

2

Constructing n−2+k
√
m

2
: Consider

Ieıθ,1

(
I1,eı(π−θ)

(
n+ 1 + (k + 1)

√
m

2
,
n+ k

√
m

2

)
,
n+ k

√
m

2

)
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By applying case (1) from above, we can reduce the previous

expression to

Ieıθ,1

(
n− 1 + (k + 1)

√
m

2
,
n+ k

√
m

2

)
We further reduce the expression using case (5) from above.

The result is

Ieıθ,1

(
n− 1 + (k + 1)

√
m

2
,
n+ k

√
m

2

)
=
n− 2 + k

√
m

2

Constructing n+4+k
√
m

2
: Consider

Ieı(π−θ),1

(
I1,eπθ

(
n+ 1 + (k + 1)

√
m

2
,
n+ 2 + k

√
m

2

)
,
n+ 2 + k

√
m

2

)
By applying case (5) from above, we can reduce the previous

expression to

Ieı(π−θ),1

(
n+ 3 + (k + 1)

√
m

2
,
n+ 2 + k

√
m

2

)
We further reduce the expression using case (1) from above.

The result is

Ieı(π−θ),1

(
n+ 3 + (k + 1)

√
m

2
,
n+ 2 + k

√
m

2

)
=
n+ 4 + k

√
m

2

With this we have shown that

{a+ b
√
m

2
: a, b ∈ Z, a ≡ b mod 2} ⊂ R(S, U)

completing the proof.
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�

3. Putting It All Together

In figure 5.1 we see that when we use U = {1, ı, eıθ} as our angle

set, then the origami ring grows into the first and third quadrants,

and bleeds into the others. In figure 5.2 we see that when we use

U = {1, eıπ4 , eı 3π4 } as our angle set, then the origami ring grows along

the real line, and slowly bleeds into the rest of the complex plane. Of

course, R(S, U) is assumed to be closed under the intersection operator,

so the growth pattern doesn’t matter in an abstract sense. However,

computationally, it means that the number of steps it takes to construct

a point is not related to that point’s modulus. In fact, we get an entirely

different measure of distance if we only consider the number of steps it

takes to generate a point.
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Figure 5.1. This graph depicts the first 5 generations

of origami points using U = {1, ı, eıπ4 }

Figure 5.2. This graph depicts the first 5 generations

of origami points using U = {1, eıπ4 , eı 3π4 }

Since lemmas 5.1 and 5.2 are just the two cases of theorem 5.1, the

proof of the theorem easily follows.
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Theorem 5.1. Let m < 0 be a squarefree integer. The set of

algebraic integers in the quadratic field Q(
√
m) is R(S, U) where

U = {1, ı, eıθ} if m ≡ 2 or 3 mod 4

U = {1, eıθ, eı(π−θ)} if m ≡ 1 mod 4



Q.E.D.
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