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Abstract

Abstract

When we look at the world around us we are able to e�ortlessly categorize
scenes, but it is still unclear what mechanisms we use to do so. Categorization could
be driven by objects, low-level features, or a mixture of both. This study investigated
the ways in which diagnostic objects (those found nearly exclusively in one scene
category) contribute to scene categorization. It paired Electroencephalography (EEG)
with machine learning classification to provide detailed temporal information about
when categorization occurs. While recording EEG, participants categorized real-world
photographs as one of three indoor scene types (bathroom, kitchen, o�ce). They were
shown either original images or versions where diagnostic or random objects had been
obscured via localized Fourier phase randomization. EEG voltages and the independent
components (ICs) of a whole brain independent component analysis (ICA) were used as
feature vectors for a linear support vector machine (SVM) classifier to determine time-
resolved accuracy. There were no significant di�erences in decoding accuracy between
categories or between diagnostic and random conditions. Poor classifier performance is
likely due to a lack of power, or overfitting of the model. It could also reflect unclear
EEG-based neural correlates of each scene type due to the inherent similarities in the
categories. While the lack of significant decoding makes it di�cult to make strong
conclusions about the role of diagnostic objects in visual scene categorization, this
study addresses important considerations for pairing EEG with decoding techniques
and highlights some of the broader di�culties of isolating distinct features of visual
scenes.
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Introduction

Introduction

Imagine you are a guest at a party in an unfamiliar house and are trying to find the
bathroom. You walk down the hall opening doors, hoping to find the right room. On the
way, you encounter a bedroom and an o�ce before successfully reaching the bathroom.
This task is deceptively easy. You open a door and in a glance know exactly what
category each room belongs to and whether or not it is the room you are looking for.
While humans are able to easily and seemingly instantaneously categorize novel visual
scenes, there is still little consensus of how we actually achieve this feat. It could be
that categorization is driven by specific, informative objects, or by lower-level features
such as color, spatial layout and texture that provide a more global representation of
the scene as a whole. It could also be that categorization is driven by a mixture of the
two.

The first theory is that scene categorization is driven primarily by the presence of
objects. Much of the focus on objects in scene categorization research has stemmed
from the popularity of ‘schemata’ and ‘frames’ in the 1970s and 1980s. Both schemata
and frames refer to internal representations of scene categories that integrate semantic
information of specific objects with the relationships between objects within a scene.
For example, our schema of a particular scene type (such as a kitchen) contains a list
of objects that could be found in that scene (i.e stove, sink, fridge) as well as the ways
in which those objects interact (blenders are typically found on top of counters and not
on the floor) (Biederman 1981; Friedman 1979). While these internal representations
are centered around the idea that scene identity is strongly influenced by the semantic
identity of the objects it contains, the question still remains what type of information
is needed to initially trigger a particular schema or frame. It could be that a single
key object is processed first, which activates the schema and facilitates further object
identification (Biederman 1981), or it could be that schemata are triggered by low-level
coarse representations of the image that bypass object identification (Oliva and Torralba
2001). Even though the field has generally shifted its focus away from schemata and
frames there is still significant debate about which type of information (objects vs
low-level features) contributes more to catgorization (Malcolm, Groen, and Baker 2016).

In recent years, support for the role of objects in scene categorization has come
mainly from the computer vision community and is centered around the success of
classifiers trained on object-based models. For example, L.-J. Li, Su, Lim, et al. (2010)
ran a series of dozens of classifiers on what they refer to as ‘Object Bank’ information
that outperformed classifiers of traditional low-level properties. The ‘Object Bank’
classifier uses a series of object detectors to define images based on the identity of high
probability objects. This work is further supported by other object-based classifiers
that have performed as well as, if not better than classifiers trained on low-level features
(Liao et al. 2016). Additionally, an fMRI study found that activation in scene-selective
areas of cortex is highly similar when viewing a scene containing a particular object
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Introduction

and when viewing that object in isolation, and that classification performance decreases
as key objects are obscured from a scene (MacEvoy and Epstein 2011). These results
provide evidence in favor of object-based categorization because they suggest that object
information is important for di�erentiating between scene types.

One criticism of object-based models is that object identification and scene
classification occur at about the same time-scale, which implies that scene categorization
could only be driven by the identification of a single object (Biederman 1981; Biederman
1987; Potter et al. 2002). While one key object might be su�cient to determine category,
how would a person prioritize a single object to fixate? The issues inherent in this
timing dilemma are worth consideration and prompted a shift towards focusing on what
other features might drive categorization.

The other side of the argument is that low-level features are su�cient for scene
categorization. Over the years an extensive body of research has developed documenting
the fact that low-level features of a scene such as color (Oliva and Schyns 2000; Go�aux
et al. 2004; Castelhano and Henderson 2008), spatial layout and geometry (Henderson,
Weeks, and Hollingworth 1999; Sanocki and Epstein 1997; Biederman 1981; Oliva and
Torralba 2001; Greene and Oliva 2009), and texture (Renninger and Malik 2004; Groen
et al. 2012) are su�cient for successful categorization.

While there is stong evidence in favor of both objects and low-level features, the fact
that this debate continues is important unto itself because it calls into question whether
emphasizing this false dichotomy is still the most useful way of conducting research.
The fact that there is robust evidence supporting both models suggests that each type of
feature does in fact contribute to scene categorization. Understanding vision is therefore
better served by asking questions about the ways in which these features are important
rather than solely which one drives categorization. Diving more closely into the ways
in which di�erent features contribute to classifications allows us to ask a broader range
of useful questions. For example, could multiple features of a scene (both objects and
low-level) interact to assist categorization? How might they do so? Is there a temporal
component to this interaction, where some features are important for early stages of
processing, while others come online later? By moving away from debating simply
whether object or low-level based models are more important we begin to be able to
develop a more fine-grained understanding of what is inherently a complex process.
Previous studies have highlighted the need to look at the independently explained
variance of features (Greene et al. 2016; Groen et al. 2018; Lescroart, Stansbury, and
Gallant 2015). One of the goals of this paper is therefore to explore questions about the
ways in which features allow for categorization, specifically in the context of objects.

Before we are able to fully dive into investigating how scene categorization is
facilitated by the interaction of multiple features, it is important to acknowledge, that
some aspects of a feature can be more informative than others. More specifically when
asking about the ways in which objects influence scene categorization, the discussion
would be incomplete without accounting for the fact not all objects are created equal,
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and that some provide more information about scene type then others. For example,
when classifying a kitchen, it seems logical that a stove would be more indicative of
category type than a potted plant. Even early research generally recognized that some
objects are more useful to study than others. Biederman (1981) refers to the probability
of an object appearing in a given schema, while Friedman (1979) discusses obligatory
(likely to be found in a scene) and nonobligatory (unlikely to be found in a scene)
objects. More importantly, subjective a priori ratings of how likely an object is to
appear in a scene correlated with initial eye fixations to that object in a novel scene
(Friedman 1979). This implies that our expectations about what objects are likely to be
in a given scene type influence where, and how we focus our attentaion. Similarly, the
knowledge of which objects and scene types co-occur (which objects are likely in a given
scene) has been shown to influence perception (Davenport and Potter 2004). These
studies demonstrate firstly that there are certain objects that are more probable, and
secondly, that the probability of an object influences the ways in which it contributes
to categorization.

Another metric for determining the relative utility of a particular object is
frequency. There are two ways of thinking about frequency: the overall object frequency
[p(object) in the world] and the object frequency for a given scene [p(object|scene)]
(Greene 2013). Overall object frequency can be described through Zipf’s Law, which
states that a very small proportion of all objects make up the majority of instances
in scenes (i.e there are generally more chairs than toaster-ovens in the world) (L.-J.
Li, Su, Li, et al. 2010; Greene 2013). While useful in describing di�erences between
individual objects, overall object frequency does not provide information about the
ways in which objects interact with scene category, while object frequency does. For
example, measures of object frequency such as bag-of-words models have been shown
to be su�cient for successful categorization (Greene 2013; Bosch, Zisserman, and
Muñoz 2006). Additionally, participants are highly consistent in their estimates of
how frequently objects occur in a particular scene type, as well as which objects are
improbable for a given scene type (Greene 2016). These studies show that we have
strong expectations of what objects occur frequently in scenes, which could easily aid
categorization.

A third way of assessing the usefulness of an object is its diagnosticity, or the
conditional probability that a scene belongs to a specific category given that it contains
a particular object [p(scene|object)] (Greene 2013). While the term diagnosticity has
been used in the past in di�erent contexts to describe aspects of scenes such as color
(Oliva and Schyns 2000) and other features of a scene more generally (Lowe et al.
2016; Delorme, Richard, and Fabre-Thorpe 2010), it has only fleetingly been referenced
in the context of objects (Philippe G. Schyns and Aude Oliva 1994) until recently
(MacEvoy and Epstein 2011). Diagnostic objects are objects that are indicative of a
particular scene type. For example, a stove is diagnostic of a kitchen, while a chair is
not. Even though both stoves and chairs occur with high probability and high frequency
in kitchens the chair is less diagnostic of a kitchen because it is also commonly found in
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o�ces and dining rooms. This distinction is subtle, but important because it creates a
set of criteria for objects that are characteristic of only a single scene type. It is also
valuable to note that an object can be diagnostic, yet have low frequency. For example,
a sandcastle is highly diagnostic of a beach (occurs with high probability in beaches,
and only beaches), yet not every beach contains a sand castle. Therefore, if there is a
sandcastle in a scene it is very likely that it is a beach, yet that knowledge might not
always be the most useful for scene categorization in general because you would miss
successfully categorizing many beaches if you are only searching for sandcastles.

To date, there has been very little research looking explicitly at the role of
diagnostic objects in scene categorization, in part due to the lack of a formal definition.
However, Greene (2013) provides an empirical measure of diagnosticity based on the
frequency statistics of objects that allows for consistency in research surrounding the
role of diagnostic objects and expands the types of experimentation that can be done.
In this study, we use the concept of diagnosticity to investigate the role that specific
objects play in categorizing visual scenes. In doing so, we are diving deeper into the
broader question of what role objects play more generally.

While breaking down objects by diagnosticity is one way of looking at the ways
in which objects contribute to scene identification, it is unlikely that categorization is
driven by only a single feature. This is supported by the fact that classifiers trained on
a combination of features out-perform ones trained on each component part (L.-J. Li,
Su, Li, et al. 2010; Greene et al. 2016). Additionally, fMRI studies of scene selective
cortex have reported interactions between multiple types of scene attributes (Lowe et
al. 2016; Malcolm, Groen, and Baker 2016; Lescroart, Stansbury, and Gallant 2015)
and ERP studies have shown that several features are encoded at multiple stages of
visual processing (Groen, Silson, and Baker 2017).

One way that multiple features can contribute is by operating at di�erent time
frames. The results of the ERP studies are therefore particularly interesting because
they suggest that temporal dynamics might allow for subtle variation in the way various
features contribute to scene categorization. There is MEG/EEG-based evidence that
shows that certain low-level global features such as color (Go�aux et al. 2004) spatial
layout (Cichy et al. 2017) and spatial frequency (Hansen et al. 2011; Hansen, Johnson,
and Ellemberg 2012) contribute to categorization at specific time-frames, which implies
that this might also be true of objects. As of yet there have been very few studies
looking directly at the temporal dynamics of objects in scene categorization. However,
of the ERP studies conducted, one demonstrated that it is possible to determine whether
or not a scene contains an animal at close to 150 ms after stimulus presentation (Fabre-
Thorpe et al. 2001), while a second set of studies have shown that information about
the semantic (identity) and syntactic (physical constraints) congruity of an object is
not available until around 300-400 and 600 ms respectively (Ganis and Kutas 2003; Võ
and Wolfe 2013). However, there is still more work that needs to be done to determine
at exactly what time frame objects are used in scene categorization. As a result, this
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study aims to better understand when objects contribute by pairing the decoding of
EEG signals with a categorization task that directly looks at the e�ect of diagnostic
objects.

Overall, the purpose of this study is two-fold. We not only seek to examine
the role of diagnostic objects in scene categorization, but also hope to determine at
what timescale objects contribute. In doing so we shift away from asking questions
about whether or not a specific feature aids scene categorization, and shift towards
asking more fine-grained questions about the ways in which a feature is used. The
basic outline of the experiment will follow that of MacEvoy and Epstein (2011) in
which diagnostic objects were obscured from the scene to test which types of objects
are important for categorization. However, we will use EEG rather than fMRI in
order to better explore the temporal dynamics of classification. As a result, the two
studies will be complementary, with one looking at potential spatial interactions of
features and the other looking at the temporal patterns. More specifically, there will be
three di�erent image conditions: Original, Diagnostic and Random. In the later two
conditions, diagnostic and random objects will be selected based on the criterion set out
by Greene (2013) and obscured from the image using local Fourier phase scrambling.
Objects will be chosen so as to minimalize variation in low-level features to ensure
that the only di�erence in conditions is their diagnosticity score. Therefore, impaired
categorization of images where diagnostic objects have been removed would suggest
that those objects are important for scene categorization.

Additionally, we will use EEG recording paired with machine learning classification
to determine time-resolved decoding accuracy, which will provide us with information
about when object information is available from brain signals. We will be able to predict
what type of image a participant was viewing by using a support vector machine (SVM)
classifier to decode various features of the EEG data. SVM classifiers can be thought
of as general pattern detectors that try to predict what category novel data belong to
based on supervised learning of a set of training exemplars. More specifically, a SVM
kernel classifier finds the hyperplane that most e�ectively separates the data and then
uses those hyperplanes to classify novel data (Mitchell 1997). One of the limitations
of previous studies that examined the role of objects in scene categorization is that
they rely solely on behavioral accuracy and reaction times (Joubert et al. 2007; Fabre-
Thorpe et al. 2001). The value of using EEG coupled with machine learning decoding
techniques is that it allows us to look specifically at the time-resolved classification
accuracy at the level of miliseconds and thus compare categorization onset, peak and
peak latency between conditions. More generally, it allows for a much more fine-grained
understanding of the process of visual categorization.

By using a more empiric definition of diagnosticity, and by pairing EEG recording
with machine learning decoding techniques this study will expand our understanding
of how diagnostic objects contribute to scene categorization and at what time scale
they do so. By answering both these questions we will gain insight not only into what
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mechanisms are used to classify visual scenes, but also the ways in which di�erent
mechanisms might interact with one another on a temporal level.
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Methods

Image Selection

Experimental images were selected from the 3,499 images whose objects had
been labeled with the LabelMe tool (Russell et al. 2008). For each scene, all object
names, locations, and frequency statistics had been computed for every object (Greene
2013). In the database, diagnosticity is quantified as the probability of a scene given
of an object ([p(scene|object)]), size is the total number of pixels, and distance is the
Euclidean distance from the center of the image. We initially chose to work with only
the eight indoor categories (bathroom, bedroom, conference room, corridor, dining room,
kitchen, living room and o�ce) because they generally tend to contain more objects,
as well as have objects that are more discrete, which minimizes ontological questions
about whether items such as “sky” count as objects (Greene 2013). We defined objects
with a diagnosticity score greater than 0.9 as diagnostic and less than 0.1 as random.
In other words, for a given type of object (i.e stoves), 90% of all instances of that object
were found in a single category (i.e kitchens).

Objects were selected that occurred in at least 10 images per category. While
objects can be diagnostic without being frequent (the sandcastle on the beach), we
wanted to ensure that objects in this study were descriptive of scene category globally
rather than being idiosyncratic to a single image. For example, if an infrequent item
such as a pair of sunglassess happens to be in one image of an o�ce, we do not want
that object to be counted as diagnostic of all o�ces. We further narrowed down our
categories to those that had at least 10 unique diagnostic objects (bathroom, bedroom,
kitchen, o�ce). Doing so ensured that participants were not able to anticipate which
object to look for in a given scene type and minimized any learning e�ects.

Once we had a list of diagnostic and random objects, we selected the images in each
category containing those objects and generated all possible diagnostic-random pairs
within a given image. Because we are interested in comparing diagnostic and random
objects and we know that low-level features can contribute to scene categorization
(Groen, Silson, and Baker 2017), it was important that none of these factors di�er
systematically across conditions. We therefore selected object pairs with the minimum
squared di�erence in size and distance from center and ran paired t-tests to ensure that
there was no significant di�erence across size (t(256) = -0.79, p = 0.43) or distance
(t(256) = -1.92, p = 0.056). Image pairs with high squared di�erences were excluded
until there was no significant di�erence in either size or distance from center between
diagnostic and random objects across all categories. Because beds were inherently much
larger than all other objects, this meant that bedrooms were also excluded from analysis.
Post-hoc analysis of image saliency using the MATLAB Saliency Toolbox (Itti and Koch
2000) revealed a small significant di�erence in max saliency between diagnostic and
random images (t(248) = -2.053 p = 0.041). However, since the average saliency score
was higher for random (M = 0.99, SD = 1.27) than for diagnostic (M = 0.77, SD =
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Figure 1: Diagnostic and Random objects from 249 images were obscured using Fourier
phase-scrambled noise masks with feathered edges. Objects were selected based on the
diagnosticity criteria laid out by Greene (2013) and were matched so that there was no
significant di�erence in size, distance from the center and saliency.

1.19) objects this was deemed acceptable, as having more salient random objects would
make it harder, not easier to reject the null hypothesis. Based on the above criteria, we
were ultimately left with 249 experimental images across three categories (bathroom
(N= 108), kitchen (N=75), o�ce (N=66)) that were resized to be 256x256 pixels. There
was an original, diagnostic and random version of each image.1 For images in the
diagnostic and random conditions, objects were obscured using an elliptical Fourier
phase-scrambled noise mask with 5.0 pixel feathered edges in order to preserve the
global image statistics to the highest extent possible.

Participants

Participants were recruited from undergraduates at Bates College and therefore
reflected the general demographics of the institution. They were compensated for
their time either monetarily or with course credit. They were asked to identify their
age (mean = 19.77, range = 17-22), the gender they identify with (8 female, 9 male)
and their handedness (14 right, 3 left). Before proceeding with EEG recording, we
tested the participants’ visual acuity using an eye chart to make sure it was at least
20/40. We also administered a color-blindness test (Ishihara 1936) to ensure that
general visual ability was not a confounding factor. Additionally, recruiting information
indicated that participants should not have a history of brain trauma, nor have a

1
One of the diagnostic images was accidently the phase-scrambled crop of the object rather than

the image itself.
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%Find Jmages with Eiagnostic/Sandom Pbjects�
for each category
    find all objects with diagnosticity > 0.9/ <0.1 
    find all images in that category
    for  those diagnostic objects

  find all objects with instances in more than 10 images
  find the images containing those objects 

     get diagnosticity
     get size
     get distance from center 

    end
end

%Find best Eiagnostic/Sandom pairs�
for each category 
   for each image

   find all the diagnostic and random objects it contains
   generate all possible permutations of diagnotic-random pairs
   for each pair

  calculate the squared difference in size and distance
  find the pair with the lowest sum of squared difference in size and distance

    end
   end

end

run t-test on size and difference from center accross all best pairs
remove images with high squared difference scores until t-test is significant  

Figure 2: Pseudocode outlining the criteria for Diagnostic and Random object selection.
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documented neurological illness, as this might influence EEG recordings. Participants
read and signed a consent form before participating in testing. We recorded data from
17 participants, but analyzed 16.2 All data collected were confidential and experimental
procedures were approved by the Bates College IRB.

Procedure

Experimental Task
Participants were fitted for an appropriately sized EEG cap by measuring the

circumference of the head from nasion to inion. They were instructed to minimize head
movements and eye blinks and were given six practice trials to familiarize themselves
with the task before the actual experiment. At the start of each trial, participants
were asked to fixate on a target square which was displayed for a variable amount of
time determined by sampling from N(500 ms, 50 ms). This ensures no lingering e�ects
from the previous trial. Next, the experimental stimulus was presented for 250 ms. For
each of 249 images, participants were shown either the original, diagnostic or random
version. Conditions were counterbalanced such that across three participants, a full
set of data was shown. Image presentation was followed by a response screen with a
two-alternative forced choice categorization task containing the correct answer and a foil
randomly selected from the remaining two categories. As soon as participants indicated
which category they had seen by pressing either the “a” or “l” key a new trial began.
After every 20 trials, participants were able to take break for as long as they needed to
stretch and rest their eyes. In total, participants completed 249 trials each. Stimulus
presentation was controlled using the MATLAB Psychophysics Toolbox (Brainard, n.d.;
Pelli 1997) and EEG data were saved using Pycorder open source acquisition software
(BrainVision, Germany). A photocell attached to the computer monitor ensured that
the recording was time-locked to stimulus presentation by detecting a white rectangle
flashed at the bottom corner of the screen at the same time as the stimulus.

EEG Recording
EEG data were recorded continuously from a 64-channel sensor net with Ag/AgCl

elctrodes using the ActiChamp acquisition system (BrainProducts, Germany). EEG
signals were amplified and digitized at 1000Hz by a 24-bit analog-to-digital converter.
Impedances were kept below values optimized for the system (15 kOhm). DC o�set
and 60Hz line noise were removed by band-pass filtering of EEG signals from 0.1 Hz to
40 Hz. The vertex (Cz electrode) was used as an online reference, and two electrodes
placed at the bottom and outer canthi of the right eye detected eye movements and
blinks. Eye electrodes were linked to a right mastoid reference.

2
The photocell during EEG recording did not work properly for one participant making it impossible

to pre-process and epoch and so their data were excluded from analysis.
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Figure 3: Outline of experimental procedure. EEG data were recorded while participants
engaged in a categorization task. The data were re-referenced, filtered, epoched and
eye artifacts were removed. EEG voltages were either run directly though a support
vector machine (SVM) classifier, or first run through independent component analysis
(ICA) before being decoded.
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EEG Pre-processing
Raw EEG data were re-referenced to the average of all electrodes and high-pass

filtered at 1Hz. The data were epoched into 350 ms sections such that 100 ms pre and
250 ms post stimulus onset was preserved. Independent component analysis (ICA) was
run, and visually identified eye movement artifacts were removed from the data.

Analysis

Behavioral
Categorization accuracy was defined as the percentage of correct responses in the

categorization task.

Decoding
While behavioral accuracy gives us a general sense of the extent to which

removing diagnostic objects impairs scene categorization, it does not provide a more
detailed understanding of what is actually going on. Instead of having only a single
value to define each condition, we can look at the di�erence in categorization accuracy
millisecond by millisecond by defining key features such as onset of significant decoding,
the peak of decoding accuracy and the latency at which peak decoding occurs. In doing
so we are able to see exactly the ways in which processing scenes lacking diagnostic
objects di�ers from processing scenes without random objects.

All decoding was run through a linear support vector machine (SVM) classifier
(implemented as LIBSVM, Chang and Lin (2011)) using the original data as a training
set and then testing on the diagnostic and random data which allows us to asses how
each of the two object-removed conditions di�er from the original. Upper and lower
bounds of chance-level decoding accuracy were calculated using 1000 bootstrap samples
of baseline decoding, defined as the decoding accuracy 100 ms before the image appeared
on the screen. The onset of significant decoding was defined as the first time point
greater than the upper bound of the bootstrapped baseline that was followed by at
least five subsequent values also above baseline. The onset for trials where no time
point met the conditions outlined above was set to 350 ms (the length of the trial).
Peak decoding accuracy was the maximum decoding accuracy obtained after stimulus
onset, and peak latency was the time point at which maximum decoding occurred.

EEG Voltage Decoding

The first classifier was run on the normalized voltage values of each of 63
electrodes using a 40 ms sliding window to determine time-resolved decoding accuracy.
Each electrode was assigned pre-defined clusters based on anatomical region (frontal,

13



Methods

temporal, occipital), which allowed us to examine di�erences in activity across brain
areas.

ICA Whole Brain Decoding

The voltage recorded by each electrode in the brain represents a mixture of
information of varying strengths from multiple di�erent regions. As a consequence, each
electrode has access to a mixture of information, which could decrease decoding ability.
Previous studies have shown that breaking the EEG signal down into its component
parts before running it through a classifier can increase decoding accuracy because
each feature given to the classifier represents one type of information rather than a
mixture (Stewart, Nuthmann, and Sanguinetti 2014). Independent component analysis
(ICA) extracts each of these components and when analyzed together provides a clearer
picture of whole brain activity (Hyvärinen, Hurri, and Hoyer 2009). As mentioned
above, ICA was run during the pre-processing phase to remove artifacts of eye blinks.
The activations of each of 63 independent components (ICs) from a second round of
ICA were then used as inputs to the classifier.
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Results

Behavioral Results

Participants’ categorization accuracies for all three conditions were all above
90%. While the mean accuracy for diagnostic images (M= 0.92, SEM= 0.049) was
numerically lower than for original (M= 0.94 , SEM = 0.50) or random images (M=
0.94, SEM= 0.034), a one-way ANOVA revealed no significant di�erence in classification
accuracy across condition F(2,45) < 1 (Figure 4).

EEG Voltage Decoding Results

The time-resolved decoding accuracies of a SVM classifier run on normalized
EEG voltages were noisy and showed no clear trends (Figure 5). Decoding accuracy
was within around 6% of chance and there were no obvious di�erence in decoding
accuracy pre- and post-stimulus onset. The data revealed no visible onset, peak, or peak
latency of decoding accuracy due to high levels of noise. However, each was determined
quantitatively (see methods) and the means are reported in Table 1. We ran separate
repeated measures ANOVAs with two factors on onset, peak and peak latency. The
first factor was Condition with two levels (diagnostic, random) and the second was
Region with three levels (frontal, temporal, occipital). There was no main e�ect of
Region for onset F(2,30) < 1, peak F(2,30) < 1, or peak latency F(2,30) = 1.57, p >
0.05, nor was there a main e�ect of Condition for onset, peak, or peak latency F(1,15)
< 1. There was also no significant interaction between Region and Condition for onset
F(2,30) < 1, peak F(2,30) = 1.094, p > 0.05, or peak latency F(2,30) < 1. Since the
data were highly variable, we ran a jackknife analysis to bring out any trends that were
obscured by general noise. Jackknifing is a well-established technique where each data
point is defined as the average of all other data points and reduces noise by allowing
for statistical measures to be run on the grand mean of the data (Luck 2014). However,
our analysis revealed no change in the statistical significance of decoding accuracy.

ICA Whole Brain Decoding Results

We ran independent component analysis (ICA) on pre-processed EEG data and
trained a classifier using all 63 normalized independent components (ICs) as features,
but saw no increase in SVM classifier performance (Figure 6). Decoding accuracy
remained within 6% of chance and there was no clear di�erence between baseline and
experimental accuracies. Mean onset, peak and peak latency were quantified and are
reported in Table 2. A paired t-test revealed no significant di�erence in onset (t(15) =
-0.88, p = 0.40), peak decoding accuracy (t(15) = 1.013, p = 0.33) or peak latency (t(15)
= -0.88, p = 0.39) between Diagnostic and Random conditions. Similarly, conducting a
jackknife analysis did not improve significance.
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Post-Hoc Analyses

The theoretical upper bound for decoding accuracy was determined by running
a SVM classifier on only the original images using 10-fold cross validation (Figure 7).
Doing so provided a baseline for the maximum decoding that should be expected across
experimental conditions. The decoding accuracy for this classifier was also around 6%
above chance and showed no clear di�erence in pre-and post stimulus decoding accuracy.
The decoding accuuracy of the previous EEG voltage classifier (Figure 5) was therefore
around max decoding threshold.

Additionally, we modeled what decoding performance might have looked like with
a larger number of trials by bootstrapping the whole brain independent components
before running them through the classifier. Bootstrapping is a technique that uses
sampling with replacement to artificially inflate the sample and allows us to predict
what decoding accuracy would be if we had originally had more images. Maximum
decoding accuracy reached around 15% above chance, and there was no clear di�erence
in pre-and post stimulus decoding accuracy. Mean onset, peak and peak latency were
quantified and are reported in Table 3. A paired t-test revealed a significant di�erence
in onset (t(15) = -2.60, p = 0.020), but no significant di�erence in peak decoding
accuracy (t(15) = 0.40, p = 0.70) or peak latency (t(15) = -0.71, p = 0.49) between
Diagnostic and Random conditions. However, it is unwise to lean too strongly on the
significant di�erence between Diagnostic and Random onset for a number of reasons.
First, the high level of noise in the data makes it almost visually impossible to define a
clear onset, and secondly, it is established that defining an onset in the way that we did
(see methods) with noisy data sets is less e�ective (Luck 2014).
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Diagnostic +/- Random +/-
Onset

Frontal 39.46 4.6 43.91 5.188
Temporal 40.35 5.22 43.47 5.62
Occipital 48.92 7.66 47.37 4.47

Peak
Frontal 48.73 0.24 48.40 0.30
Temporal 48.54 0.25 48.46 0.31
Occipital 48.87 0.40 48.39 0.33

Peak Latency
Frontal 121.10 6.52 115.45 5.96
Temporal 116.63 5.08 120.72 7.01
Occipital 129.80 7.18 112.88 7.65

Table 1: Mean values (+/- SEM) of onset, peak and peak latency of decoding accuracy
reported by brain region for a SVM classifier run using normalized EEG voltages as
features.

Diagnostic +/- Random +/-
Onset 148.19 34.88 49.25 28.10
Peak 113.38 0.6422 107.81 0.57
Peak Latency 49.92 15.10 130.13 18.59

Table 2: Mean values (+/- SEM) of onset, peak and peak latency of decoding accuracy
for a SVM classifier run using whole brain independent components (ICs) as features.

Diagnostic +/- Random +/-
Onset 23.56 6.11 73.87 22.23
Peak 62.80 0.93 62.35 1.04
Peak Latency 123.44 17.53 141.94 18.31

Table 3: Mean values (+/- SEM) of onset, peak and peak latency of decoding accuracy
for a SVM classifier run using bootstrapped whole brain independent components (ICs)
as features.
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Figure 4: Mean behavioral accuracy on a two-alternative forced choice categorization
task. One-way ANOVA revealed no significant di�erence in classification accuracy
across condition. Error bars represent +/- one standard error of the mean (SEM).
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Figure 5: Mean time resolved decoding accuracy of a linear SVM classifier using EEG
voltages as features for both Diagnostic and Random conditions across anatomically
pre-determined regions of the brain: (a) frontal, (b) temporal, (c) occipital. Repeated
measures ANOVA revealed no significant main e�ect of condition or region, and no
significant interaction between the two for decoding onset, peak decoding accuracy and
latency of peak decoding accuracy.
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Figure 6: Mean time resolved decoding accuracy of a linear SVM classifier using whole
brain independent components (ICs) as features. Paired t-test revealed no significant
di�erence in decoding accuracy between Diagnostic and Random conditions.
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normalized EEG voltages from only the Original condition using 10-fold cross validation.
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bootstrapped whole brain independent components (ICs) as features. Paired t-test
revealed significant di�erence in onset of meaningful decoding accuracy t(15) = -2.60, p
= 0.020.
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Overall, our experiment produced very little interpretable data. Any di�erences
between diagnostic and random conditions were obscured by the fact that we observed
poor overall classification when looking only at the original images. The fact that there
was no increase in decoding accuracy above baseline suggests one of two things: either
there are technical limitations to our pairing of EEG and machine classification that
are hindering our ability to see clear trends in the data, or there are no exploitable
di�erences in EEG neural activity when viewing kitchens, bathrooms and o�ces. In
either case, conclusions about the role of diagnostic objects become entirely speculative.
However, there are a number of interesting and informative things to discuss about
why it might be that we observed no significant di�erence in ability to classify between
categories.

The first, and most likely explanation for our null-results is that our machine
classifier is not preforming optimally. This is almost definitely due to a lack of power.
We only had 249 trials per participant, which is miniscule in the world of machine
learning more globaly where data sets can be in the trillions (Halevy, Norvig, and Pereira
2009) and small for EEG-based SVM classification which can rely on up to as many
as 15,000 samples (Al-Taei 2017). Even vision-based classifiers using MEG/EEG data
tend to operate at a range closer to 500-1000+ trials (Cichy and Pantazis 2017; Seeliger
et al. 2017; Saeedi and Arbabi 2017). Without enough samples, the classifier is unable
to learn generalizable patterns between categories and thus struggles to di�erentiate
between them.

Knowing that machine learning is a data-hungry tool, it is important to discuss
why it was not possible to have a larger sample size to begin with. One of the most
critical criteria in our image selection process was minimizing the variation in low-level
features across all image conditions. Maintaining similar low-level properties allowed
us to ask pointed questions about the role of objects without worrying that we were
instead seeing the contribution of low-level features. As discussed in the introduction,
di�erentiating between the role of low-level features and objects was one of the key
goals of this study because it allows us to examine the ways in which specific features
contribute independently to scene categorization (Groen, Silson, and Baker 2017). The
downside is that by maintaining this control, we were also limited in which images could
be used and which categories were included in the study. For example, all bedrooms
were excluded because of the large size of beds compared to objects in other categories.
One way to minimize this reduction of categories in the future would be to make sure
that there is no statistical di�erence between diagnostic and random objects within a
given category, rather than across all categories. While this runs the risk of making
categories with larger objects obscured more di�cult to classify (MacEvoy and Epstein
2011), the trends between diagnostic and random objects would remain the same.

A separate measure of raw decoding accuracy between categories could be generated
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using cross-validation to train and test on just the original images. This would allow us
to expand the number of categories used and increase our power, while still minimizing
variance in low-level features between diagnostic and random conditions. Running
t-tests on the objects in each category individually rather than across all categories
would also help increase our classification accuracy because by selecting only images and
categories where there was no significant between all objects, we also inherently ended
up trying to classify the categories with the most similar objects. This reduction of
potential categories to only the most similar is an important point and will be addressed
later.

While changing how we define our control is one way of increasing power in future
experiments, it does not address the small sample size in this present study. Fortunately,
we were able to simulate what having more trials might look like using bootstrapping,
which artificially increases power by sampling existing trials with replacement to generate
a data set with a larger number of trials. Other studies have successfully used this
method to increase their sample size and improve categorization (Cichy and Pantazis
2017; Clarke et al. 2015), so we anticipated that bootstrapping our data would increase
our decoding accuracy. However, even after re-processing the data we found no clear
improvement in classifier performance.

Since artificially increasing our power did not seem to alter classification ability, it
could be that our poor decoding performance also stems from massive overfitting of the
training set. Overfitting occurs when a classifier divides a training set of data using
hyperplanes that are too specific and do not generalize well to a novel testing set. It is
characterized by having high training accuracies but poor testing accuracies and by
having a high number of support vectors (Mitchell 1997; Noble 2006). These trends
can be seen in our classifier, with training accuracies of 100%, and around half the data
points acting as support vectors. Overfitting would explain why there appears to be
no di�erences between categories, why our decoding accuracies at baseline are above
chance and why there is no significance in decoding accuracy pre- and post-stimulus
onset. In the case of baseline decoding being above chance, the model is picking up on
absolutely any di�erence in the feature space, thus resulting in an apparent ability to
predict category based on only a gray screen.

There are a few di�erent techniques that we can use in future analysis to minimize
the chance of overfitting. The first is to soften the margin of our classifier, which
expands the number of support vectors that are allowed in the margins. Doing so
increases generalizability because it better discounts outliers in the data (Noble 2006).
Secondly, it is possible that our data are currently not linearly separable. We could
therefore use a nonlinear Gaussian or radial basis function (RBF) SVM classifier in
an attempt to better fit the data (Chang and Lin 2001). To prevent overfitting one
of these models, we could first use cross-validation and grid search to optimize our
parameters for our given data set (Chang and Lin 2001). However, partitioning o� a
chunk of our already small training set might further decrease our power, and so might
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only be advisable on the bootstrapped data set.

It is also plausible that using principal component analysis (PCA) to determine
a key set of features could reduce overfitting. PCA is a method for dimensionality
reduction that isolates the features of the data that explain the highest levels of variance
(Subasi and Ismail Gursoy 2010). For example, Stewart, Nuthmann, and Sanguinetti
(2014) found that classifiers trained using whole brain features showed no significant
decoding activity while using the same classifier parameters increased classification
accuracy to 0.7 area under the curve (a measure of accuracy) when trained on a subset
of highly informative features and attributed this di�erence to overfitting. It appears
that independent component analysis (ICA) di�erentiates between sources of noise and
neural activity by separating them into subsets of independent components (ICs). This
means that taking only the most informative ICs eliminates artifacts and noise, while
all of that unnecessary information is retained when a classifier is given all possible ICs.

While technical issues with our classifier are the most likely source of our non-
significant results, it could also be that it is simply not possible to di�erentiate between
bathrooms, o�ces and kitchens based on EEG data alone. The main argument against
this is that a number of studies using a range of techniques such as multi-unit neuron
cell recordings (Hung et al. 2005), fMRI (MacEvoy and Epstein 2011; Walther et
al. 2009; Diana, Yonelinas, and Ranganath 2008) and most importantly MEG/EEG
(Simanova et al. 2010; Cichy, Pantazis, and Oliva 2014) have successfully classified
natural scenes and objects, which implies that there are inherent detectable neural
di�erences between categories.

However, there are two important things to take into consideration here. The
first is that EEG recordings only reflect the aggregate activity of large populations of
neurons in the cortical gyri (Fisch 1999). Consequently, it is highly probable that we
are unable to record some, or even all of the most important neural signals. In the
case of the fMRI studies this is particularly true since many of the most classifiable
regions (such as the para-hippocampal place area (PPA)) are found deeper than the
cortex, so activity there would not reach EEG electrodes (Epstein et al. 1999; Fisch
1999). These limitations of EEG helps explain why we can have ceiling level behavioral
categorization accuracy, but non-significant decoding results.

The second point is that many of the previously mentioned categorization tasks
involved scenes and objects from relatively distinct categories. More importantly, classi-
fication tasks often pull examples from di�erent superordinate categories (Walther et al.
2011; Simanova et al. 2010). Superordinate categories are defined by broad groupings
of scenes or objects that all fall under a generic umbrella label (i.e urban/natural,
indoor/outdoor environments) (Kadar and Ben-Shahar 2012). In contrast to the studies
mentioned above, our image categories belong to the same superordinate category
(indoor environments), which means that they likely share many common features. In
fact, one of the reasons that we chose to look only at indoor categories was because
they had a larger number of objects than outdoor scenes (Greene 2013). Additionally,
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our categories were selected to minimize low-level di�erences, making them even more
perceptually similar than just all being indoor scenes. The similarity of images within
the same superordinate category is highlighted by a study by Kadar and Ben-Shahar
(2012) that presented participants with two images and asked if they belonged to the
same category or not. The most common classification errors occurred with pairs from
the same superordinate category. Significantly, the highest error out of any reported
pair was for kitchens and bedrooms, which are both indoor environments. A follow up
experiment revealed that this trend also extended to o�ces. This implies that scenes
within indoor environments are perceived to be highly similar. These findings suggest
that it is plausible that our lack of decoding ability could stem from similarities in the
stimuli themselves.

On the other hand, the study by MacEvoy and Epstein (2011) mentioned
above successfully categorized between bathrooms and kitchens using fMRI multivariate
pattern analysis, which demonstrates that the similarity of the category does not
necessarily exclude successful categorization. However, the same limitation discussed
earlier applies here too, that the success of fMRI classifiers relies on activity in deeper
brain structures that EEG does not have access to.

In addition to the di�culties in identifying the best parameters for our classifier
and the high similarity in categories, there are a few other, more global limitations that
are worth addressing. The first is that there are multiple diagnostic and random objects
in each image. By obscuring only a single object we decrease the amount of diagnostic
information available in an image, but do not remove it entirely. Therefore, if we had
observed any di�erences in decoding accuracy between diagnostic and random conditions
it would have been di�cult to definitely attribute the results entirely to diagnosticity.
Future work could therefore remove a larger number of objects to see if obscuring more
diagnostic information decreased performance. However, removing multiple objects is
not as simple as it seems. As discussed above, it is already di�cult enough to find
a su�ciently large set of images with no significant di�erence in low-level features
between a single pair of objects, let alone multiple. Removing a larger number of objects
would therefore reduce the sample size further and make the divisions between the
categories even less clear. That said, preserving low-level similarities between conditions
by removing a set percentage of total pixels could theoretically do the opposite and
increase the number of usable images. Additionally, at some point there would also no
longer be any useful visual information left and participants’ classification ability would
plummet. To illustrate this, one study found that behavioral classification decreased as
the number of obscured objects in an image increased and that performance correlated
with the number of pixels removed (MacEvoy and Epstein 2011). However, there is
likely a sweet spot, that maximizes the number of objects removed while preserving
some level of categorization ability.

The second limitation is related to this potential loss of information and highlights
other issues inherent to studying only a single component of a visual scene: objects
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themselves have distinctive low-level properties. When viewing an object as a whole we
often think about it in terms of its semantic name (i.e that is a “stove”). However each
object is also associated with a specific set of lower-level characteristics such as size
and position that contribute to its identity (i.e refrigerators are often larger than chairs
and blenders are found on counters, not on the floor) (Biederman 1981). Obscuring
multiple objects thus disrupts low-level information (particularly spatial layout) in
addition to removing object information. This is true of removing a single object as
well, but we tried to minimize the information lost by using Fourier phase scrambled
masks to preserve as many low-level features as we could. However, understanding
that objects and low-level features are correlated is an important consideration when
designing visual categorization studies because to manipulate one is to manipulate the
other. The inherent correlation between the two is likely one of the reasons that there
has been so much debate in the literature about which is more important, and why
ultimately it seems that it is really a mixture of both that contribute (Groen, Silson,
and Baker 2017; Lowe et al. 2016; Al-Taei 2017; Greene et al. 2016). The reality is that
we would need to find a way to de-correlate features before each can truly be studied
independently (Lescroart, Stansbury, and Gallant 2015; Greene et al. 2016; Groen et al.
2018).

Over all this study sought to provide a clearer understanding of the mechanisms used
in visual scene categorization. Our goal was to expand the debate about whether objects
or low-level features contribute more to categorization by asking pointed questions
about the specific role of diagnostic objects and the temporal dynamics of object-based
processing. We were unable to draw any strong conclusions about the role of diagnostic
objects due to poor performance of our classifier, but were able to gain insight into
the types of things to consider when pairing EEG with machine learning classification.
We discuss ways of maximizing power, as well as minimizing overfitting. Additionally
our results highlight the di�erence between decoding categories with high levels of
similarity verses those that are much more easily distinguishable. It appears that trying
to di�erentiate between indoor environments might be a particularly hard task. More
generally, this study also emphasizes the inherent di�culty in studying either objects,
or low-level features in isolation. However, finding ways of doing so allows us to ask
questions about the ways in which a specific feature contributes to scene classification
and moves the field away from the dichotomy of simply asking whether or not it does.

27



Acknowledgments

Acknowledgments

I would like to thank my advisor Michelle Greene for her unending support, and
numerous hours sacrificed helping to complete this thesis. My fellow lab mates Katie
Hartnett, Hanna De Bruyn and Priyanka Takle were also instrumental in providing
help when I got stuck and providing feedback at various stages of the process. I would
also like to thank the Bates Neuroscience Program for making this thesis possible, and
all of the students who participated in the study.

28



References

References

Al-Taei, Ali. 2017. “Ensemble Classifier for Eye State Classification Using EEG Signals.”
arXiv:1709.08590 [Cs], September. http://arxiv.org/abs/1709.08590.

Biederman, I. 1981. On the Semantics of a Glance at a Scene.

Biederman, Irving. 1987. “Recognition-by-Components: A Theory of Human Image
Understanding.” Psychological Review 94: 115–47.

Bosch, Anna, Andrew Zisserman, and Xavier Muñoz. 2006. “Scene Classification via
pLSA.” In Computer Vision – ECCV 2006, 517–30. Lecture Notes in Computer Science.
Springer, Berlin, Heidelberg. doi:10.1007/11744085_40.

Brainard, David H. n.d. “Psychophysics Toolbox,” 7.

Castelhano, Monica S., and John M. Henderson. 2008. “The Influence of Color on the
Perception of Scene Gist.” Journal of Experimental Psychology. Human Perception and
Performance 34 (3): 660–75. doi:10.1037/0096-1523.34.3.660.

Chang, Chih-Chung, and Chih-Jen Lin. 2001. “LIBSVM: A Library for Support Vector
Machines.” ACM Transactions on Intelligent Systems and Technology 2 (3): 1–27.
doi:10.1145/1961189.1961199.

———. 2011. “LIBSVM: A Library for Support Vector Machines.” ACM Trans. Intell.
Syst. Technol. 2 (3): 27:1–27:27. doi:10.1145/1961189.1961199.

Cichy, Radoslaw Martin, and Dimitrios Pantazis. 2017. “Multivariate Pattern Analysis
of MEG and EEG: A Comparison of Representational Structure in Time and Space.”
NeuroImage 158 (September): 441–54. doi:10.1016/j.neuroimage.2017.07.023.

Cichy, Radoslaw Martin, Aditya Khosla, Dimitrios Pantazis, and Aude Oliva.
2017. “Dynamics of Scene Representations in the Human Brain Revealed by
Magnetoencephalography and Deep Neural Networks.” NeuroImage 153 (June): 346–58.
doi:10.1016/j.neuroimage.2016.03.063.

Cichy, Radoslaw Martin, Dimitrios Pantazis, and Aude Oliva. 2014. “Resolving
Human Object Recognition in Space and Time.” Nature Neuroscience 17 (3): 455–62.
doi:10.1038/nn.3635.

Clarke, Alex, Barry J. Devereux, Billi Randall, and Lorraine K. Tyler. 2015. “Predicting
the Time Course of Individual Objects with MEG.” Cerebral Cortex 25 (10): 3602–12.
doi:10.1093/cercor/bhu203.

Davenport, Jodi L., and Mary C. Potter. 2004. “Scene Consistency in Object and
Background Perception.” Psychological Science 15 (8): 559–64. doi:10.1111/j.0956-
7976.2004.00719.x.

Delorme, Arnaud, Ghislaine Richard, and Michèle Fabre-Thorpe. 2010. “Key Visual

29

http://arxiv.org/abs/1709.08590
https://doi.org/10.1007/11744085_40
https://doi.org/10.1037/0096-1523.34.3.660
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1016/j.neuroimage.2017.07.023
https://doi.org/10.1016/j.neuroimage.2016.03.063
https://doi.org/10.1038/nn.3635
https://doi.org/10.1093/cercor/bhu203
https://doi.org/10.1111/j.0956-7976.2004.00719.x
https://doi.org/10.1111/j.0956-7976.2004.00719.x


References

Features for Rapid Categorization of Animals in Natural Scenes.” Frontiers in Psychology
1. doi:10.3389/fpsyg.2010.00021.

Diana, Rachel A., Andrew P. Yonelinas, and Charan Ranganath. 2008. “The E�ects
of Unitization on Familiarity-Based Source Memory: Testing a Behavioral Prediction
Derived from Neuroimaging Data.” Journal of Experimental Psychology. Learning,
Memory, and Cognition 34 (4): 730–40. doi:10.1037/0278-7393.34.4.730.

Epstein, Russell, Alison Harris, Damian Stanley, and Nancy Kanwisher. 1999. “The
Parahippocampal Place Area: Recognition, Navigation, or Encoding?” Neuron 23 (1):
115–25. doi:10.1016/S0896-6273(00)80758-8.

Fabre-Thorpe, Michèle, Arnaud Delorme, Catherine Marlot, and Simon Thorpe.
2001. “A Limit to the Speed of Processing in Ultra-Rapid Visual Categorization
of Novel Natural Scenes.” Journal of Cognitive Neuroscience 13 (2): 171–80.
doi:10.1162/089892901564234.

Fisch, Bruce. 1999. Fisch and Spehlmann’s EEG Primer: Basic Principles of Digital
and Analog EEG, 3e. 3 edition. Amsterdam: Elsevier.

Friedman, A. 1979. “Framing Pictures: The Role of Knowledge in Automatized
Encoding and Memory for Gist.” Journal of Experimental Psychology. General 108 (3):
316–55.

Ganis, Giorgio, and Marta Kutas. 2003. “An Electrophysiological Study of Scene E�ects
on Object Identification.” Cognitive Brain Research 16 (2): 123–44. doi:10.1016/S0926-
6410(02)00244-6.

Go�aux, Valerie, Corentin Jacques, Andre Mouraux, Aude Oliva, Philippe G. Schyns,
and Bruno Rossion. 2004. “Diagnostic Colors Contribute to the Early Stages of Scene
Categorization: Behavioral and Neurophysiological Evidence.” Journal of Vision 4 (8):
873–73. doi:10.1167/4.8.873.

Greene, Michelle R. 2013. “Statistics of High-Level Scene Context.” Frontiers in
Psychology 4 (October). doi:10.3389/fpsyg.2013.00777.

———. 2016. “Estimations of Object Frequency Are Frequently Overestimated.” Cogni-
tion 149 (April): 6–10. doi:10.1016/j.cognition.2015.12.011.

Greene, Michelle R., and Aude Oliva. 2009. “Recognition of Natural Scenes from Global
Properties: Seeing the Forest Without Representing the Trees.” Cognitive Psychology
58 (2): 137–76. doi:10.1016/j.cogpsych.2008.06.001.

Greene, Michelle R., Christopher Baldassano, Andre Esteva, Diane M. Beck, and Li
Fei-Fei. 2016. “Visual Scenes Are Categorized by Function.” Journal of Experimental
Psychology. General 145 (1): 82–94. doi:10.1037/xge0000129.

Groen, Iris I. A., Sennay Ghebreab, Victor A. F. Lamme, and H. Steven Scholte.
2012. “Low-Level Contrast Statistics Are Diagnostic of Invariance of Natural Textures.”

30

https://doi.org/10.3389/fpsyg.2010.00021
https://doi.org/10.1037/0278-7393.34.4.730
https://doi.org/10.1016/S0896-6273(00)80758-8
https://doi.org/10.1162/089892901564234
https://doi.org/10.1016/S0926-6410(02)00244-6
https://doi.org/10.1016/S0926-6410(02)00244-6
https://doi.org/10.1167/4.8.873
https://doi.org/10.3389/fpsyg.2013.00777
https://doi.org/10.1016/j.cognition.2015.12.011
https://doi.org/10.1016/j.cogpsych.2008.06.001
https://doi.org/10.1037/xge0000129


References

Frontiers in Computational Neuroscience 6 (June). doi:10.3389/fncom.2012.00034.

Groen, Iris I. A., Edward H. Silson, and Chris I. Baker. 2017. “Contributions of Low-
and High-Level Properties to Neural Processing of Visual Scenes in the Human Brain.”
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
372 (1714). doi:10.1098/rstb.2016.0102.

Groen, Iris IA, Michelle R Greene, Christopher Baldassano, Li Fei-Fei, Diane M
Beck, and Chris I Baker. 2018. “Distinct Contributions of Functional and Deep
Neural Network Features to Representational Similarity of Scenes in Human Brain and
Behavior.” eLife 7. Accessed March 26. doi:10.7554/eLife.32962.

Halevy, A., P. Norvig, and F. Pereira. 2009. “The Unreasonable E�ectiveness of Data.”
IEEE Intelligent Systems 24 (2): 8–12. doi:10.1109/MIS.2009.36.

Hansen, Bruce C., Theodore Jacques, Aaron P. Johnson, and Dave Ellemberg. 2011.
“From Spatial Frequency Contrast to Edge Preponderance: The Di�erential Modulation
of Early Visual Evoked Potentials by Natural Scene Stimuli.” Visual Neuroscience 28
(3): 221–37. doi:10.1017/S095252381100006X.

Hansen, Bruce C., Aaron P. Johnson, and Dave Ellemberg. 2012. “Di�erent Spatial
Frequency Bands Selectively Signal for Natural Image Statistics in the Early Visual
System.” Journal of Neurophysiology 108 (8): 2160–72. doi:10.1152/jn.00288.2012.

Henderson, John M., Phillip A. Weeks, and Andrew Hollingworth. 1999. “The E�ects
of Semantic Consistency on Eye Movements During Complex Scene Viewing.” Journal
of Experimental Psychology: Human Perception and Performance 25 (1): 210–28.
doi:10.1037/0096-1523.25.1.210.

Hung, Chou P., Gabriel Kreiman, Tomaso Poggio, and James J. DiCarlo. 2005. “Fast
Readout of Object Identity from Macaque Inferior Temporal Cortex.” Science (New
York, N.Y.) 310 (5749): 863–66. doi:10.1126/science.1117593.

Hyvärinen, Aapo, Jarmo Hurri, and Patrik O. Hoyer. 2009. “Independent Component
Analysis.” In Natural Image Statistics, 151–75. Computational Imaging and Vision.
Springer, London. doi:10.1007/978-1-84882-491-1_7.

Ishihara, S. (Satoshi). 1936. “Series of Plates Designed as Tests for Colour-Blindness.”
http://agris.fao.org/agris-search/search.do?recordID=US201300265800.

Itti, Laurent, and Christof Koch. 2000. “A Saliency-Based Search Mechanism for
Overt and Covert Shifts of Visual Attention.” Vision Research 40 (10-12): 1489–1506.
doi:10.1016/S0042-6989(99)00163-7.

Joubert, Olivier R., Guillaume A. Rousselet, Denis Fize, and Michèle Fabre-Thorpe.
2007. “Processing Scene Context: Fast Categorization and Object Interference.” Vision
Research 47 (26): 3286–97. doi:10.1016/j.visres.2007.09.013.

Kadar, Ilan, and Ohad Ben-Shahar. 2012. “A Perceptual Paradigm and Psychophysical

31

https://doi.org/10.3389/fncom.2012.00034
https://doi.org/10.1098/rstb.2016.0102
https://doi.org/10.7554/eLife.32962
https://doi.org/10.1109/MIS.2009.36
https://doi.org/10.1017/S095252381100006X
https://doi.org/10.1152/jn.00288.2012
https://doi.org/10.1037/0096-1523.25.1.210
https://doi.org/10.1126/science.1117593
https://doi.org/10.1007/978-1-84882-491-1_7
http://agris.fao.org/agris-search/search.do?recordID=US201300265800
https://doi.org/10.1016/S0042-6989(99)00163-7
https://doi.org/10.1016/j.visres.2007.09.013


References

Evidence for Hierarchy in Scene Gist Processing.” Journal of Vision 12 (13): 16–16.
doi:10.1167/12.13.16.

Lescroart, Mark D., Dustin E. Stansbury, and Jack L. Gallant. 2015. “Fourier Power,
Subjective Distance, and Object Categories All Provide Plausible Models of BOLD
Responses in Scene-Selective Visual Areas.” Frontiers in Computational Neuroscience 9
(November). doi:10.3389/fncom.2015.00135.

Li, Li-Jia, Hao Su, Fei-Fei Li, and Eric Xing. 2010. “Object Bank: A High-Level Image
Representation for Scene Classification & Semantic Feature Sparsification.” Advances
in Neural Information Processing Systems, December. http://repository.cmu.edu/
machine_learning/228.

Li, Li-Jia, Hao Su, Yongwhan Lim, and Li Fei-Fei. 2010. “Objects as Attributes for
Scene Classification.” In Trends and Topics in Computer Vision, 57–69. Lecture Notes
in Computer Science. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-35749-7_5.

Liao, Y., S. Kodagoda, Y. Wang, L. Shi, and Y. Liu. 2016. “Understand Scene
Categories by Objects: A Semantic Regularized Scene Classifier Using Convolutional
Neural Networks.” In, 2016-June:2318–25. doi:10.1109/ICRA.2016.7487381.

Lowe, M.X., J.P. Gallivan, S. Ferber, and J.S. Cant. 2016. “Feature Diagnosticity
and Task Context Shape Activity in Human Scene-Selective Cortex.” NeuroImage 125:
681–92. doi:10.1016/j.neuroimage.2015.10.089.

Luck, Steven J. 2014. An Introduction to the Event-Related Potential Technique. MIT
Press.

MacEvoy, Sean P., and Russell A. Epstein. 2011. “Constructing Scenes from
Objects in Human Occipitotemporal Cortex.” Nature Neuroscience 14 (10): 1323.
doi:10.1038/nn.2903.

Malcolm, George L., Iris I. A. Groen, and Chris I. Baker. 2016. “Making
Sense of Real-World Scenes.” Trends in Cognitive Sciences 20 (11): 843–56.
doi:10.1016/j.tics.2016.09.003.

Mitchell, Tom M. 1997. Machine Learning. McGraw-Hill Series in Computer Science.
New York: McGraw-Hill.

Noble, William S. 2006. “What Is a Support Vector Machine?” Nature Biotechnology
24 (12): 1565–7. doi:10.1038/nbt1206-1565.

Oliva, Aude, and Philippe G. Schyns. 2000. “Diagnostic Colors Mediate Scene Recogni-
tion.” Cognitive Psychology 41 (2): 176–210. doi:10.1006/cogp.1999.0728.

Oliva, Aude, and Antonio Torralba. 2001. “Modeling the Shape of the Scene: A Holistic
Representation of the Spatial Envelope.” International Journal of Computer Vision 42

32

https://doi.org/10.1167/12.13.16
https://doi.org/10.3389/fncom.2015.00135
http://repository.cmu.edu/machine_learning/228
http://repository.cmu.edu/machine_learning/228
https://doi.org/10.1007/978-3-642-35749-7_5
https://doi.org/10.1109/ICRA.2016.7487381
https://doi.org/10.1016/j.neuroimage.2015.10.089
https://doi.org/10.1038/nn.2903
https://doi.org/10.1016/j.tics.2016.09.003
https://doi.org/10.1038/nbt1206-1565
https://doi.org/10.1006/cogp.1999.0728


References

(3): 145–75. doi:10.1023/A:1011139631724.

Pelli, Denis G. 1997. “The VideoToolbox Software for Visual Psychophysics: Transform-
ing Numbers into Movies.” Spatial Vision 10 (4): 437–42. doi:10.1163/156856897X00366.

Philippe G. Schyns, and Aude Oliva. 1994. “From Blobs to Boundary Edges: Evidence
for Time- and Spatial-Scale-Dependent Scene Recognition.” Psychological Science 5 (4):
195–200. doi:10.1111/j.1467-9280.1994.tb00500.x.

Potter, Mary C., Adrian Staub, Janina Rado, and Daniel H. O’Connor. 2002. “Recog-
nition Memory for Briefly Presented Pictures: The Time Course of Rapid Forgetting.”
Journal of Experimental Psychology. Human Perception and Performance 28 (5):
1163–75.

Renninger, L, and J Malik. 2004. “When Is Scene Identification Just Texture Recogni-
tion?” Vision Research 44 (19): 2301–11. doi:10.1016/S0042-6989(04)00191-9.

Russell, Bryan C., Antonio Torralba, Kevin P. Murphy, and William T. Freeman. 2008.
“LabelMe: A Database and Web-Based Tool for Image Annotation.” International
Journal of Computer Vision 77 (1-3): 157–73. doi:10.1007/s11263-007-0090-8.

Saeedi, Ali, and Ehsan Arbabi. 2017. “E�ects of Images with Di�erent Levels of
Familiarity on EEG.” arXiv:1710.04462 [Q-Bio, Stat], October. http://arxiv.org/abs/
1710.04462.

Sanocki, Thomas, and William Epstein. 1997. “Priming Spatial Layout of Scenes.”
Psychological Science 8 (5): 374–78. doi:10.1111/j.1467-9280.1997.tb00428.x.

Seeliger, K., M. Fritsche, U. Güçlü, S. Schoenmakers, J. -M. Scho�elen, S. E. Bosch,
and M. A. J. van Gerven. 2017. “Convolutional Neural Network-Based Encoding
and Decoding of Visual Object Recognition in Space and Time.” NeuroImage, July.
doi:10.1016/j.neuroimage.2017.07.018.

Simanova, Irina, Marcel van Gerven, Robert Oostenveld, and Peter Hagoort. 2010.
“Identifying Object Categories from Event-Related EEG: Toward Decoding of Conceptual
Representations.” PLOS ONE 5 (12): e14465. doi:10.1371/journal.pone.0014465.

Stewart, Andrew X., Antje Nuthmann, and Guido Sanguinetti. 2014. “Single-Trial
Classification of EEG in a Visual Object Task Using ICA and Machine Learning.”
Journal of Neuroscience Methods 228 (May): 1–14. doi:10.1016/j.jneumeth.2014.02.014.

Subasi, Abdulhamit, and M. Ismail Gursoy. 2010. “EEG Signal Classification Using
PCA, ICA, LDA and Support Vector Machines.” Expert Systems with Applications 37
(12): 8659–66. doi:10.1016/j.eswa.2010.06.065.

Võ, Melissa L.-H., and Jeremy M. Wolfe. 2013. “Di�erential Electrophysiological
Signatures of Semantic and Syntactic Scene Processing.” Psychological Science 24 (9):

33

https://doi.org/10.1023/A:1011139631724
https://doi.org/10.1163/156856897X00366
https://doi.org/10.1111/j.1467-9280.1994.tb00500.x
https://doi.org/10.1016/S0042-6989(04)00191-9
https://doi.org/10.1007/s11263-007-0090-8
http://arxiv.org/abs/1710.04462
http://arxiv.org/abs/1710.04462
https://doi.org/10.1111/j.1467-9280.1997.tb00428.x
https://doi.org/10.1016/j.neuroimage.2017.07.018
https://doi.org/10.1371/journal.pone.0014465
https://doi.org/10.1016/j.jneumeth.2014.02.014
https://doi.org/10.1016/j.eswa.2010.06.065


References

1816–23. doi:10.1177/0956797613476955.

Walther, Dirk B., Eamon Caddigan, Li Fei-Fei, and Diane M. Beck. 2009. “Natural
Scene Categories Revealed in Distributed Patterns of Activity in the Human Brain.”
The Journal of Neuroscience: The O�cial Journal of the Society for Neuroscience 29
(34): 10573–81. doi:10.1523/JNEUROSCI.0559-09.2009.

Walther, Dirk B., Barry Chai, Eamon Caddigan, Diane M. Beck, and Li Fei-Fei.
2011. “Simple Line Drawings Su�ce for Functional MRI Decoding of Natural Scene
Categories.” Proceedings of the National Academy of Sciences 108 (23): 9661–6.
doi:10.1073/pnas.1015666108.

34

https://doi.org/10.1177/0956797613476955
https://doi.org/10.1523/JNEUROSCI.0559-09.2009
https://doi.org/10.1073/pnas.1015666108


Appendix

Appendix

Experimental Set-Up Code

%FileName: PotentialDiagObjectsFinal.m

%Inputs: basicStats.mat

%Outputs: PotentialDiagImages.csv

%Summary: Find all diagnostic objects with diagnosticity greater than

%0.9, more than 10 object instances, more than 10 images with those

%objects. Same code can be used to find random objects -

%set Diagnosticity to < 0.1 and change the variable names.

%(PotentialDiagImages.csv produces a list where some of the objects

%are wrong. Delete those images and save new csv file as

%“PotentialDiagImagesForCodeFinal.csv”)

load basicStats;

for c = 1:8 %loops through all categories

sceneDiagsObj = find(diagnosticity(:,c)>.9); %Find objects in

%each scene category with diagnosticity > 0.9

logicalMatrix = logical(instancecounts);
sceneCatImages = find(C==c);%Find all individual images in a scene

%category

myCount = 0; % find image instances above 10 for those diag objs

for n = 1:length(sceneDiagsObj)
DiagImageInst = find(logicalMatrix(sceneDiagsObj(n),:));
if length(DiagImageInst) >= 10

myCount = myCount + 1;
goodSceneDiags(myCount) = sceneDiagsObj(n); %all obj w/

%diag > .9 AND 10+ image instances

end
end

for i = 1:length(goodSceneDiags) %loop through all objects w/

%diag > .9 AND 10+ image instances

scenesWithObj = find(logicalMatrix(goodSceneDiags(i),:));
% images with our diagnostic object

finalImageID = intersect(scenesWithObj,sceneCatImages); % scene

%indices in category c with diagnostic object

for j = 1:length(finalImageID)
Diag = diagnosticity(goodSceneDiags(i), c); % gets the
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%diagnosticity

targetObjectName = objectnames(goodSceneDiags(i));
found = 0;
thisAnnotation = D(finalImageID(j)).annotation;
info = imfinfo(fullfile(localFolderImages,

thisAnnotation.folder, thisAnnotation.filename));
nrows=info.Height;
ncols=info.Width; % gets scene dimensions as these are

%not uniform

mask = zeros(nrows,ncols); % proxy for whole scene

[x,y]=meshgrid(1:ncols,1:nrows);
for k = 1:length(thisAnnotation.object) % loops through

%objects

thisObject = thisAnnotation.object(k).name;
if strcmp(thisObject, targetObjectName) % are the two

%names the same?

objectIndex = k;
break

end
end
[X,Y]=getLMpolygon...

(thisAnnotation.object(objectIndex).polygon);
mask=logical(inpolygon(x,y,X,Y)); % binary in which pixels

%inside border are 1 and all others 0

objectSize = sum(mask(:)/(nrows*ncols)); % this is the

%object�s size

center=[mean(X)/info.Width mean(Y)/info.Height];
distance=sqrt((center(1)-.5)^2+(center(2)-.5)^2); % this is

the distance

dataFileName = �Test1.csv�;%�PotentialDiagImages.csv�;

if ~exist(dataFileName, �file�)
fileID = fopen(dataFileName, �a+�); % �a+� = Open

%or create new file for reading and writing.

%Append data to the end of the file.

%fprintf(fileID, �%s \n�,[�Category, Image, Object,

...Diagnosticity, Size, Distance from Center�]);
fprintf(fileID, �%s \n�,...

[�Category, Image, Object,�...
�Diagnosticity, Size,Distance from Center,c, i,j,k�]);
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fclose(fileID);
end
dataFormatString = �%s, %s, %s, %6.3f, %6.3f, %6.3f,�...

�%d,%d, %d, %d \n�;

%save data to that file

dataFile = fopen(dataFileName, �a�); %�a� = Open or

%create new file for writing. Append data to

%the end of the file.

fprintf(dataFile, dataFormatString, sceneCategories{c},
D(finalImageID(j)).annotation.filename,
D(finalImageID(j)).annotation.object(k).name, Diag,
objectSize, distance, c, i, j,k);

fclose(�all�);
end

end
end

%FileName: mergeDataCateforyFinal.m

%Inputs:PotentialDiagImagesForCodeFinal.csv and

%PotentialRandImagesForCodeFinal.csv

%Outputs: mergeDataWithCategoryFinal.csv

%Summary: produce csv with all possible pairings of diag

%and rand objects for each image

%Define inputs

diagData = importdata(�PotentialDiagImagesForCodeFinal.csv�);
randData = importdata(�PotentialRandImagesForCodeFinal.csv�);
randImages = randData.textdata(:,2);
diagCats = diagData.textdata(:,1);
randCats = randData.textdata(:,1);

%initialize output csv file

fid = fopen(�mergeDataWithCategoryFinal.csv�,�a+�);

%define categories (only 4 b/c not enough images in other categories)

cats = {�bathroom�,�bedroom�,�kitchen�,�office�};

%For each category

for i = 1:length(cats)
thisCat = cats{i};
catIndDiag = strmatch(thisCat, diagCats); %find indices of all
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%diagnostic objects

catIndRand = strmatch(thisCat, randCats); %find indices of all

%random objects

%redefine the dataset to only include the diag objects in that

%category

smallDiag.textdata = diagData.textdata(catIndDiag,:);
smallDiag.data = diagData.data(catIndDiag,:);

%redefine the dataset to only include the rand objects in that

%category

smallRand.textdata = randData.textdata(catIndRand,:);
smallRand.data = randData.data(catIndRand,:);

%Find Image name for each diag/rand object

smallDiagNames = smallDiag.textdata(:,2);
smallRandNames = smallRand.textdata(:,2);

for j = 1:length(smallDiag.data) %for each diagnostic object

thisImName = smallDiag.textdata{j,2}; %find the image name

ind = strmatch(thisImName, smallRandNames); %find the

%indicies of the random objects that are also in that

%image

%save data to csv file

for k = 1:length(ind)
fprintf(fid, �%s, %s, %s, %s, %6.3f, %6.3f,...

%6.3f, %6.3f, %d, %d \n�, ...

thisCat, thisImName, smallDiag.textdata{j,3}, ...
smallRand.textdata{ind(k),3}, smallDiag.data(j,1), ...
smallRand.data(ind(k),2), smallDiag.data(j,3),...
smallRand.data(ind(k),3)); smallRand.data(ind(k),1),...
smallDiag.data(j,2), ...)

end
end

end

fclose(fid)

%FileName: dataForTTestFinal.m

%Inputs: mergeDataWithCategoryFinal.csv

%Outputs: bestPairsFinal.csv
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%Summary: Determine the best pair of diag-rand objects for each

%image based on diff size and distance from center.

%(run through T-test (using R), remove pairs with high diff

%by hand until T-test is sig. save results as ImageListFinal.csv)

allData = importdata(�mergeDataWithCategoryFinal.csv�);
fid = fopen(�bestPairsFinal.csv�,�a+�); %opening a file where we will

%write the best data

myCatNames = allData.textdata(:,1);
myUniqueCat = unique(myCatNames);

clear myCatBin
for i = 4:length(myUniqueCat) %for each category

catCellList = strfind(myCatNames,myUniqueCat(i)); %mark all IDs of

%that category with a 1, and all IDs not in that category

%with 0 (as a cell)

for m = 1:length(catCellList) %for all IDs (both category and not)

if isempty(catCellList{m}) %If that ID is not in the category

%then put a 0 into myCatBin (isempty returns 1 if x

%is empty)

myCatBin(m) = 0;
else %If that ID is in the category then put a 1 into myCatBin

myCatBin(m) = 1;
end

end
catID = find(myCatBin); %stopped indexing by i because want

%whole vector

catTextData = allData.textdata(catID,:); % just text data for cat.

catNumData = allData.data(catID,:); % just numerical data for cat

%loop through images w/in category

myImageNames = catTextData(:,2);
myUniqueImages = unique(myImageNames);

clear myImageBin
for j = 1:length(myUniqueImages) %for each image

imageID = strmatch(myUniqueImages(j),myImageNames); %mark all

%IDs of that iamge with a 1, and all IDs that aren�t that

%image with 0 (as a cell)

clear diffSize diffDistance
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for k = 1:length(imageID)
%get the two sizes and squared siff. Store in Vector

diffSize(k) = (catNumData(imageID(k),1) - catNumData...
(imageID(k),2))^2;

%get the two distances and squared siff. Store in vector

diffDistance(k) = (catNumData(imageID(k),3) - ...
catNumData(imageID(k),4))^2;

end

sumVector = diffSize +diffDistance; %find sum

bestPair = find(sumVector == min(sumVector)); %find ID of

%best pair

bestPair = bestPair(1);

% Print Data to the file

fprintf(fid,�%s, %s, %s, %s, %6.3f, %6.3f, %6.3f, %6.3f,�...
�%6.3f, %6.3f, %d, %d \n�, myUniqueCat{i}, ...
myUniqueImages{j}, catTextData{imageID(bestPair),3},...
catTextData{imageID(bestPair),4},...
catNumData(imageID(bestPair),1),...
catNumData(imageID(bestPair),2),diffSize(bestPair),...
catNumData(imageID(bestPair),3),catNumData(imageID(bestPair),4),
diffDistance(bestPair),catNumData(imageID(bestPair),5),...
catNumData(imageID(bestPair),6));

end
end

%FileName: saveObjects.m

%Inputs: ImageListFinal.csv and LabelMeImages folder

%Outputs: “cropDiagOut” and “cropRandOut” folders

%Summary: crop out the diag and rand object for each image.

data = importdata(�ImageListFinal.csv�);

load basicStats;
outfolderDiag = �/Users/julieself/Dropbox/MATLAB/LabelMeDataset/�

...�cropDiagOut/�;
outfolderRand = �/Users/julieself/Dropbox/MATLAB/LabelMeDataset/�

...�cropRandOut/�;

localFolderImages = �/Users/julieself/Dropbox/MATLAB/...
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LabelMeDataset/LabelMeImages/�;

for i = 1:length(data.data)
thisCategory = data.textdata{i,1};
catInd = strmatch(thisCategory, sceneCategories);
theseCats = find(C==catInd);
thisImage = data.textdata{i,2};

% find database index of relevant image

imNum = 0;
for j = 1:length(theseCats)

if strcmp(D(theseCats(j)).annotation.filename, thisImage)
imNum = theseCats(j);
break

end
end

% read in image

thisAnnotation = D(imNum).annotation;
im = imread(fullfile(localFolderImages, thisAnnotation.filename));
imSize = size(im);

% get the diagnostic object and save it

clear minX minY maxX maxY X Y
diagNum = data.data(i,7);
[X,Y] = getLMpolygon(D(imNum).annotation.object(diagNum).polygon);
minX = max(1,min(X)); maxX = max(X);

if (maxX + (.1*(maxX-minX))) <= imSize(2)
maxX = maxX + (.1*(maxX-minX));

end
if (minX - (.1*(maxX-minX))) >= 1

minX = minX - (.1*(maxX-minX));
end

minY = max(1,min(Y)); maxY = max(Y);
if (maxY + (.1*(maxY-minY))) <= imSize(1)

maxY = maxY + (.1*(maxY-minY));
end
if (minY - (.1*(maxY-minY))) >= 1

minY = minY - (.1*(maxY-minY));
end

smallDiagIm = im(minY:maxY, minX:maxX, :);
diagImName = [thisCategory �-diag-� thisAnnotation.filename];
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imwrite(smallDiagIm,[outfolderDiag diagImName],�jpeg�,�quality�,100);

% get the random object and save it

clear minX minY maxX maxY X Y
randNum = data.data(i,8);
[X,Y] = getLMpolygon(D(imNum).annotation.object(randNum).polygon);
minX = max(1,min(X)); maxX = max(X);

if (maxX + (.1*(maxX-minX))) <= imSize(2)
maxX = maxX + (.1*(maxX-minX));

end
if (minX - (.1*(maxX-minX))) > 1

minX = minX - (.1*(maxX-minX));
end

minY = max(1,min(Y)); maxY = max(Y);
if (maxY + (.1*(maxY-minY))) <= imSize(1)

maxY = maxY + (.1*(maxY-minY));
end
if (minY - (.1*(maxY-minY))) > 1

minY = minY - (.1*(maxY-minY));
end

smallRandIm = im(minY:maxY, minX:maxX, :);
randImName = [thisCategory �-rand-� thisAnnotation.filename];
imwrite(smallRandIm,[outfolderRand randImName],�jpeg�,�quality�,100);
i

end

%FileName: Colorphase2.m

%Inputs:“cropDiagOut” and “cropRandOut”

%Outputs:“cropDiagPhase” and “cropRandPhase”

%Summary: phase scramble the cropped objects

folder = �/Users/julieself/Dropbox/MATLAB/LabelMeDataset/cropRandOut/�;
outfolder=�/Users/julieself/Dropbox/MATLAB/LabelMeDataset/�

...�CropRandPhase/�;

files= dir([folder �*.jpg�]);
Nimages = length(files)

for i = 1:Nimages
img = mat2grayBCVL(double(imread([folder files(i).name])));
imSize = size(img);
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nameima = strcat(�ps�,files(i).name);

randomPhase = angle(fft2(rand(imSize(1), imSize(2))));

clear imFourier
clear amp
clear phase
clear imScrambled
for layer = 1:imSize(3)

imFourier(:,:,layer) = fft2(img(:,:,layer));
amp(:,:,layer) = abs(imFourier(:,:,layer));
phase(:,:,layer) = angle(imFourier(:,:,layer));
phase(:,:,layer) = phase(:,:,layer)+randomPhase;
imScrambled(:,:,layer) = ifft2(amp(:,:,layer).*exp...

(sqrt(-1)*(phase(:,:,layer))));

% normalize

iS = imScrambled(:,:,layer);
iS=iS(:);

iS = (iS - min(iS(:)));
iS = 255 * iS / max(iS(:));

meangray=mean(iS);

for n=1:size(iS,1)
iS(n,:) = (iS(n,:)-(meangray-128));

end

%ima=reshape(ima,256,256);

j = find(iS<0); iS(j) = 0;
j = find(iS>255); iS(j) = 255;

imScrambled(:,:,layer) = reshape(iS,[imSize(1) imSize(2)]);
end

imScrambled = real(imScrambled);
imwrite(uint8(imScrambled),[outfolder nameima],�jpeg�,�quality�,100);
i

end
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%FileName: Make3ExperimentalLists.m

%Inputs: ExperimentalOriginal, ExperimentalDiag,

%ExperimentalRand

%Outputs:ExperimentalLists.mat

%Summary: Make three experimental lists saved as a structure

%that include image name, category, non-categories, condition

%(orig, diag, rand).

folderOrig = �/Users/julieself/Dropbox/MATLAB/LabelMeDataset/�
...�ExperimentalOriginal/�;

folderDiag = �/Users/julieself/Dropbox/MATLAB/LabelMeDataset/�
...�ExperimentalDiag/�

folderRand = �/Users/julieself/Dropbox/MATLAB/LabelMeDataset/�
...�ExperimentalRand/�

ExperimentalOrig = dir([folderOrig �*.jpg�])
ExperimentalDiag = dir([folderDiag �*.jpg�])
ExperimentalRand = dir([folderRand �*.jpg�])

%Make 3 experimental Lists (cell arrays) with an even mixture

%of Orig,Diag,Rand

%Make IDs for each category

for i = 1:3:249
OrigID(i) = 1;
OrigID(i+1) = 2;
OrigID(i+2) = 3;
end
clear i

for i = 1:3:249
DiagID(i) = 2;
DiagID(i+1) = 3;
DiagID(i+2) = 1;
end
clear i

for i = 1:3:249
RandID(i) = 3;
RandID(i+1) = 1;
RandID(i+2) = 2;
end
clear i
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%Find those IDs within ExperiemtnalOrig

for j = find(OrigID == 1)
ListA{j} = ExperimentalOrig(j).name;

end
clear j
for j = find(OrigID == 2)

ListB{j} = ExperimentalOrig(j).name;
end
clear j
for j = find(OrigID == 3)

ListC{j} = ExperimentalOrig(j).name;
end

%Find those IDs within ExperiemtnalDiag

for k = find(DiagID == 1)
ListA{k} = ExperimentalDiag(k).name;

end
clear k
for k = find(DiagID == 2)

ListB{k} = ExperimentalDiag(k).name;
end
clear k
for k = find(DiagID == 3)

ListC{k} = ExperimentalDiag(k).name;
end

%Find those IDs within ExperiemtnalRand

for l = find(RandID == 1)
ListA{l} = ExperimentalRand(l).name;

end
clear l
for l = find(RandID == 2)

ListB{l} = ExperimentalRand(l).name;
end
clear l
for l = find(RandID == 3)

ListC{l} = ExperimentalRand(l).name;
end

save ListA ListB ListC
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%save each List into a structure that also includes ImageName,

%Category, NonCategory, Condition

%Save structure including Category, NonCategory

for h = 1:108
finalListA(h).Category = �bathroom�;
finalListA(h).NonCategory = {�kitchen�,�office�}
finalListB(h).Category = �bathroom�;
finalListB(h).NonCategory = {�kitchen�,�office�}
finalListC(h).Category = �bathroom�;
finalListC(h).NonCategory = {�kitchen�,�office�}
end
clear h
for h = 109:183
finalListA(h).Category = �kitchen�;
finalListA(h).NonCategory = {�bathroom�,�office�}
finalListB(h).Category = �kitchen�;
finalListB(h).NonCategory = {�bathroom�,�office�}
finalListC(h).Category = �kitchen�;
finalListC(h).NonCategory = {�bathroom�,�office�}
end
clear h
for h = 184:249
finalListA(h).Category = �office�;
finalListA(h).NonCategory = {�kitchen�,�bathroom�}
finalListB(h).Category = �office�;
finalListB(h).NonCategory = {�kitchen�,�bathroom�}
finalListC(h).Category = �office�;
finalListC(h).NonCategory = {�kitchen�,�bathroom�}
end

%save structure including imagename

for m = 1:249
finalListA(m).Name = ListA(m);
finalListB(m).Name = ListB(m);
finalListC(m).Name = ListC(m);

end

for n = 1:3:249
finalListA(n).Condition = �original� ;
finalListA(n+1).Condition = �random� ;
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finalListA(n+2).Condition = �diagnostic� ;

finalListB(n).Condition = �diagnostic� ;
finalListB(n+1).Condition = �original� ;
finalListB(n+2).Condition = �random� ;

finalListC(n).Condition = �random� ;
finalListC(n+1).Condition = �diagnostic� ;
finalListC(n+2).Condition = �original� ;
end

clearvars -except ListA ListB ListC finalListA finalListB finalListC
save ExperimentalLists
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Data Processing Code
%FileName: conditionOrderList.m

%Inputs: decodeDiagnosticObjectsToMakeList.csv

%Outputs:CatCndOrderLists_1-17

%Summary:Create a numerically coded vector for the order in which

%the different conditions were presented to each participant.

%(0 = orig, 1 = diag, 2 = rand)

%Create Vector of order that "condition" was presented in experiment

%read in all data

allData = importdata(�decodeDiagnosticObjectsToMakeList_1-17.csv�);
allDataLabels = allData.textdata(:,8);

%Code all labels as numbers

%(0 = Original, 1 = Diagnostic, 2 = Random )

orig = strmatch(�orig�, allDataLabels);
diag = strmatch(�diag�, allDataLabels);
rand = strmatch(�rand�, allDataLabels);

vectorData = zeros(length(allDataLabels),1);
vectorData(orig) = 0;
vectorData(diag) = 1;
vectorData(rand) = 2;

%create vector for each participant with condition name

sbj1cnd = vectorData(1:249);
sbj2cnd = vectorData(250:498);
sbj3cnd = vectorData(499:747);
sbj4cnd = vectorData(748:996);
sbj5cnd = vectorData(997:1245);
sbj6cnd = vectorData(1246:1494);
sbj7cnd = vectorData(1495:1743);
sbj8cnd = vectorData(1744:1992);
sbj9cnd = vectorData(1993:2241);
sbj10cnd = vectorData(2242:2490);
sbj11cnd = vectorData(2491:2739);
sbj12cnd = vectorData(2740:2988);
sbj13cnd = vectorData(2989:3237);
sbj14cnd = vectorData(3238:3486);
sbj15cnd = vectorData(3487:3735);
sbj16cnd = vectorData(3736:3984);
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sbj17cnd = vectorData(3985:4233);

%Save Lists

clear �allData� �allDataLabels� �diag� �rand� �orig� �vectorData�
save �conditionOrderLists_1-17.mat�,
clear all

%Create Vector of order that "category" was presented in experiment

%read in all data

allData = importdata(�decodeDiagnosticObjectsToMakeList_1-17.csv�);
allDataLabels = allData.textdata(:,7);

%Code all labels as numbers

%(0 = kitchen, 1 = bathroom, 2 = office )

kitchen = strmatch(�kitchen�, allDataLabels);
bathroom = strmatch(�bathroom�, allDataLabels);
office = strmatch(�office�, allDataLabels);

vectorData = zeros(length(allDataLabels),1);
vectorData(kitchen) = 0;
vectorData(bathroom) = 1;
vectorData(office) = 2;

%create vector for each participant with category name

sbj1cat = vectorData(1:249);
sbj2cat = vectorData(250:498);
sbj3cat = vectorData(499:747);
sbj4cat = vectorData(748:996);
sbj5cat = vectorData(997:1245);
sbj6cat = vectorData(1246:1494);
sbj7cat = vectorData(1495:1743);
sbj8cat = vectorData(1744:1992);
sbj9cat = vectorData(1993:2241);
sbj10cat = vectorData(2242:2490);
sbj11cat = vectorData(2491:2739);
sbj12cat = vectorData(2740:2988);
sbj13cat = vectorData(2989:3237);
sbj14cat = vectorData(3238:3486);
sbj15cat = vectorData(3487:3735);
sbj16cat = vectorData(3736:3984);
sbj17cat = vectorData(3985:4233);
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%Save Lists

clear �allData� �allDataLabels� �bathroom� �kitchen�...
�office� �vectorData�

save �categoryOrderLists_1-17.mat�,
clear all

%Create matrix for each participant where first column is category and

%second column is condition

load categoryOrderLists_1-17.mat
load conditionOrderLists_1-17.mat

sbj1 = [sbj1cat,sbj1cnd];
sbj2 = [sbj2cat,sbj2cnd];
sbj3 = [sbj3cat,sbj3cnd];
sbj4 = [sbj4cat,sbj4cnd];
sbj5 = [sbj5cat,sbj5cnd];
sbj6 = [sbj6cat,sbj6cnd];
sbj7 = [sbj7cat,sbj7cnd];
sbj8 = [sbj8cat,sbj8cnd];
sbj9 = [sbj9cat,sbj9cnd];
sbj10 = [sbj10cat,sbj10cnd];
sbj11 = [sbj11cat,sbj11cnd];
sbj12 = [sbj12cat,sbj12cnd];
sbj13 = [sbj13cat,sbj13cnd];
sbj14 = [sbj14cat,sbj14cnd];
sbj15 = [sbj15cat,sbj15cnd];
sbj16 = [sbj16cat,sbj16cnd];
sbj17 = [sbj17cat,sbj17cnd];

save (�CatCndOrderLists_1-17.mat�, �sbj1�, �sbj2�, �sbj3�, �sbj4�, ...
�sbj5�, �sbj6�, �sbj7�, �sbj8�, �sbj9�, �sbj10�, �sbj11�, ...
�sbj12�, �sbj13�, �sbj14�, �sbj15�, �sbj16�, �sbj17�);

%FileName: MakePhotoCell.m

%Inputs:.eeg file of re-referenced and filtered EEG data

%Outputs:.eeg file where channel 64 is a binary photocell

%indicating the start location of each trial

%Summary: Generate a binary photocell to indicate the exact time

%of image onset for each trial. Allows us to epoch the data using

%EEGlab
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% define photocell channel

photocellRaw = EEG.data(64,:);
plot(photocellRaw)

% Define start and threshold

start = input(�Please enter start point: �);
thresh = input(�Please enter thresh point: �); %(usually around 50000)

% make binary photocell

photocellRaw(1:start) = 0;
a = find(photocellRaw > thresh);
photocell = zeros(size(photocellRaw));
photocell(a) = 1;

%replace orginal channel data with binary photocell

EEG.data(64,:) = photocell;

%FileName: makeRecForSaliency.m

%Inputs:Experimental Originals

%Outputs:thisDiagRect1_249.mat, thisRandRect1_249.mat,

%mySaliencyCellArray.mat

%Summary: Find coordinates of diagnostic and random objects to put

%into the Saliency Toolbox. The code runs a loop, that opens one

%image at a time and allows you to draw a box by hand around the

%diagnostic/random object. The coordinates of that box are then

%saved (repeat for all 249 images for diagnostic and random

%separately). Generates a list containing the names of images in

%the order they were presented (MATLAB calls them differently than

%the order in the original file)

%find coordinates of diagnostic object to put into Saliency Toolbox

%have path open to Experimental Originals

ims = dir(�*.jpg�);
for i = 1:length(ims)

imagesc(imread(ims(i).name));
rect = imrect;
thisDiagRect(i,:) = rect.getPosition();

end

%find coordinates of random object to put into Saliency Toolbox

%have path open to Experimental Originals
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ims = dir(�*.jpg�);
for i = 199:length(ims)

imagesc(imread(ims(i).name));
rect = imrect;
thisRandRect(i,:) = rect.getPosition();

end

%make cell array with image names in correct order

ims = dir(�*.jpg�);
for i = 1:length(ims)

thisImg = ims(i).name;
mySaliencyCellArray{i} = thisImg;

end

%FileName: MakeSaliencyMap.m

%Inputs:mySaliencyCellArray.mat, thisDiagRect1_249.mat,

%thisRandRect1_249.mat

%Outputs:SaliencyDataForTTest.csv

%Summary:Takes the coordinates of diag/rand objects, finds the

%saliency mac/mean for each and records it in a .csv file that

%will later be used to run paired t-tests. v

%Julie Self

%3/12/18

%TThis Code takes the coordinates of diag/rand objects, finds the

%saliency max/mean for each and records it in

%�SaliencyDataForTTest.csv� which will be run as a t-test in R

load mySaliencyCellArray
load thisDiagRect1_249
load thisRandRect1_249

saliencyIm = batchSaliency(mySaliencyCellArray); %generate compressed

%saliency maps -will need access to "ExperimentalOriginal" folder

%Diagnostic Images

for n = 1:length(thisDiagRect1_249) %for all Diag Images

thisDiagObj = round(thisDiagRect1_249(n,:)); %Get vector with

%coordinates of the object

thisImage = importdata(mySaliencyCellArray{n}); %get information

%about original image
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%define coordinates

X1 = thisDiagObj(1);
Y1 = thisDiagObj(2);
X2 = thisDiagObj(1) + thisDiagObj(3);
Y2 = thisDiagObj(2) + thisDiagObj(4);

%fix where imrect boxes were dragged outside boundary of image

if X2 > (size(thisImage,2))
X2 = size(thisImage,2);

end
if Y2 > (size(thisImage,1))

Y2 = size(thisImage,1);
end
if (X1 < 1)

X1 = 1;
end
if (Y1 < 1)

Y1 = 1;
end

%create full size Saliency Map

img = initializeImage(saliencyIm(n).origImage.filename);
fullSizeSalMap = imresize(saliencyIm(n).data,img.size(1:2));

%(adjust map to be same dimension as original image)

%calculate saliency stats of object

diagSaliencyIm = fullSizeSalMap(Y1:Y2,X1:X2); %make crop of

%saliency map w/ diag object

%meanDiagSaliency = squeeze(mean(diagSaliencyIm,1));

meanDiagSaliency(n) = mean(diagSaliencyIm(:)); %get mean

%saliency value for diag object

%maxColmnValue = max(diagSaliencyIm);

maxDiagSaliency(n) = max(diagSaliencyIm(:)); %get max

%Saliency Value for Diag object

%plot Saliency Map w/ crop and Original w/ crop to sanity check

%everything

figure (1)
imagesc(fullSizeSalMap)
colorbar
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figure(2)
imagesc(diagSaliencyIm)
colorbar
figure(3)
imagesc(thisImage)
figure(4)
imagesc(thisImage(Y1:Y2,X1:X2,:))

end

%Random Images

for n = 1:length(thisRandRect1_249) %for all Rand Images

thisRandObj = round(thisRandRect1_249(n,:)); %Get vector with

%coordinates of the object

thisImage = importdata(mySaliencyCellArray{n}); %get information

%about original image

%define coordinates

X1 = thisRandObj(1);
Y1 = thisRandObj(2);
X2 = thisRandObj(1) + thisRandObj(3);
Y2 = thisRandObj(2) + thisRandObj(4);

%fix where imrect boxes were dragged outside boundary of image

if X2 > (size(thisImage,2))
X2 = size(thisImage,2);

end
if Y2 > (size(thisImage,1))

Y2 = size(thisImage,1);
end
if (X1 < 1)

X1 = 1;
end
if (Y1 < 1)

Y1 = 1;
end

%create full size Saliency Map

img = initializeImage(saliencyIm(n).origImage.filename);
fullSizeSalMap = imresize(saliencyIm(n).data,img.size(1:2));

%(adjust map to be same dimension as original image)
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%calculate saliency stats of object

randSaliencyIm = fullSizeSalMap(Y1:Y2,X1:X2); %make crop of

%saliency map w/ rand object

meanRandSaliency(n) = mean(randSaliencyIm(:)); %get mean saliency

%value for Rand object

maxRandSaliency(n) = max(randSaliencyIm(:)); %get max Saliency Value

%for Rand object

%plot Saliency Map w/ crop and Original w/ crop to sanity

%check everything

figure (1)
imagesc(fullSizeSalMap)
colorbar
figure(2)
imagesc(randSaliencyIm)
colorbar
figure(3)
imagesc(thisImage)
figure(4)
imagesc(thisImage(Y1:Y2,X1:X2,:))

end

SaliencyDataForTTest = [maxDiagSaliency; maxRandSaliency;...
meanDiagSaliency; meanRandSaliency];

save SaliencyDataForTTest SaliencyDataForTTest

%Save Data to CSV file

csvwrite(�SaliencyDataForTTest.csv�, SaliencyDataForTTest�);

%FileName: WholeBrainICA_SVM.m

%Inputs:CatCNDOrderLists_1-17, normalizedICAFeaturesXXX.mat

%Outputs: decodeDiagXXX_ICAwholeBrain.mat

%Summary: Decode whole brain ICA features to find time resolved

%decoding Accuracy

clear all; close all;

% step 1: make sure LIBSVM is in your path

% ex: addpath(�/data/libsvm-3.22/matlab�);
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% step 2: load the dataset of interest

% needs: 64 channel x N time points x M trials

% . vector of length M that indicates trial type

% note: in this demo code, I am calling the former "dataMat" and the

%latter "trialVector"

% dataMat = EEG.data;

load CatCndOrderLists_1-17;
%load normalizeICAFeatures004.mat;

trialVector = sbj17(:,1);
thisCond = sbj17(:,2);
trainInds = find(thisCond==0);
test1Inds = find(thisCond==1);
test2Inds = find(thisCond==2);
dataMat = icaDataNorm; %Load in "normalizeICAFeaturesXXX.mat"

% step 3: define cross validation partitions (here, using 10-fold)

%indices = crossvalind(�Kfold�,trialVector,10);

% step 4: loop through the different partitions, one electrode at a

%time in a sliding window of 40 ms.

for timePoint = 1:350; %fill this in: should be end of epoch - 2

thisWindow = squeeze(dataMat(:, timePoint, :));
thisWindow = double(thisWindow);

% complete test 1

trainData = thisWindow(:,trainInds);
testData = thisWindow(:,test1Inds);
model = svmtrain(trialVector(trainInds),trainData�,�-t 0�);
[predLabel,accuracy,dv] = svmpredict(trialVector(test1Inds),...

testData�, model);
acTotal = accuracy(1);
decodeDiag(timePoint) = acTotal;

% complete test 2

testData = thisWindow(:,test2Inds);
model = svmtrain(trialVector(trainInds),trainData�,�-t 0�);
[predLabel,accuracy,dv] = svmpredict(trialVector(test2Inds),

testData�, model);
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acTotal = accuracy(1);
decodeRand(timePoint) = acTotal;

save decodeDiag017_ICAwholeBrain decodeDiag decodeRand

%FileName: WholeBrianICA_findOnsetPeakPeakLat.m

%Inputs: decodeDiagXXX_ICAwholeBrain

%Outputs: decodeAccuracyWholeBrainICA.csv

%Summary: Find the onset, peak and peak latency of

%decoding accuracy.

myData = dir(�*.mat�); %load in dataset

for j = 1:length(myData)
thisData = importdata(myData(j).name);
diagWholeBrainICAMat(j,:) = thisData.decodeDiag;
randWholeBrainICAMat(j,:) = thisData.decodeRand;

end

% Get Diag Onset,Peak,PeakLat

for i = 1:16 %for each participant

%load/defineData

data = squeeze(diagWholeBrainICAMat(i,:));
preImageData = data(1:100);

% find bounds

thisData = preImageData;
% compute 1000 bootstrap samples

sampData = bootstrp(1000,@mean,thisData);
% get empirical CI

bounds = prctile(sampData,[2.5 97.5]);
upperBound = bounds(2);

% identify onset of statistically significant activity

thisData = data(101:end);
a = find(thisData > upperBound);
adiff = diff(a);
peak(i) = max(thisData); %find peak

findPeakLat = find(thisData == max(thisData));
peakLatency(i) = findPeakLat(1); %find peak latency
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%find onset: (defined as first time point at which decode

%accuracy for that time point and next five time points

%are all above upper bound)

for k = 1:length(adiff) %if there aren�t 5 in a row, set time

%point equal to zero

if k+4 > length(adiff)
onset(i) = 0;
break;

else
if sum(adiff(k:k+2)) == 3

onset(i) = a(k+1);
break

end
end

end
end

diagAccuracyWholeBrainICA = [onset�, peak�, peakLatency�];
clearvars -except diagAccuracyWholeBrainICA diagWholeBrainICAMat

randWholeBrainICAMat

%Get Rand Onset,Peak,PeakLat

for i = 1:16 %for each participant

%load/defineData

data = squeeze(randWholeBrainICAMat(i,:));
preImageData = data(1:100);

% find bounds

thisData = preImageData;
% compute 1000 bootstrap samples

sampData = bootstrp(1000,@mean,thisData);
% get empirical CI

bounds = prctile(sampData,[2.5 97.5]);
upperBound = bounds(2);

% identify onset of statistically significant activity

thisData = data(101:end);
a = find(thisData > upperBound);
adiff = diff(a);
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peak(i) = max(thisData); %find peak

findPeakLat = find(thisData == max(thisData));
peakLatency(i) = findPeakLat(1); %find peak latency

%find onset: (defined as first time point at which decode

%accuracy for that time point and next five time points

%are all above upper bound)

for k = 1:length(adiff) %if there aren�t 5 in a row, set time

%point equal to zero

if k+4 > length(adiff)
onset(i) = 0;
break;

else
if sum(adiff(k:k+2)) == 5

onset(i) = a(k+1);
break

end
end

end
end

randAccuracyWholeBrainICA = [onset�, peak�, peakLatency�];

AccuracyWholeBrainICA = [diagAccuracyWholeBrainICA,
...randAccuracyWholeBrainICA];

csvwrite(�decodeAccuracyWholeBrainICA.csv�, AccuracyWholeBrainICA�);

%FileName: NormEEGVoltage_findOnsetPeakPeakLat.m

%Inputs: decodeDiagXXXNorm.mat

%Outputs: rand/diag NormDecodedForANOVA.csv

%Summary: Find the onset, peak, peak lat of decoding accuracy

%for frontal, temporal and occiptial electrode clusters

%(Run once for diag, once for rand. change labels appropriatly)

Data = dir(�*.mat�); %load in dataset ("decodeDiagXXXNorm.mat")

for j = 1:length(myData)
thisData = importdata(myData(j).name);
decodeNormDiagMat(j,:,:) = thisData.decodeDiag;
decodeNormRandMat(j,:,:) = thisData.decodeRand;

end
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for i = 1:16 %for each participant

%load/defineData

data = squeeze(decodeNormRandMat(i,:,:));
preImageData = data(:,1:100);

% find bounds for each electrode

for electrode = 1:63
thisData = preImageData(electrode,:);
% compute 1000 bootstrap samples

sampData = bootstrp(1000,@mean,thisData);
% get empirical CI

bounds = prctile(sampData,[2.5 97.5]);
upperBound(electrode) = bounds(2);

end

% identify onset of statistically significant activity

for electrode = 1:63
thisData = data(electrode,101:end);
a = find(thisData > upperBound(electrode));
adiff = diff(a);
peak(electrode,i) = max(thisData); %find peak

findPeakLat = find(thisData == max(thisData));
peakLatency(electrode,i) = findPeakLat(1); %find peak latency

%find onset: (defined as first time point at which decode

%accuracy for that time point and next five time points

%are all above upper bound)

for k = 1:length(adiff) %if there aren�t 5 in a row,

%set time point equal to zero

if k+4 > length(adiff)
onset(electrode,i) = 0;
break;

else
if sum(adiff(k:k+4)) == 5

onset(electrode,i) = a(k+1);
break

end
end

end

end
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end

%define electrode cluster

frontal=[1 2 3 29 30 31 32 33 34 35 36 59 60 61];
temporal=[4 8 9 20 25 26 37 41 54];
occipital=[15 16 17 45 46 47 48 49 63];

%Find Diag/Rand onset, peak, peak lat for all participants

randFntOnset = onset(frontal,:);
randTmpOnset = onset(temporal,:);
randOccOnset = onset(occipital,:);
randFntPeak = peak(frontal,:);
randTmpPeak = peak(temporal,:);
randOccPeak = peak(occipital,:);
randFntPeakLat = peakLatency(frontal,:);
randTmpPeakLat = peakLatency(temporal,:);
randOccPeakLat = peakLatency(occipital,:);

%Find mean Diag/Rand onset, peak, peak lat.

randFntOnset = mean(randFntOnset,1);
randTmpOnset = mean(randTmpOnset,1);
randOccOnset = mean(randOccOnset,1);
randFntPeak = mean(randFntPeak,1);
randTmpPeak = mean(randTmpPeak,1);
randOccPeak = mean(randOccPeak,1);
randFntPeakLat = mean(randFntPeakLat,1);
randTmpPeakLat = mean(randTmpPeakLat,1);
randOccPeakLat = mean(randOccPeakLat,1);

randNormDecodedForANOVA = [randFntOnset; randTmpOnset; randOccOnset;
...randFntPeak; randTmpPeak; randOccPeak; randFntPeakLat;
...randTmpPeakLat; randOccPeakLat]

csvwrite(�randNormDecodedForANOVA.csv�, randNormDecodedForANOVA�);
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