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ABSTRACT: The process of least-squares analysis has been applied for
decades in the field of crystallography. Here, we discuss the application
of this process to total scattering data, primarily in the combination of
least-squares Rietveld refinements and fitting of the atomic pair
distribution function (PDF). While these two approaches use the
same framework, the interpretation of results from least-squares fitting
of PDF data should be done with caution through carefully constructed
analysis approaches. We provide strategies and considerations for
applying least-squares analysis to total scattering data, combining both
crystallographic Rietveld and fitting of PDF data, given in context with
recent examples from the literature. This perspective is aimed to be an
accessible document for those new to the total scattering approach, as
well as a reflective framework for the total scattering expert.

■ TOTAL SCATTERING AND CRYSTALLINE
MATERIALS

The discovery of Bragg diffraction1 in the early 1900s marked a
breakthrough in the structural characterization of crystalline
materials, allowing for a detailed description of the atomic
arrangements that give rise to properties of interest. When a
crystal is irradiated with a source that is approximately the
distance between its atoms, the periodic array of atoms scatters
the source to create an interference pattern. The constructively
scattered waves result in a diffraction pattern which can be
interpreted to yield valuable structural information. Diffraction
has long been the standard for characterizing crystalline
materials, and the analysis of these data has been advanced
through the application of various mathematical methods such
as whole pattern fitting and decomposition methods, including
the Le Bail2,3 and Rietveld4 methods. Rigid and reliable,
crystallography reigns supreme as the primary method for the
characterization of highly crystalline materials.
With advances in high energy sources such as synchrotron

X-ray and spallation neutron over the past few decades, new
life has been given to the study of perfectly periodic materials
in the form of the total scattering technique. This technique
combines the analysis of both the Bragg scattering data from
the diffraction experiment and diffuse scattering that is present
in all materials, which can arise from structural defects or
correlated motion between neighboring atoms. While much
information can be gleaned about the global crystallographic
structure from diffraction, numerous works over the past few
decades have highlighted the importance of utilizing the pair
distribution function (PDF) to study the local structure of

materials. Many crystallographically hidden structural features
play an important role in explaining the properties of
functional materials beyond what can be accessed via
crystallographic techniques, and this understanding has
allowed for advances in numerous technological areas.
In complex materials, it is crucial to garner an understanding

of atomic behavior across multiple length scales. Crystallog-
raphy describes the average structure of the material, but relies
on the periodic nature of the material. If distortions in a
material are correlated over long ranges in a repeating manner,
such as cation off-centering in the same crystallographic
direction, this will be captured in the average structure
(illustrated in Figure 1a). However, if the local environment is
distorted but in an incoherent, uncorrelated manner (for
example, cation off-centering in different directions from one
cation environment to the next), it will result in an average of
the positions, and in the crystallographic structure, the cation
appears to be located in the center of the coordination
environment with an enlarged atomic displacement parameter
(ADP, illustrated in Figure 1b). Therefore, the structure
determined from diffraction is a less precise and potentially
inaccurate representation of the symmetry around the cation,
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which leads to inaccurate conclusions about the bonding and
orbital overlap of the atoms in the material. These limits of
average structure methods can be overcome using PDF to
understand the local bonding and atomic arrangement of the
structure.
The PDF is a histogram of all atom−atom interactions in a

material and does not necessarily rely on Bragg diffraction;
PDF analysis can be applied to any type of material with
careful consideration. Originally applied to glasses and
amorphous materials,5−7 PDF analysis is finding strength in
characterizing a wide array of materials based on analysis over
various length scales: from characterization of molecular
compounds,8 to analysis of the coordination environments in
noncrystalline and nanostructured materials,9,10 to describing
the structural interactions in a single nanoparticle,11,12 to

characterizing the mid- and long-range atomic interactions in
semi- and highly crystalline materials.13−15 Many works have
been produced to summarize and illustrate the advantages of
this technique across a variety of materials, and is it highly
recommended to consult these works to understand the
methodology16−19 and variety of applications.13−15,20−22

This contribution focuses on recent successes in applying
the total scattering method to highly crystalline materials,
where both Bragg and diffuse scattering is analyzed using a
least-squares modeling approach. In particular, we highlight a
few key strategies for total scattering analysis when considering
materials that have been extensively characterized through
crystallographic techniques. This perspective aims to illustrate
the strengths of this technique while providing important
considerations for its application, particularly in the distinction

Figure 1. Illustration of local and average structures of two materials: (a) correlated off-centering displacements in the local structure are observed
as a crystallographically off-centered structure; (b) local off-centering that is either not correlated or only correlated to a nearest neighbor (local
correlated displacements) manifest in the crystallographic structure with an enlarged atomic displacement parameter that is not representative of
the local coordination environment.

Figure 2. Common data analysis strategies for total scattering data. Structural data can be extracted from the reciprocal space diffraction data (left)
through methods such as profile fitting and Rietveld refinement and from the real-space PDF data (right) through methods such a small- and large-
box modeling.
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between crystallographic and local structure analysis. The
theme of this work is that there is no “one size fits all”
approach to analyzing total scattering data, and valuable
information can be extracted from a variety of strategies
beyond a perfect fit to the structural data.

■ LEAST-SQUARES ANALYSIS AND TOTAL
SCATTERING DATA

The analysis of total scattering data is typically performed by
modeling the diffraction and PDF data against an initial
structural model, which is then modified to improve the
difference between the experimental data and the calculated
scattering data from the model. The average structure is
typically modeled against a complete diffraction pattern (whole
pattern fitting methods) with a number of diffraction planes
collected over a range of diffraction angles. The local structure
can be subsequently or independently analyzed through small-
or large-box modeling approaches. A framework for common
analysis strategies of total scattering data is presented in Figure
2. Both whole pattern fitting and small-box modeling utilize
least-squares methods to fit the data against a known structural
model and is the focus of this contribution.
The least-squares refinement is an iterative multistep process

that aims to minimize the difference between the observed and
calculated data. In each step, or cycle, of the refinement, the
model improves and is used as the starting point for the next
cycle. The accuracy of the model can be assessed through
various “goodness-of-fit” metrics, and a thorough comparison
of the metrics based on diffraction analysis can be found
elsewhere.23 The most commonly used are χ2 and Rw, and in
both cases, the smaller the number, the smaller the difference
between observed and calculated patterns and the more
accurately the structural model describes the data. In a least-
squares approach, the process will converge on the difference
(or minimum) that is achievable based on small variations in
the refinable parameters. Therefore, the starting model must be
close to the final model, or the global minimum may not be
achieved.
Whole pattern fitting includes pattern decomposition

methods, such as the Pawley24 and LeBail3 methods, and the
Rietveld method,4 which is the primary focus of this
contribution. For the calculated pattern, reflections are
generated based on the space group and unit cell parameters
of the structural model. The generation of peak intensity at
each position is specific to the selected method. In a Rietveld
refinement, intensities are generated based on the scattering
power of atoms in the diffraction plane of that reflection. The
peak positions and intensities of the calculated pattern are
adjusted through the refinement of the lattice parameter,
atomic positions, displacement parameters, and site occupan-
cies. In addition to refined structural parameters, the profile of
the peak and background shape can be modeled through the
refinement of instrumental parameters and incorporation of
intensity corrections such as sample or atom-specific
absorption. In this case, any scattering that is not due to
Bragg events is treated as an additional factor in the algorithm
of the model, only extracting structural data from the Bragg
peaks. While this is satisfactory for crystallographic analysis,
many of the diffuse scattering events that arise from local
distortions manifest in the background of the data and are thus
lost through this modeling approach.
The concept of applying a full-profile fitting regression

technique to the atomic pair distribution function was led by

Simon Billinge and collaborators in the RESPAR, or “Real
Space Rietveld”, program.25 Similar to a Rietveld refinement,
this method assumes that a structure can be described by a
small number of atoms in a unit cell or small super cell, hence
the descriptor small-box modeling that often accompanies this
technique. Similar variables can be refined against this small
atomic model, allowing for the extraction of structural details
such as the atomic coordinates, displacement parameters, and
site occupancies. This program provided the foundation for the
PDFfit26 and PDFfit227 programs, the latter of which is
implemented in the open source graphical user interface
PDFgui.27 With this approach, the refined variables or
parameters are intentionally in direct analogy to those in
crystallography; however, as with any analysis of powder
diffraction data, the structural solutions are not unique and
care must be taken in the interpretation of modeling results.
For example, there are many contributing factors to the peak
width in the PDF, such as disorder of atoms on their atomic
sites, correlated motion of neighboring atoms (which results in
sharper peaks at low r and broader peaks at high r), or
overlapping peaks at a given radial distance. Therefore, is it
important to be cognizant of the factors that are arising from
the chemistry of the sample (such as static atomic displace-
ments causing multiple bond lengths, dynamic displacements
inducing additional disorder, or an impurity phase) versus
parameters that are mostly used to improve the description of
the peak shape (correlated motion functions). As with any
refinement, it is crucial to be transparent about any refined
parameters when reporting the analysis of PDF data.
Additionally, unlike a diffraction pattern, where the entire
range of data is fit, the real-space r range that the data are fit
against must be specified by the user. This flexibility allows the
user to understand structural characteristics on various length
scales but also challenges the user to consider the
appropriateness of the length scale for the derivation of
structural features. For example, if PDF data are being utilized
to determine the lattice parameter of a material, the fit range
should at the very least cover the entire length scale of a unit
cell.
A criteria of the least-squares approach is that the starting

model must be close to the final model, as the iterations of the
refinement involve small changes in the variable parameters. In
a case where the local structure is vastly different from the
average structure and candidate models for the distortions are
not known, a large-box approach such as reverse Monte Carlo
(RMC) modeling is often more appropriate.28 RMC modeling
yields a much larger number of nonunique structural solutions
than small-box modeling. Given this outcome, it is highly
advisable to perform an RMC simulation against multiple data
sets, including the Bragg diffraction (if available) and PDF
data. Improvements in minimizing the number of unique
solutions can be achieved through the use of chemical
constraints such as fixed coordination numbers or bond
valence sums on a given atom. There are a number of examples
on how to apply this approach to materials,29−32 but that is
beyond the focus of this current paper.
Solving a structure from diffraction data, particularly single

crystal data, is a common technique, and powder diffraction
and Rietveld analysis can yield robust results pertaining to the
accuracy of the crystallographic model. A common pitfall for
new practitioners to the total scattering approach is that the
local structure should be “solved” in a manner similar to that of
a single crystal or whole pattern powder experiment. While
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similar metrics can be obtained from fitting PDF data, the
resulting structural model should be carefully scrutinized for
chemical consistency (for example, reasonable bond lengths or
positive atomic displacement parameters). This is particularly
important when modeling the data over a very short length
scale, as the number of peaks fit against the model is limited.
As with any type of analysis against a structural model, it is
important to check that the goal is not simply to achieve the
lowest χ2 or Rw value. The final check should be to look
critically at the analysis to monitor for any obvious regions of
mismatch between the data and the fit.
Given the additional steps of data reduction, the varying

contributions to the peaks in a PDF, and the various real-space
length scales over which the PDF can be analyzed, a well-
constructed comparative analysis is the most effective approach
for understanding the local structure of a material. In the
following section, we expand on some useful strategies and
literature examples that highlight extracting structural
information from crystalline materials with underlying local
distortions.

■ STRATEGIES FOR LEAST-SQUARES ANALYSIS OF
TOTAL SCATTERING DATA

Total scattering is an ideal tool for probing crystalline materials
that have local distortions that do not correlate over long
ranges. These local distortions may be hinted at in the
crystallographic analysis but cannot be accurately captured by a
crystallographic modeling approach. For example, large
contributions to the background noise or enlarged atomic
displacement parameters may suggest underlying disorder that
cannot be incorporated into a periodic crystalline model.
When utilizing total scattering to describe structural character-
istics across a range of length scales in a crystalline material,
there are several approaches for modeling the data beyond an
absolute solution to the local structure. While not exhaustive,
in the following section, we illustrate a few comparative
strategies in the context of recent literature examples to
understand distortions across various length scales.
Qualitative Deviations from the Crystalline Model. A

natural way to think about modeling the local structure is to
use a framework similar to a crystallographic Rietveld analysis.
Small-box modeling can be used to describe the local structure
over various r ranges through the refinement of variables
similar to those in a Rietveld refinement using a crystalline
model. While similar in process, it is important to note that
when modeling PDF data against a crystallographic structure,
you are only describing the structure over the length scale
indicated in the fitting parameters. This can be performed
using programs such as PDFgui,27 and while a structural model
is used that contains a space group, space groups rely on
translational symmetry, and this may or may not be a valid
assumption given the length scale over which the data are
being fit. Even so, the arrangement of atoms, with or without
translational symmetry, will give rise to a pairwise interaction
pattern, and this can be compared to the data to elucidate the
arrangement of atoms from a local to global scale.
An excellent place to start is to simply fit the local structure

against the crystallographic structure obtained through
Rietveld analysis. In some cases, the local structure is well-
described by the crystalline model,34−37 and it can be
concluded that the local and average structure are the same.
However, this is not the case in a variety of materials.33,38−53 In
these cases, areas of the PDF that are not well-described by the

crystallographic structure can provide insight into the nature of
a local distortion, for example an M−O peak (i.e., a bond
length) that shows a large discrepancy between the data and
the fit.
This idea is illustrated in Figure 3, which highlights recent

work by Shi et al.33 Working to understand metastable phase

synthesis, the team used a mechanochemical method to
prepare a new metastable phase of NaFeO2 from the high-
temperature β-NaFeO2 phase of the composition (Figure 3a).
It can be seen in Figure 3c that a disordered rocksalt structure
(Figure 3b) is a good model of the crystallographic data,
indicated by the relatively flat difference curve and a low Rwp.
When applied to the PDF data, shown in Figure 3d, the data
are well-described at longer length scales. However, when
focusing on the local coordination environments of the cations
from 1 to 4.5 Å, it can be observed that the structural model
does not appropriately describe the local bond lengths. This
disorder is further evidenced by an elevated Uiso on the oxygen

Figure 3. Total scattering (X-ray, 11-ID-B, APS) of NaFeO2
synthesized via a martensitic-like phase transformation from β-
NaFeO2 (a). The data were fit against an disordered rocksalt crystal
model (b), which is a good description of the diffraction data (c).
This crystallographic model was used to fit the PDF data (d), and
while the data are fit well at high r values, the inset highlights that this
is not a good structural model for the local peaks below 4 Å,
attributed to high disorder indicated by an elevated Uiso on the O site.
Figure adapted from ref 33. Copyright 2018 American Chemical
Society.
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site, indicating that the oxygen positions are not accurately
described by the disordered rocksalt model. Combined with a
suite of other local and bulk characterization tools, PDF helped
provide crucial information toward controlled synthesis of this
new metastable phase. While not quantitative in terms of the
local arrangement of atoms, this qualitative approach can
provide meaningful insight into deviations from the crystallo-
graphic structure that may have consequential implications on
the formation of a phase or on the observed properties of
interest.
Quantitative Modeling with Low-Symmetry Sub-

groups. When the crystallographic model does not describe
the local structure, comparative analysis with lower-symmetry
space groups than that of the average structure can provide a
more quantitative answer. When modeling PDF data, structural
candidates can be chosen using symmetry group−subgroup
relationships or based on the various structural features
expected at a given length scale. For example, in the case of
a distorted coordination environment (such as cation off-
centering), fitting the data up to approximately 6 Å should
capture any M−X or intraoctahedral X−X interactions (where
M is a cation and X is an anion). However, if the question is on
a longer scale, such as octahedral tilting, it would be better to
fit the data over a length scale that would capture
interoctahedral M−M and X−X interactions.

Many examples of this approach can be found in the
literature,55−68 particularly in describing local distortions in
perovskite materials. Perovskites have the advantage of being
thoroughly characterized through crystallographic69−75 and
computational76,77 methods, and the various lower-symmetery
distortions and phase transitions are well-classified, providing a
library of structures to fit data against. A classic example is that
of BaTiO3, which has the cubic Pm3̅m structure at high
temperatures (Figure 4a visualized using VESTA78). Crystallo-
graphically, both the Ba and Ti are centered in their
coordination environments, and upon cooling, the second-
order Jahn−Teller active Ti4+ off-centers toward the corner of
the octahedra in the P4mm structure, then toward the edge of
the octahedra in the Amm2 structure, and finally toward the
face of the octahedra in the R3m structure (Figure 4c).69,70

These three phases give distinct signatures in the PDF data,
particularly when neutron scattering is used as a probe due to
the considerable contrast afforded from the negative scattering
cross section of Ti (shown in Figure 4b as calculated PDFs
generated in PDFgui27). Local analysis11,79,80 against these
candidate space groups indicates that the R3m-type distortion
persists at much higher temperatures but is incoherent and
thus averages out to the observed crystallographic phases,
resulting in an order−disorder series of phase transitions.80−83
Recent investigations on the local structure of BaTiO3 through

Figure 4. (a) High-temperature cubic pervoskite structure. (b) Calculated neutron PDFs from (c) prototypical ferroelectric phases with
exaggerated Ti displacements shown for clarity. (d) Fits to PDF data (neutron, NOMAD, SNS) of BaTiO3 at 290 K (top and bottom panels) and
225 K (middle panel). Figure adapted in part with permission from ref 54. Copyright 2020 Springer Nature.
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the orthorhombic Amm2 to tetragonal P4mm global phase
transition (Figure 4d) confirm the rhombohedral R3m persists
locally through this region and detailed the coherence length of
the rhombohedral-type displacements of Ti at these temper-
atures.54 This local behavior has a major impact on the
properties of BaTiO3: the long-range correlation of local
dipoles allows for large permittivities84,85 and ferroelectric
behavior,86 making it a valuable material for a number of
technological applications. Understanding the origin of these
properties and how to manipulate and induce similar structural
distortions in other materials is a key factor in driving
technological innovations.
Similar types of local distortions (R3m-, Amm2-, or P4mm-

type) can be observed across a variety of perovskite
chemistries, such as in a variety of other perovskite oxides48,87

and halide perosvkites.72,75,88,89 By applying well-established
perosvskite metrics such as the Goldschmidt tolerence factor90

and Glazer “tilt systems”,91 a comprehensive comparison of
suspected low-symmetry space groups can be applied to any
perovskite system beyond those of the prototypical ferro-
electric subgroups. This approach has also been recently
applied to mixed anion perovskites MTaO2N,

71 where an

extensive number of low-symmetry perovskite structures were
fit against the data to garner the most accurate description of
the local structure (Figure 5). In combination with density
functional theory and ab initio molecular dynamics simu-
lations, modeling of the total scattering data provided a
framework for predicting anion ordering, which has a direct
consequence on the stability of various mixed-anion perovskite
phases.
Detailed here for the perovskites due to the vast supporting

literature, the framework of utilizing group−subgroup relation-
ships and known low-temperature phase transitions can be
applied to any structure type. When performing fits against
lower-symmetry space groups, it should be noted that a better
fit (i.e., a lower χ2 or Rw value) might be achieved simply by
increasing the number of refined variables. Therefore, it is
important to constrain, or not to refine, any variables that are
confidently known (such a a correlated motion parameter or a
site occupancy) to minimize the number of variables. Several
factors can additionally be checked to support the validity of a
low-symmetry space group, such as smaller Uiso values than the
high-symmetry model, reasonable error associated with refined
parameters, and a lack of correlation between refined

Figure 5. (a) Refined crystallographic structures for mixed-anion perovskites MTaO2N (M = Ba, Sr, and Ca). (b) Fits of the room temperature
data (neutron, NPDF, LANSCE) against low-symmetry models with various anion ordering and octahedral tilting for compositions SrTaO2N and
CaTaO2N. Figure adapted from ref 71. Copyright 2021 American Chemical Society.
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parameters. Once a more quantitative model of the local
structure has been obtained a more detailed analysis of the
bonding and orbital overlap can be considered, which is of
paramount importance to fully understanding phase formation
or observed properties.
Length-Scale-Dependent Box-Car Analysis. Discrete

modeling of local coordination environments can provide
answers beyond crystallography, but many times a material’s
functionality is a combination of interactions across different
length scales. A targeted approach to understanding multiscale
interactions at play in a material is the box-car meth-
od.60,73,92−97 In this method, fits are performed by taking a
set increment of r range, for example, 5 Å, and fitting the data
against a candidate model at various length scales with this
increment (i.e., 0−5, 5−10, 10−15 Å, etc.). A comparison of
the derived parameters from each box-car, such as the Rw or
Uiso, can indicate the interaction lengths where the model
deviates from the data. This finds particular strength in
independently describing any midrange features (between

approximately 5 and 20 Å) that may not be obvious over a
local or long-range fit.
A recent example of the influence of midrange interactions is

in the suspected paracrystalline Ruddlesden−Popper phase of
LaSr3NiRuO8 (Figure 6).98 This layered material is described
as intergrown layers of rocksalt and perovskite-type atomic
arrangements, and as with many layered materials, the registry
between layers is prone to disorder. In addition to layer-
induced disorder, the perovksite-type layer in LaSr3NiRuO8
contains an equal mix of Ni2+ and Ru5+ cations, and the atomic
arrangement (disordered versus ordered on the crystallo-
graphic site) influences the magnetic response of the material.
It was determined through crystallographic techniques that the
Ni2+ and Ru5+ cations were disordered. This was directly
contrasted by the observed antiferromagentic magnetic
behavior of the material, which would arise from cation
order in the material. To investigate this discrepancy, PDF was
employed to characterize the material across a variety of length
scales. The sample was fit against a cation-ordered model

Figure 6. (a) A2BO4, n = 1 Ruddlesden−Popper structure (b) shown with the arrangement of B-cations (dark and light blue) in 3D-ordered and
2D paracrystalline ordered phases with the registry between dark blue cations highlighted with a yellow line. (c) Rw and Uiso values obtained from
fitting the neutron PDF data over various r range box-cars (Δr) as a function of rmax, the upper bound of each box-car in the series. An apparent
worsening of the fit (indicated by an elevated Rw and B-site Uiso) is observed over the next nearest neighbor region of the PDF (approximately 12−
13.5 Å), indicating paracrystalline order. (d) Fits of the PDF data (neutron, NOMAD, SNS) against a 3D-ordered model across various highlighted
r range box-cars (Δr) corresponding to the legend colors in (c). Figure adapted from ref 98. Copyright 2020 American Chemical Society.
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across various box-cars (Figure 6d), and it was discovered that
the model had the worst fit to the data between 12 and 15 Å
(Figure 6c), which corresponds to the intralayer spacing in the
material. This evidenced a paracrystalline structure of the
material: cations were ordered within the plane of a given layer,
but the layers do not stack perfectly on top of each other. This
explains both the observed magnetic ordering and disordered
crystallographic structure and illustrates the necessity to study
materials beyond the local and crystallographic scale.

■ CONCLUSIONS AND BEST PRACTICES
With increasing capabilities and upgrades to synchrotron and
spallation sources across the world, total scattering is becoming
a leading technique for understanding the structural behavior
of crystalline materials across a range of length scales. Through
the combination of Rietveld and PDF, a holistic understanding
of the structural origins of functionality is possible. In
particular, the process of least-squares analysis can be applied
in creative and comparative ways, and one does not have to
find the perfect fit to make meaningful connections between
structure and properties. We have illustrated examples for
qualitative and quantitative analysis, including box-car analysis
of multilength scale studies. For the new practitioner, there is
an abundance of literature on useful ways to study a material
through total scattering techniques, and this contribution has
merely scratched the surface of what can be done. With this in
mind, it is important to remember that least-squares analysis is
not a black-box technique, and a careful construction of the
analysis and chemical factors at play should always be
incorporated. If feasible, the incorporation of other local
probes such as NMR, XAS, IR, or Raman spectroscopy can aid
in the interpretation. In combination, total scattering is a
powerful technique that can elucidate a variety of structural
interactions, enabling the understanding of structure−property
relationships that can be tuned or promoted in materials.
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