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Introduction

In origami, an artist starts with some reference points, and cre-

ates folds along angles. Intersections of these folds form new reference

points, and even more folds can be made. Looking at an unfolded

origami crane, we can see how these reference points arise.

Figure 0.1. A folded and unfolded origami crane [Hoi19].

A question arises here about the structure of the intersection points.

We turn this into a mathematical problem using the following criteria

If we think of the paper as the complex plane, then we form a subset

of this plane by intersecting along angles from seed points, and we are

interested in special properties of this subset. The set of angles is pre-

scribed for a given origami set. Under certain constraints, the origami

construction gives rise to a subset with mathematical structure, in-

cluding the topological structure of a lattice or the algebraic structure

of a subring. In Chapter 1, we focus on some of the mathematical

ix



INTRODUCTION x

preliminaries that are necessary for understanding origami sets. This

includes complex numbers and select topics from abstract algebra, and

only those used in our discussion of origami sets. These select topics

include the basics on groups, and culminates in group presentations

and group actions. We do cover some of rings, but just to know when

origami sets are rings. In Chapter 2, we explore the conditions that

give rise to structured origami sets; these include origami lattices and

origami rings. Much of this previous work on origami constructions

focused on understanding the algebraic structure of origami sets. I

added details to all proofs to ensure that I understood the leaps that

were made in arriving at conclusions.

In Chapter 3, we turn our attention to the hyperbolic plane. The

complex plane is an example of a Euclidean space, which is constructed

using five axioms including the Parallel Postulate. When this axiom

is removed from construction, we are left with the hyperbolic plane,

leaving us with multiple parallel hyperbolic lines that can intersect a

particular point. In our origami constructions, new reference points

are made by intersecting two lines; two intersecting hyperbolic lines

have the same properties as two intersecting Euclidean lines. Since the

hyperbolic plane has fundamentally different geometry due to its ax-

iomatization, the constructed points are different when we start with

seed points in the hyperbolic plane compared to when they start in the

complex plane.

Prior to this work, there was no defined hyperbolic origami con-

struction. We make several attempts to go through the origami con-

struction using ideas of hyperbolic geometry, and reach partial results.
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We learn what a hyperbolic origami set is not. We use the same def-

initions of angles, but we have too many freedoms when it comes to

the center and radius of a hyperbolic line. Our results of these do not

produce reference points to use with our angles, suggesting that simply

transferring to this new geometry with new rules is much more compli-

cated than it appears. Then, we try a simple mapping from the upper

half of an origami set in the complex plane to the Poincaré disk. How-

ever, the image of this map does not resemble tilings of the hyperbolic

plane in the way that our complex origami lattices resemble tilings of

the complex plane.

We then use the ideas of group action and the hyperbolic plane

to classify origami lattices. We can classify homothetic complex lat-

tices using a bijection to a point in the fundamental domain of the

hyperbolic plane. Because all lattices, up to homothety, can be param-

eterized using the group action of the projective special linear group,

we then explore what it means for origami lattices to be equivalent us-

ing many examples. We raise questions regarding the types of origami

lattices that we can produce, and confer with previously determined

results about classifications of origami sets. We also begin to explore

whether all lattices can be produced using our origami constructions.

We conjecture that all lattices are contained in origami lattices, and if

a lattice Λ is not maximal, then the Λ is not an origami lattice.



CHAPTER 1

Some Mathematical Preliminaries

1. An Origami Set

Origami sets are constructed from a set of seed points and angles.

Under certain constraints, the points constructed through this process

are able to interact with each other using operations. These points are

numbers, and under the aforementioned constraints, we can perform

operations that produce different points that could also be constructed

in the same process. We begin with an introduction to origami con-

structions, and then review ideas from complex analysis and abstract

algebra that will allow us to understand the underlying algebraic struc-

ture of one of these constructions.

In origami, an artist folds along a piece of paper and uses the folds

and resulting intersections to create a shape. Similarly, we concern

ourselves with the intersections of lines formed along angles from cer-

tain seed points. Start with a set of points in C, these are referred to

as the “seed points” or “generator points”. Extending from the points

along the angles of a set U , we consider the point where two extensions

intersect. The intersection point can be a new reference point that can

be used to create a new intersection. All angles that we consider are

on the unit circle. Note that both an angle α and −α are represented

because any α represents the direction of a fold in both the forward and

“backwards” directions, so we just include α in U . This phenomenon

1



1. AN ORIGAMI SET 2

regarding the angles is shown in the following figure.

p

α

−α

Figure 1.1. Extension along an angle α from a point p.

We can denote an intersection from a point p along angle α ∈ U , and

q along angle β ∈ U , by [[p, q]]α,β. Each intersection point can now be

used as a reference point, so an origami set is produced in generations.

Each successive generation contains the previous generation, so we can

express an origami set as the union of all generations:

M(U) =
∞⋃
k=0

Mk.

We borrow this notation from Möller [Möl18]. Note that expressing

the origami set as a union of generations will allow us to use induction

on the generations to show that each generation carries some property.
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2. Complex Numbers

Since we start with seed points in C, constructed points made from

intersections are also complex numbers. Recall that complex num-

bers are combinations of real numbers that lie in the complex plane

and take the form z = a + bi, that is, they have a real component

and an imaginary unit, where i =
√
−1 [BC04]. As such, i2 = −1.

Graphically, a complex number is point that lies at the coordinate

(Re z, Im z), where Re z = a and Im z = b. Then, we can think

about the distance between z and 0, which is denoted and defined by

|z| =
√

(Re z)2 + (Im z)2 =
√
a2 + b2, and called the modulus of z. We

can also think about the angle between the real axis and z, which we

call the argument. The argument is given by arg (z) = arctan
(
Im z
Re z

)
.

The principal argument, Arg (z) = Θ is the unique value such that

−π < Θ ≤ π. We choose C to represent the plane encompassing our

constructed points so that we may work with familiar numbers as con-

structed points, and may work with the pre-existing algebraic proper-

ties of C.

We can add, subtract, multiply, and divide complex numbers in a

very familiar way, where even commutativity exists for addition and

multiplication. Details of these properties will be explored in the

abstract algebra portion of this chapter. For two complex numbers,

z1 = a1 + b1i and z2 = a2 + b2i, we can perform our usual operations in

a familiar way. First, let’s review operations that we can perform with

complex numbers.
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Addition is defined in the following way:

z1 + z2 = (a1 + b1i) + (a2 + b2i)

= (a1 + a2) + i (b1 + b2)

The subtraction of complex numbers is given by:

z1 − z2 = (a1 + b1i)− (a2 + b2i)

= (a1 − a2) + i (b1 − b2) .

Multiplication is defined using the distributive property:

z1 · z2 = (a1 + b1i) · (a2 + b2i)

= a1a2 + a1b2i+ ib1a2 + i2y1y2

= (a1a2 − b1b2) + i (b1a2 + a1b2) .

Division requires that we have real numbers in the denominator,

and assuming that z2 6= 0:

z1
z2

=
a1 + b1i

a2 + b2i

=
a1 + b1i

a2 + b2i
· a2 − b2i
a2 − b2i

=
a1a2 − a1b2i+ a2b1i+ b1b2

(a2)
2 + (b2)

2

=
a1a2 + b1b2

(a2)
2 + (b2)

2 +
a2b1 − a1b2

(a2)
2 + (b2)

2 i.

To ensure that there are only real numbers in the denominator,

we use the complex conjugate of a complex number. Simply put, if

z = a + bi, then the complex conjugate is z = a − bi. Notice from

our calculations in the quotient of two complex numbers that zz =

a2 + b2 = |z|2. Conjugacy distributes over our operations, and below
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are properties that apply to all complex numbers. For any two complex

numbers z1 and z2:

z1 + z2 = z1 + z2,

z1 − z2 = z − z2,

z1z2 = z̄1z̄2,(
z1
z2

)
=
z̄1
z̄2
, if z2 6= 0,

z = z, if and only if z ∈ R,

zn = (z̄)n , n ∈ Z,

|z|2 = zz̄ = z̄z,

z = z.

Our angles in origami come from the unit circle. If we think of

the unit circle on the complex plane, then the angles of the unit circle

can be defined using their corresponding point on the unit circle. For

example, the angle π
4

corresponds to the point
(√

2
2
,
√
2
2

)
. So, we say

that π
4

=
√
2
2

+
√
2
2
i.

The points made through origami construction are complex num-

bers. When we perform algebra or arithmetic on them, we are per-

forming algebra and arithmetic on a subset of complex numbers. We

will use these properties to understand the geometry that sets up our

origami process, and use it to extract information about the sets of

constructed points.
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3. Groups and Rings

We will review concepts from Abstract Algebra so that we may un-

derstand the underlying algebra in origami sets. First, we will review

some definitions and define what constitutes a “nice” structure. This

following information can all be found in Gallian’s text, Contemporary

Abstract Algebra [Gal09].

We can group elements together into a set with an operations to

study the interactions between elements. We will look at groups and

rings, with aspects that will be important as we study the algebraic

structure of origami sets.

Definition (Group). Let G be a set with a binary operation. We

say that G is a group if it satisfies the following properties.

(1) The operation is associative in G, i.e. for all a, b, c in G,

a(bc) = (ab)c.

(2) There is an identity element, e in G such that for all a in G,

ea = a = ae.

(3) For every element a in G, there exists an element a−1 in G

such that aa−1 = e = a−1a.

Groups are the first level of structure that we will discuss. An

example of a group that we will consider in the beginning of our origami

ring exploration is U = {0, π
3
, 2π

3
}. See that in U , addition is closed,

and note that 2π
3

+ 2π
3

= 4π
3

, which can recognize as the extension along

π
3

in the reverse direction of a particular point. Other examples of

groups that are familiar sets include:
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• the integers, Z, under addition

• the positive rational numbers, Q+, under multiplication

• the integers mod n, Zn, under addition mod n,

• the general linear group of degree 2 over a field, GL2(F ), under

matrix multiplication; this is the set of invertible 2×2 matrices

with entries in a field F

• the dihedral group, Dn, under composition

• the special linear group of degree 2 over a field, GL2(F ), under

matrix multiplication; this is the set of 2 × 2 matrices with

entries in a field F and a determinant of 1

• the circle group, T, the set of all complex numbers with mod-

ulus 1, under multiplication

Notice that some of the groups listed above carry an idea of commu-

tativity with their operations. When the operation is commutative in

a group, we call it an abelian group. Notice that the groups involving

matrix multiplication are not abelian groups. Subsets of groups may

form a group themselves, which we call a subgroup.

Definition (Subgroup). If a subset H of a group G is itself a

group under the operation of G, we say that H is a subgroup of G, and

denote the phenomenon as H ≤ G.

How can we know if a particular subset is a subgroup? Aside from

checking the parts of the definition of a group, we can also use a test

to determine if a subset is a subgroup.
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Theorem 1.1 (One-Step Subgroup Test). Let G be a group and

H a nonempty subset of G. In multiplicative groups, if ab−1 is in H

whenever a and b are in H, then H is a subgroup of G. In additive

groups, if a − b is in H whenever a and b are in H, then H is a

subgroup of G.

Proof. We will show that these conditions show satisfaction of all

parts of the definition of a group. The operation of H is the same as

that of G, so the operation is associative. Since H is nonempty, choose

the element x ∈ H. Let a = x, and b = x. So e = xx−1 = ab−1 ∈ H.
Next, we must show that x−1 is in H whenever x is. Choose a = e and

b = x. We know that ex−1 ∈ H, so x−1 ∈ H whenever x is. Finally,

we’ll show that H is closed under the operation of G. Let a = x and

b = y−1. Then, xy = ab−1, and H is closed under the operation.

�

Next, we’ll think about analyzing some groups using their cosets.

Definition (Coset of H in G.). Let G be a group and let H be

a subset of G. For any a ∈ G, the set {ah : h ∈ H} is denoted by

aH. Analogously, Ha = {ha : h ∈ H} and aHa−1 = {aha−1 : h ∈ H}.
When H is a subgroup of G, the set aH is called the left coset of H in G

containing a, whereas Ha is called the right coset of H in G containing

a.

The element a is called the coset representative of of aH or Ha.

We use |aH| to denote the number of elements in the set aH, and

|Ha| to denote the number of elements in Ha. Cosets are usually not

subgroups. We’ll look at an example of cosets of a known group: let
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H = {0, 3, 6} in Z9 under addition. The cosets of H in Z9 are:

0 +H = {0, 3, 6} = 3 +H = 6 +H

1 +H = {1, 4, 7} = 4 +H = 7 +H

2 +H = {2, 5, 8} = 5 +H = 8 +H.

Note that though 7 6= 4 6= 1, they have the same left cosets. Further,

left cosets and right cosets need not be equal to one another. There

are some properties of cosets.

Proposition 1.2 (Properties of Cosets). Let H be a subgroup of

G, and let a and b belong to G. Then,

(1) a ∈ aH,
(2) aH = H if and only if a ∈ H,
(3) aH = bH if and only if a ∈ bH,
(4) aH = bH or aH ∩ bH = ∅,
(5) aH = bH if and only if a−1b ∈ H,
(6) |aH| = |bH|,
(7) aH = Ha if and only if H = aHa−1,

(8) aH is a subgroup of G if and only if a ∈ H.

Proof. We’ll prove each item individually.

(1) Consider a = ae, which we know to be an element of aH.

(2) Suppose that aH = H. Then a = ae ∈ aH = H. Now, assume

a ∈ H, and we’ll show that aH ⊆ H and H ⊆ aH. Closure

of the operation implies aH ⊆ H. We”ll show that H ⊆ aH;

consider h ∈ H. Since a ∈ H, and h ∈ H, we know a−1h ∈ H.
So, h = eh = (aa−1)h = a (a−1h) ∈ aH.
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(3) If aH = bH, then a = ae ∈ aH = bH. Conversely, if a ∈ bH
we have a = bh where h ∈ H, and therefore aH = (bh)H =

b(hH) = bH.

(4) If there is an element c ∈ aH ∩ bH, then cH = aH and cH =

bH.

(5) From Proposition 1.2.2, we know aH = H if and only if a ∈ H.
Additionally, aH = bH if and only if H = a−1bH. Combining

these two facts shows that aH = bH if and only if a−1b ∈ H.
(6) We can define a one-to-one map from aH onto bH. This map

is one-to-one from the cancellation law.

(7) See that aH = Ha if and only if (aH)a−1 = (Ha)a−1 =

H (aa−1) = H, which is true only if aHa−1 = H.

(8) If aH is a subgroup of G, then aH contains e. So, aH∩eH 6= ∅.
Then, aH = eH = H, so a ∈ H. Conversely, if a ∈ H, then

aH = H.

�

Let’s return to the question of when left and right cosets are equal

to one another. This is only true in some situations, which have im-

mense importance.

Definition (Normal Subgroup). A subgroup H of a group G is

called a normal subgroup of G if aH = Ha for all a in G. We denote

this by H CG.

Note that this does not mean that ah = ha for a ∈ G and h ∈ H.
To determine if a particular subgroup is a normal subgroup, we can
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use the following theorem.

Theorem 1.3 (Normal Subgroup Test). A subgroup H of G is

normal in G if and only if xHx−1 ⊆ H for all x in G.

Proof. If H is normal in G, then for any x ∈ G, and h ∈ H, there

is an h′ in H such that xh = h′x. Thus, xhx−1 = h′ and as such,

xHx−1 ⊆ H. Conversely, if xHx−1 ⊆ H for all x, then let x = a. We

then have a−1H (a−1)
−1

= a−1Ha ⊆ H. So, Ha ⊆ aH.

�

When the subgroup H of G is normal, then the left or right cosets

of H in G is itself a group. We call this the factor, or quotient, group

of G by H.

Definition (Factor Group). Let G be a group, and let H be a

normal subgroup of G. The set G/H = {aH : a ∈ G} is a group under

the operation (aH)(bH) = abH.

We can think of factor groups as “mod”-ing out by a particular

coset. Now, let’s move onto the sets with more than one binary oper-

ation. Sometimes, the set of constructed points of our origami set are

a ring, which allows us to compare different origami sets.

Definition (Ring). Let R be a set with two binary operations,

addition and multiplication. We say that R is a ring if for all a, b, and

c in R, the following are satisfied:
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(1) a+ b = b+ a.

(2) (a+ b) + c = a+ (b+ c).

(3) There is an additive identity, 0, such that a + 0 = a for all a

in R.

(4) There is an element −a in R such that a+ (−a) = 0.

(5) (ab)c = a(bc).

(6) a(b+ c) = ab+ ac and (b+ c)a = ba+ ca

When the multiplication is commutative, we say that R is a com-

mutative ring. Some rings may have an element that is the identity

under multiplication, which we call the unity in ring. For rings with a

unity, elements that have a multiplicative inverse are called units in R.

Some examples of familiar sets that are rings include:

• the set of integers, Z,

• the set of rational numbers, Q,

• the set of real numbers, R,

• the set of complex numbers, C,

• the set of 2× 2 matrices with integer entries.

Note that in each of these set, there are familiar notions of addition

and multiplication. These sets are also all groups under addition. In

fact, the defined addition and multiplication of a ring in these sets

follows our usual, pre-conceived notions of addition and multiplication.

Definition (Subring). A subset S of a ring R is a subring if S

itself is a ring under the operations of R.
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Thinking about our familiar rings, we can identify some examples,

as well as a non-example, of subrings.

• For the integers, Z as a ring R,

– the even integers, 2Z form a subring S of Z.

– the odd integers do not form a ring; while an odd integer

multiplied by an odd integer is certainly odd, the addition

of two odd integers yields an even integer. Hence, the odd

integers are not a subgroup of Z under addition.

• For the complex numbers, C as R,

– the set of Gaussian integers, Z [i] = {a + bi : a, b ∈ Z}
form a subring S of C.

• For the real numbers, R as R,

– the rational numbers, Q, form a subring S of R.

• For the ring of 2× 2 matrices with integer entries, M2(Z),

– the set of 2 × 2 diagonal matrices with integer entries,
a 0

0 b

 : a, b ∈ Z

 , is a subring S of M2(Z),

There is a simple test to see if a subset of a ring is a subring.

Theorem 1.4 (Subring Test). A nonempty subset S of a ring R is

a subring if S is closed under subtraction and multiplication.

Proof. Since addition in R is commutative and S is closed under

subtraction, by the One-Step Subgroup Test, S is an abelian group

under addition. Since multiplication in R is associative and distributive

over addition, the same must be true for multiplication in S. So, the

only condition that must be checked is that multiplication is a binary
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operation on S, which shows closure under multiplication.

�

Polynomials are fairly familiar objects, and we’ll add them to our

repertoire of algebraic objects. Much of the work done in developing

the original ideas for this thesis do not deal with polynomial rings, but

they are essential in the previous work done on origami rings.

Definition (Ring of Polynomials over R). Let R be a commutative

ring. The set

R[x] = {anxn+an−1x
n−1+· · ·+a1x+a0 : ai ∈ R, nis a non-negative integer}

is called the ring of polynomials over R in the indeterminate x. Two

elements

anx
n + an−1x

n−1 + · · ·+ a1x+ a0

and

bnx
n + bn−1x

n−1 + · · ·+ b1x+ b0

of R[x] are considered equal if and only if ai = bi for all non-negative

integers i.

Addition and multiplication of polynomials in R[x] involve collect-

ing like terms. The factoring of polynomial rings allows for the classi-

fication of polynomials and hence rings. We utilize them to prove one

condition of an origami ring.
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4. Group Presentations and Group Action

There are ways to define a group with certain prescribed properties.

We begin with a set of elements that generate the group and a set of

equations that specify the conditions that these generators must satisfy.

Such a presentation will uniquely determine a group up to isomorphism.

Definition (Words from S). For a set S = {a, b, c, . . . }, of distinct

symbols, we create a new set S−1 = {a−1, b−1, c−1, . . . } by replacing

each x in S by x−1. The set W (S) is the collection of all formal finite

strings of the form x1x2 · · ·xk, where eeach xi ∈ S ∪S−1. The elements

of W (S) are called words from S.

The empty word, denoted by e, is the string with no elements, and

the empty word is in W (S).

We can define a binary operation on the set W (S) by juxtaposition.

If x1x2 · · ·xk and y1y2 · · · yt belong to W (S), then x1x2 · · ·xky1y2 · · · yt
is in W (S). This operation is associative, and the empty word is the

identity. Note that a word aa−1 is not the identity, because the el-

ements of W (S) are formal symbols with no implied meaning. This

presents a problem, because we cannot make a group out of W (S).

Instead, we may define equivalence classes of words.

To determine whether two things are the same under a certain con-

text, recall that we use equivalence relations.

Definition (Equivalence Relation). An equivalence relation on a

set S is a set R of pairs of elements of S such that:
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(1) (a, a) ∈ R for all a ∈ S.
(2) (a, b) ∈ R implies (b, a) ∈ R.
(3) (a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R.

An equivalence relation partitions a set into equivalence classes.

Two elements of a set are equivalent if they belong to the same equiv-

alence class. Words can be classified by equivalence classes.

Definition (Equivalence Classes of Words). For any pair of el-

ements u and v of W (S), we say that u is related to v if v can be

obtained from u by a finite sequence of insertions or deletions of words

of the form xx−1 or x−1x, where x ∈ S.

This relation is an equivalence relation on W (S). We know that

u is related to u because u is obtained from itself by not performing

insertions or deletions. If v can be obtained from u by inserting or

deleting words of the form xx−1 or x−1x, then u can be obtained from

v by deleting or inserting words of the form xx−1 or x−1x (reversing the

procedure for obtaining v from u). If u can be obtained from v, and v

can be obtained from w, then u can be obtained from w by obtaining

first v from w, and then u from v. Hence we have shown the three parts

of an equivalence relation for this relation on W (S).

For an example of this, let’s consider the set S = {a, b, c}. Then

the word acc−1b is equivalent to ab because we delete the word cc−1.

Additionally, the word aab−1bbaccc−1 is equivalent to aabac; the word
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a−1aabb−1a−1 is equivalent to the empty word; ca−1b is equivalent to

cc−1caa−1bbca−1ac−1b−1. However, cac−1b is not equivalent to ab.

Definition (Free Group on S). Let S be a set of distinct symbols.

For any word u inW (S), let u denote the set of all words inW (S) equiv-

alent to u. Then the set of all equivalence classes of elements of W (S)

is the free group on S, under the operation u ·v = uv. The empty word

is the identity. If w = x1x2 · · ·xk, then w−1 = x−1k x−1k−1, · · · , x−12 , x−11 .

We’ll use the definition of a free group to show that every group

can be related back to a free group.

Theorem 1.5 (Universal Mapping Property). Every group is a ho-

momorphic image of a free group.

Proof. Let G be a group, and let S be a set of generators for

G. Note that S may be G itself. Let F be the free group on S. De-

note the word x1x2 · · ·xn in W (S) by (x1x2 · · · xn)F , and the product

x1x2 · · ·xn in G with (x1x2 · · ·xn)G . Recall that x1x2 · · ·xn is different

than (x1x2 · · ·xn)G , because the operations of F and G are different.

Consider the map from F into G given by

φ (x1x2 · · ·xn) = (x1x2 · · ·xn)G .

See that φ is well-defined. Inserting or deleting expressions of the form

xx−1 or x−1x in elements of W (S) corresponds to inserting or deleting
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the identity in G. Also see that φ is operation-preserving:

φ ((x1x2 · · ·xn) (y1y2 · · · ym)) = φ (x1x2 · · ·xny1y2 · · · ym)

φ ((x1x2 · · ·xn) (y1y2 · · · ym)) = (x1x2 · · ·xny1y2 · · · ym)G

φ ((x1x2 · · ·xn) (y1y2 · · · ym)) = (x1x2 · · ·xn)G (y1y2 · · · ym)G

Finally, φ is onto G because S generates G. �

We have the background for defining a group by generators and

relations.

Definition (Generators and Relations). Let G be a group gener-

ated by some subset A = {a1, a2, . . . , an} and let F be the free group on

A. Let W = {w1, w2, . . . , wt} be a subset of F and let N be the small-

est normal subgroup of G containing W. We say that G is given by the

generators a1, a2, . . . , an and the relations w1 = w2 = · · · = wt = e if

there is an isomorphism from F/N onto G that carries aiN to ai.

We denote a group’s generators and relations by:

G = 〈a1, a2, . . . , an|w1 = w2 = · · · = wt = e〉.

Then, we say that G has the group presentation

〈a1, a2, . . . , an|w1 = w2 = · · · = wt = e〉.

To count the number of objects that are considered nonequivalent,

we can use a homomorphism.
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Definition (Group Action). If G is a group and S is a set of ob-

jects, then G acts on S if there is a homomorphism γ from G to sym(S),

the group of all permutations on S. This homomorphism is the group

action of G on S.

We denote the image of G under γ as γg. Two objects x and y in S

are viewed as equivalent under the action of G if and only if γg(x) = y

for some g in G. When γ is one-to-one, the elements of G are permu-

tations on S. If γ is not one-to-one, then there are distinct elements

g, h ∈ G such that γg and γh induce the same permutation on S.

With this background on complex numbers and abstract algebra,

we are ready to explore origami sets.



CHAPTER 2

Introduction to Origami Constructions

1. The Intersection Operator

To understand the algebraic connections to origami constructed

sets, we must first understand some properties of the intersections.

Since each construction is an intersection problem, rather than going

through the step-by-step construction, we can calculate each particular

point. Recall that our goal is to generalize origami. For α and β, dis-

tinct directions, let Lα and Lβ denote the lines along these directions,

respectively. Here, we’ll think about our angles as complex numbers

using their point on the unit circle. Then [[p, q]]α,β represents the point

z where z = p + rα = q + sβ, where there is a unique solution (r, s),

r, s ∈ R. Solving for s yields s = β−1 (p− q + rα). Since r, s ∈ R,

Im s = 0 implies that from s =

(
p− q
β

+ r
α

β

)
, r =

Im
(
p−q
β

)
Im

(
α
β

) . So,

[[p, q]]α,β = p+
Im

(
p−q
β

)
Im

(
α
β

) α(2.1)

=
αpβ − αpβ − βqα + βqα

αβ − αβ
(2.2)

=
αp− αp
αβ − αβ

β +
−βq + βq

αβ − αβ
α(2.3)

=
αp− αp
αβ − αβ

β +
βq − βq
αβ − αβ

α.(2.4)

20
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Between Equation 2.3 and Equation 2.4, we use facts about the conju-

gates of complex numbers. Note that by using the complex conjugate of

an angle, we must use the representation of angles as complex numbers.

Let’s see how this works with an example of an origami set. Con-

sider the the points {0, 1} ∈ C and the angles from
{

0, π
3
, 2π

3

}
. Starting

with the seed points, we extend along these prescribed angles, and note

intersection points. These intersection points can then be used as new

reference points. In this example, we produce Z [ζ3], the integer com-

binations of the third roots of unity. We will go through this stepwise

construction. Note that we may also think of angles as points on the

unit circle lying in C, and hence the angles may also be represented by{
1, 1

2
+
√
3
2
i,−1

2
+
√
3
2
i
}

. We will return with a deeper exploration of

lattices and the choice in angles later.

0 1

Figure 2.1. The seed points.

0 1

Figure 2.2. We begin to construct some points:

[[0, 1]]π
3
, 2π
3

= 1
2

+
√
3
2
i, and [[0, 1]] 2π

3
,π
3

= 1
2
−
√
3
2
i.
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0 1

Figure 2.3. We continue with this process:[[
1
2

+
√
3
2
i, 1
]]
0,π

3

= 3
2

+
√
3
2
i.

0 1

Figure 2.4. The next few points are:[[
1
2
−
√
3
2
i, 0
]]
0,π

3

= −1
2
−
√
3
2
i,
[[

1
2
−
√
3
2
i, 1
]]
0, 2π

3

= 3
2
−
√
3
2
i,

and
[[

0, 1
2

+
√
3
2
i
]]

2π
3
,0

= −1
2

+
√
3
2
i.

0 1 2 3 4 5

Figure 2.5. After an infinite number of generations,

this is the construction, which may remind a reader of

the chemical structure of graphene.

From the general form of an intersection point, we can state some

facts about a point constructed from p and q from angles α and β that
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will allow us to move towards understanding the underlying structure

and further generalizations of origami constructions. Much of this work

comes from Buhler, Butler, De Launey, and Graham [BBDLG12] and

Möller [Möl18]. While much of this is not new work, I rewrote the

proofs in my words and have added many of the steps and details of

them.

Proposition 2.1 (Properties of Intersection Points). For p and q,

points in the plane, and α and β, distinct angles in U , the following

statements hold.

(1) A constructed point is symmetric: [[p, q]]α,β = [[q, p]]β,α.

(2) A constructed point can be reduced to a sum: [[p, q]]α,β = [[p, 0]]α,β+

[[0, q]]α,β.

(3) The constructed point [[p, 0]]α,β is a projection of p onto the line

rβ, r ∈ R, in the direction of α.

(4) Constructed points are linear in one coordinate: [[p+q, 0]]α,β =

[[p, 0]]α,β + [[q, 0]]α,β, and for any r ∈ R, [[rp, 0]]α,β = r[[p, 0]]α,β.

(5) A constructed point [[p, q]]α,β has the form Ap + Bq, where A

and B are real-linear maps of the complex plane that satisfy

A+B = 1C.

(6) A constructed point can be rotated for an ω ∈ T, where T is

the circle group: ω[[p, q]]α,β = [[ωp, ωq]]ωα,ωβ.
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Proof. These facts can be proved using the expression for the

intersection point [[p, q]]α,β in Equation 2.4 above and the principles of

the construction.

(1) Using Equation 2.4, we know that

[[p, q]]α,β =
αp− αp
αβ − αβ

β +
βq − βq
αβ − αβ

α.

Then,

[[q, p]]β,α =
βq − βq
βα− βα

α +
αp− αp
βα− βα

β

=
βq − βq
βα− βα

α +
αp− αp
αβ − αβ

β

=
αp− αp
αβ − αβ

β +
βq − βq
αβ − αβ

α

= [[p, q]]α,β.

(2) Using Equation 2.4,

[[p, 0]]α,β =
αp− αp
αβ − αβ

β +
β(0)− β(0)

αβ − αβ
α =

αp− αp
αβ − αβ

β,

and

[[0, q]]α,β =
α(0)− α(0)

αβ − αβ
β +

βq − βq
αβ − αβ

α =
βq − βq
αβ − αβ

α.

So,

[[p, 0]]α,β + [[0, q]]α,β =
αp− αp
αβ − αβ

β +
βq − βq
αβ − αβ

α

= [[p, q]]α,β.

(3) The fact that [[p, 0]]α,β is a projection of p onto a line in the

direction α is a consequence of the construction. For a point

[[p, 0]]α,β, let δ ([[p, 0]]α,β) represent the intersection of the real
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axis with the line of slope δ through [[p, 0]]α,β .

(4) By Equation 2.4, [[p+ q, 0]]α,β =
α (p+ q)− α (p+ q)

αβ − αβ
β. Then,

[[p, 0]]α,β + [[q, 0]]α,β =
αp− αp
αβ − αβ

β +
αq − αq
αβ − αβ

β

=
αp− αp+ αq − αq

αβ − αβ
β

=
α (p+ q)− α (p+ q)

αβ − αβ
β

=
α (p+ q)− α (p+ q)

αβ − αβ
β

= [[p+ q, 0]]α,β.

Similarly,

[[rp, 0]]α,β =
α (rp)− α (rp)

αβ − αβ
β

=
α (r) (p)− α (r) (p)

αβ − αβ
β

=
αrp− αrp
αβ − αβ

β

= r
αp− α (p)

αβ − αβ
β

= r[[p, 0]]α,β.

(5) By Proposition 2.1.2, [[p, q]]α,β = [[p, 0]]α,β + [[0, q]]α,β. Then,

by 2.1.3, we know that [[p, 0]]α,β = (p+ rα), a linear map

of p. Similarly, [[0, q]]α,β = (q + sβ), a linear map of q. So,

[[p, q]]α,β = Ap+Bq.
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(6) By Equation 2.4,

ω[[p, q]]α,β = ω

(
αp− αp
αβ − αβ

β +
βq − βq
αβ − αβ

α

)
.

Now,

[[ωp, ωq]]ωα,ωβ =
(ωα) (ωp)− (ωα) (ωp)

(ωα)
(
ωβ
)
− (ωα) (ωβ)

(ωβ) +
(ωβ) (ωq)−

(
ωβ
)

(ωq)

(ωα) (ωβ)− (ωα)
(
ωβ
) (ωα)

=
ωαω̄p̄− ω̄ᾱωp
ωαω̄β̄ − ω̄ᾱωβωβ +

ωβω̄q̄ − ω̄β̄ωq
ω̄ᾱωβ − ωαω̄β̄ ωα

=
(ωω)αp− (ωω)αp

(ωω)αβ − (ωω)αβ
ωβ +

(ωω) βq − (ωω) βq

(ωω)αβ − (ωω)αβ
ωα

=
ωωαp− ωω̄ᾱp
ωωαβ − ωω̄ᾱβ

ωβ +
ωωβq − ωω̄β̄q
ωω̄ᾱβ − ωωαβ

ωα

=
αp− αp
αβ − αβ

ωβ +
βq − βq
αβ − αβ

ωα

= ω

(
αp− αp
αβ − αβ

β +
βq − βq
αβ − αβ

α

)
= ω[[p, q]]α,β.

�

2. Expressing the Origami Set

Similar to how we can express complex numbers z as a linear com-

bination of a real number and an imaginary number, z = a + bi, we

should try to find a simple way to express our origami construction.

Additionally, note that points of an origami construction fulfill the fol-

lowing equation:

[[r, s]]α,β =
(
r + Reiα

)
∩
(
s+ Reiβ

)
.
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Definition. A monomial is a point p in M(U) that can be con-

structed in one step from a generator.

Any monomial p lies in a sequence where

p1 = [[1, 0]]α1,β1

p2 = [[p1, 0]]α2,β2

...

pk−1 = [[pk−2, 0]]αk−1,βk−1

pk = [[pk−1, 0]]αk,βk = p.

The integer k is the length of a monomial.

Theorem 2.2. The product of two monomials is a monomial.

Proof. Given α1, α2, β1, and β2 in U , let r = [α1,1]
[α1,β2]

∈ R. Then

[[0, 1]]α1,β1 = rv, and by the rotation and linearity properties of points

in M ,

[[0, 1]]α1,β1 [[0, 1]]α2,β2 = rv[[0, 1]]α2,β2

= r[[v, 0]](β1α2),(β1β2)

= [[rv, 0]](β1α2),(β1β2)

= [[[[0, 1]]α1,β1 , 0]](β1α2),(β1β2)
.

Hence we have proven that the product of monomials is a monomial.

�

With Proposition 2.1, we can begin to think about possible condi-

tions that give rise to algebraic structure in the construction, namely,

when the origami set is a ring. We start with the first constraint on an

origami ring, which has to do with the angles.
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Theorem 2.3. If U is a group of directions that determine at least

three folds, then M(U) is the set of integral linear combinations of U−
monomials, and is therefore a subring of the complex numbers.

Proof. Let’s define S to be the set of integral linear combinations

of U−monomials. Note that S is an additive group due to the con-

struction. We know that the product of two monomials is a monomial,

as proved in Theorem 2.2, so S is a ring. Now, clearly M(U) contains

all possible monomials, and due to the construction, is also an addi-

tive group. So, S is contained in M(U). By the linearity of points

in M , as proven in Proposition 2.1, an element r ∈ M has the form

r = [[p, q]]α,β = [[p, 0]]α,β + [[0, q]]α,β. If p and q can be expressed as inte-

gral linear combinations of monomials of length less than or equal to k,

then r is an integral linear combination of monomials of at most k+ 1:

r = [[p, q]]α,β = [[p, 0]]α,β+[[0, q]]α,β = [[pk−1, 0]]αk−1,βk−1
+[[0, qk−1]]αk−1,βk−1

.

This shows that S is contained in M(U), and M(U) is a subring of the

complex numbers, completing our proof.

�

With all of this information, we can continue to explore origami con-

structions. A second example uses the same generator points, {0, 1} ∈
C, but with the angles U =

{
0, π

4
, π
2

}
. This stepwise construction is

shown below, and we will continue to refer to this example as well as

the previous triangular tiling throughout the following chapters.
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0 1

Figure 2.6. The seed points. Then, we use the angles

to form intersection points that will become new refer-

ence points.

0 1

Figure 2.7. The first constructed points,

[[0, 1]]π
4
,π
2

= 1 + i and [[1, 0]]π
4
,π
2

= −i.

Notice that this is all of the integral linear combinations of 1 and

i, the imaginary unit. In fact, this is the construction that gives rise

to the Gaussian integers, a known subring of the complex numbers.

0 1

Figure 2.8. The last generation can be used as ref-

erence points, so [[1 + i, 0]]0,π
2

= i, [[1 + i, 1]]0,π
4

= 2 + i,

[[−i, 0]]0,π
4

= −1− i, and [[−i, 1]]0,π
2

= 1− i.
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0 1

Figure 2.9. The previous generation can continue to

produce points.

0 1

Figure 2.10. The origami set from seed points 0 and 1

with angles{
0, π

4
, π
2

}
.

However,
{

0, π
4
, π
2

}
does not form a group, because π

4
+ π

2
= 3π

4
, and

3π
4

is not an angle used in the construction, so the set of angles is not

closed under addition. So this origami ring, Z [i], is subject to some

constraint other than the angle set that gives Z [i] its ring structure.

We will work towards identifying it. Also notice that Z [i] has topolog-

ical structure, forming a lattice rather than a dense set.



3. ORIGAMI LATTICES 31

3. Origami Lattices

The constructions above create very beautifully ordered arrange-

ment of regular points on C. Surely, there is some type of way to

characterize this phenomenon.

Definition (Lattice). Let V be a vector space of dimension n over

R. A lattice Λ is a subgroup of the form Λ = Ze1 + · · · + Zer, with

e1, . . . , er linearly independent elements of V [Mil17].

We can know that the Gaussian integers is a lattice, where the basis

is given by {1, i}. We also know that our other example, made with

U = {0, π
3
, 2π

3
} forms a lattice where the basis is given by {1,

√
3
2
i}.

When is an origami set a lattice?

Theorem 2.4 ([BR16]). Let U = {0, α, β}. Then M(U) is a lattice

in C with the form M(U) = Z + Z[[0, 1]]α,β.

Proof. From Theorem 2.3, we see that M(U) is a subgroup of C

under addition. Since 0 ∈M(U), and [[0, 1]]α,β ∈M(U), we can see that

Z+Z · [[0, 1]]α,β ⊆M(U). We will prove that M(U) ⊆ Z+Z · [[0, 1]]α,β by

induction on the generations of the set. We know from Equation 2.4

that M1 = {0, 1, [[0, 1]]α,β, [[1, 0]]α,β ⊆ Z + Z · [[0, 1]]α,β, proving our base

case that M1 ⊆ Z + Z · [[0, 1]]α,β.

Our induction hypothesis is then that p and q are in Mn ⊆ Z + Z ·
[[0, 1]]α,β, for some n ∈ N. Let u, v ∈ U.



3. ORIGAMI LATTICES 32

We will show that [[p, q]]u,v ∈ Z+Z · [[0, 1]]α,β. From Proposition 2.1,

we know [[p, q]]u,v = [[p, 0]]u,v + [[0, q]]u,v, so we only need to show that

[[a+ b · [[0, 1]]α,β, 0]]u,v ∈ Z + Z · [[0, 1]]α,β.

Here, a+ b · [[0, 1]]α,β is an element of Mn. By linearity, we know that

[[a+ b · [[0, 1]]u,v, 0]]u,v = [[a, 0]]u,v + [[b · [[0, 1]]u,v, 0]]u,v

[[a+ b · [[0, 1]]u,v, 0]]u,v = a[[1, 0]]u,v + [[b · [[0, 1]]u,v, 0]]u,v

[[a+ b · [[0, 1]]u,v, 0]]u,v = a[[1, 0]]u,v + b · [[[[0, 1]]u,v, 0]]u,v.

First, we’ll consider a[[1, 0]]u,v. Now, [[1, 0]]u,v must be an element of

M1, so [[1, 0]]u,v = 1, 0, [[0, 1]]α,β, or [[1, 0]]α,β. If u = 0 or v = 0, then

[[1, 0]]u,v = 0 or [[1, 0]]u,v = 1, which can be seen the following figure:

0 1

Figure 2.11. The seed points.

If u, v 6= 0, then either u = α, v = β or v = α, u = β. If u = α, v =

β, then [[1, 0]]u,v = [[1, 0]]α,β. On the other hand, v = α, u = β, then

[[1, 0]]u,v = [[1, 0]]β,α = [[0, 1]]α,β.

Next, consider b · [[[[0, 1]]α,β, 0]]u,v. So, we just need to show that

[[[[0, 1]]α,β, 0]]u,v ∈ Z+Z · [[0, 1]]α,β. There are
(
3
2

)
= 6 possible cases here.

(1) [(u, v) = (α, β)] See that [[1, 0]]α,β = rα for some r ∈ R. Then,

[[[[0, 1]]α,β, 0]]α,β = r[[α, 0]]α,β = 0. We know that 0 ∈ M1, and

hence 0 ∈ Z + Z · [[0, 1]]α,β.

(2) [(u, v) = (β, α)] We know that [[[[0, 1]]α,β, 0]]β,α is the projection

of [[0, 1]]α,β onto the line rα in the direction of β. Further, we
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know that [[0, 1]]α,β ∈ Rα, so [[[[0, 1]]α,β, 0]]β,α = [[0, 1]]α,β, which

we know to be in Z + Z · [[0, 1]]α,β.

(3) [(u, v) = (α, 0)] We know that [[[[0, 1]]α,β, 0]]α,0 is the projec-

tion of [[0, 1]]α,β onto the real axis in the direction of α. So,

[[[[0, 1]]α,β, 0]]α,0 = 0.

(4) [(u, v) = (β, 0)] We know that [[[[0, 1]]α,β, 0]]β,0 is the projection

of [[0, 1]]α,β onto rβ in the direction of the real axis. The line

extending from 1 in the direction β intersects with [[0, 1]]α,β.

So, [[[[0, 1]]α,β, 0]]β,0 = 1.

(5) [(u, v) = (0, α)] We know that [[[[0, 1]]α,β, 0]]0,α is the line cross-

ing through [[0, 1]]α,β + s and rα for r, s ∈ R. Since x ∈ Rα,

then [[[[0, 1]]α,β, 0]]0,α = [[0, 1]]α,β.

(6) [(u, v) = (0, α)] See that [[[[0, 1]]α,β, 0]]0,β+[[[[0, 1]]α,β, 0]]β,0 = [[0, 1]]α,β,

while [[[[0, 1]]α,β, 0]]β,0 = 1. So,

[[[[0, 1]]α,β, 0]]0,β = [[0, 1]]α,β − [[[[0, 1]]α,β, 0]]β,0

[[[[0, 1]]α,β, 0]]0,β = [[0, 1]]α,β − 1.

Hence, [[[[0, 1]]α,β, 0]]0,β ∈ Z + Z · [[0, 1]]α,β.

We have shown that Mn, the n−th generation of M, is contained in Z+

Z · [[0, 1]]α,β. This completes our proof by induction, and thus, M(U) =

Z + Z · [[0, 1]]α,β when U = {0, α, β}.
�

What does it mean for M(U) to not be a lattice? We must first

consider some definitions from topology. Topological space comes from

constructing topology on a set.
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Definition (Topology [Mun75]). A topology on a set X is a col-

lection J of subsets of X such that:

(1) Both ∅ and X are in J.

(2) The union of the elements of any subcollection of J is in J.

(3) The intersection of the elements of any finite subcollection of

J is in J.

A set X for which a topology J has been specified is called a topo-

logical space. A topological space is an ordered pair (X, J) consisting

of a set X and a topology J on X.

For a topological space X, given a ∈ X and ε < 0, recall that the

ε−neighborhood of a is the set Vε(a) = {x ∈ X : |x−a| < ε} [Abb01].

Definition (Limit Point). A point x is a limit point of a set A

if every ε−neighborhood Vε(x) of x intersects the set A at some point

other than x.

We can think of limit points as “cluster points,” but if a point x is

a limit point of a set A, then x is the limit of a sequence in A. Limit

points can tell us about the “closeness” of points in a set.

Definition (Dense Set). Let X be a topological space. A subset

A of X is dense in X if every point x in X either belongs to A or is a

limit point of A.
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In terms of familiar sets, if we consider X = R, and A = Q, we can

see that every real number is either in Q or a limit point of Q. We

can also see a dense origami set. Using the same seed points as usual,

{0, 1} and angles from
{

0, π
3
, π
4
, π
5

}
, we get the following construction.

Let’s denote this set of angles as Ũ =
{

0, π
3
, π
4
, π
5

}
.

Figure 2.12. Three generations of the origami con-

struction from {0, 1} and Ũ =
{

0, π
3
, π
4
, π
5

}
[LLN+18].

See that this construction involves four angles. Could the dense

nature of the construction come from the fact that we have too many

possibilities of intersections from each reference point? In fact, the

answer is yes.

Theorem 2.5 ([BBDLG12]). If U has more than 3 angles, then

M(U) is dense in the complex plane.

Proof. Let n be the number of angles in U . If n is nonprime, then

1
n

is in the ring. Then the origami ring has points arbitrarily close to

zero, and therefore M(U) is dense. Alternatively, if n is prime, then

the image of the ring of integers under a complex embedding is dense if
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there is more than one pair of conjugate embeddings and this happens

for prime n when n > 3 [Mar77]. �

Now, a new question arises regarding the structure of an origami

construction, M(U). When does M(U) have algebraic structure (i.e., is

a subring of C), and when does M(U) have topological structure (i.e.,

is a lattice)? The two constructions that we did stepwise, to construct

Z [ζ3] and Z [i], are both lattices; we know that Z [i] is a subring of C,

and by Theorem 2.3, Z [ζ3] is a ring. We have just noted that for the

construction from the same seed points, but the angles from Ũ is not

a lattice. We will eventually show that M(Ũ) is a ring.

4. The Ring Structure of MR

Recall that [[r, s]]α,β refers to the intersection point of the extension

from r along α and the extension from s along β. Additionally, we de-

note the δ−projection for a point [[p, 0]]α,β by δ ([[p, 0]]α,β) , to represent

the intersection of the real axis with the line of slope δ through [[p, 0]]α,β.

Lemma 2.6 ([Möl18]). Let α, β ∈ (0, π) be two different angles.

For all r, s ∈ R, the two equations: α ([[r, s]]α,β) = r, and β ([[r, s]]α,β) =

s hold. Additionally, for all z ∈ C, z = [[α(z), β(z)]]α,β.

Proof. The proof of Lemma 2.6 can be written using Equation 2.4,

again. We know [[r, s]]α,β is a projection of r in the direction of α and

a projection of s in the direction of β by Proposition 2.1.3. Hence,

the projection of [[r, s]]α,β in the direction of α onto the real axis, or

α ([[r, s]]α,β) is in fact r. Likewise, the projection of [[r, s]]α,β in the

direction of β onto the real axis, β ([[r, s]]α,β) = s. �
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Let’s denote the real part of an origami set M(U) as MR, that is,

MR = M(U) ∩ R. We will show that the structure of MR can give us

information about the structure of M(U). We will first show that MR

is a subgroup of R. Consider z, an element of M . The projections α(z)

and β(z) are elements of MR. Additionally, see that Lemma 2.6 shows

that α(z) = β(z) = z for all z ∈ MR. If r, s are elements of MR, then

[[r, s]]α,β is an element of M, and the α− and β−projections of [[r, s]]α,β

are elements of MR.

Lemma 2.7. MR is an additive subgroup of R.

Proof. This utilizes the one-step subgroup test. Let r, s be ele-

ments of the non-empty set MR, and let s ≥ r, and we will show that

both s−r and r−s are in MR. We’ll define z := [[r, s]]α,β, and note that

the so-called “(α, β)− coordinates” of z are given by (r, s). By the def-

inition of an origami set M , the intersection point point z′ of the lines

z+Rei0 and 0+Reiα is an element of M . We know that z′ is the projec-

tion of (0, x), for an appropriate x ∈MR, as seen in the following figure.

Re

Im

0

zz′

r

α β

s

α

(a) z and extension to z′

Re

Im

0

zz′

r

α β

s

α

x

β

(b) z′ is an origami point

Figure 2.13. The construction of z′.
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See that we have a triangle with vertices r, z, s that is congruent to

the triangle with vertices 0, z′, x. Corresponding sides of the triangles

have the same length, so s− r = x− 0 = x. We know that x must be

in MR, implying that s− r ∈MR.

Now, consider the point z′′ defined by the intersection of z + Rei0

and 0 +Reiβ. In an extremely similar fashion to the process above, we

will show that r − s ∈MR.

Re

Im

0

zz′′

r

α β

s

β

(a) z and extension to z′′

Re

Im

0

zz′′

r

α β

s

β

y

α

(b) z′′ is an origami point

Figure 2.14. The construction of z′′.

See that we have a triangle with vertices r, z, s that is congruent to

the triangle with vertices y, z′′, 0. Corresponding sides of the triangles
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have the same length, so r − s = y − 0 = y. We know that y must be

in MR, implying that r − s ∈MR.

We have shown that MR is an additive subgroup of R.

�

Note that since 0, 1 ∈MR, it follows that Z ⊆MR. From Lemma 2.7,

we can find an explicit description of origami sets, and use it to show

that M is an additive subgroup of C.

Theorem 2.8. The origami set M is the MR−span of 1 and [[0, 1]]α,β:

M = MR +MR · [[0, 1]]α,β = {r + s · [[0, 1]]α,β : r, s ∈MR}.

Proof. Let z be an element of M. Then there exist some r, s ∈MR

for which z = [[r, s]]α,β. From Proposition 2.1, we know:

z = [[r, s]]α,β

z = [[r, 0]]α,β + [[0, s]]α,β

z = r · [[1, 0]]α,β + s · [[0, 1]]α,β

z = r · (1− [[0, 1]]α,β) + s · [[0, 1]]α,β

z = r · 1− r · [[0, 1]]α,β + s · [[0, 1]]α,β

z = r · 1 + (−r + s) · [[0, 1]]α,β.

Since r, s ∈ MR, then r, s ∈ R, an abelian group, so −r + s = s − r.
From Lemma 2.7, we know s− r ∈MR, so z ∈MR +MR · [[0, 1]]α,β.
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Now, assume that r, s ∈MR, and we will show that r+s · [[0, 1]]α,β ∈
M. Starting with r + s · [[0, 1]]α,β, by Proposition 2.1,

r + s · [[0, 1]]α,β = [[r, r]]α,β + s · [[0, 1]]α,β

r + s · [[0, 1]]α,β = [[r, r]]α,β + [[0, s]]α,β

r + s · [[0, 1]]α,β = [[r, r + s]]α,β.

From Lemma 2.7, we know that r + s ∈ MR, which implies that

[[r, r + s]]α,β, and therefore, r + s · [[0, 1]]α,β is in fact an element of M .

So, we can write M = {r + s · [[0, 1]]α,β : r, s ∈MR}.
�

Our next goal is to show that MR is a subring of R, mainly using

coordinate transformations. From our set of angles U , we choose any

two angles γ and δ. Then, we can convert (α, β)−coordinates into

(γ, δ)−coordinates.

Definition (γ−projection). Let γ ∈ U \ {0} be arbitrary. Denote

the γ−projection of [[0, 1]]α,β with

p(γ) := γ ([[0, 1]]α,β) .

See that p(γ) ∈ MR. Lemma 2.6 tells us p(α) = 0, and p(β) = 1.

Additionally, if γ 6= δ, then p(γ) 6= p(δ). So, there is a one-to-one map

p : U \{0} →MR. The following figure shows the coordinate conversion

of an origami point through projections.
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Re

Im

[[0, 1]]α,β

p(α)

α
β

p(β)p(δ)

δ

p(γ)

γ

Figure 2.15. Different projections of [[0, 1]]α,β.

In Figure 4.15, note that for [[0, 1]]α,β, p(α) = 0, and p(β) = 1.

When transitioning to different pairs of angles, we can show that the

difference between our new projection points are still in MR.

Proposition 2.9 (Coordinate Conversion). Let γ, δ ∈ U \ {0} be

two different angles. For any r, s ∈MR, the following equations hold.

(1) [[r, s]]α,β = [[r + (s− r)p(γ), r + (s− r)p(δ)]]γ,δ
(2) [[r, s]]α,β =

[[
sp(γ)− rp(δ)
p(γ)− p(δ) ,

r − s+ sp(γ)− rp(δ)
p(γ)− p(δ)

]]
α,β

.

Proof. This proof utilizes the properties of Proposition 2.1 and

previous lemmas.

(1) By the definition of a projection, we know p(γ) = γ ([[0, 1]]α,β),

and p(δ) = δ ([[0, 1]]α,β) . So, [[0, 1]]α,β = [[p(γ), p(δ)]]γ,δ. Then,

by Lemma 2.6, we can see that:

[[1, 0]]α,β = 1− [[0, 1]]α,β

= [[1, 1]]α,β − [[0, 1]]α,β

= [[1, 1]]α,β − [[p(γ), p(δ)]]γ,δ

= [[1, 1]]γ,δ − [[p(γ), p(δ)]]γ,δ

= [[1− p(γ), 1− p(δ)]]γ,δ.
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Now, we can represent [[r, s]]α,β in (γ, δ)−coordinates.

(2) If [[r, s]]γ,δ = [[x, y]]α,β for some x, y ∈MR, then by Proposition

2.8.1, x and y satisfy the following linear system:x+ (y − x)p(γ) = r

x+ (y − x)p(δ) = s

 .

Since we have chosen γ 6= δ, then we know that p(γ) 6=
p(δ), so there is a unique solution (x, y) to the system. Then,

since this is a linear system, we may row reduce the appropri-

ate augmented matrix to find the solution:

rref

1− p(γ) p(γ) r

1− p(δ) p(δ) s

 =

1 0
sp(γ)− rp(δ)
p(γ)− p(δ)

0 1
r − s+ sp(γ)− rp(δ)

p(γ)− p(δ)

 .
Hence we have shown that

[[r, s]]α,β =

[[
sp(γ)− rp(δ)
p(γ)− p(δ) ,

r − s+ sp(γ)− rp(δ)
p(γ)− p(δ)

]]
α,β

,

completing our proof.

�

Moving forward, we consider the differences p(γ) − p(δ), and the

quotients (p(γ)− p(δ))−1 , and show that both quantities are elements

of MR. We introduce some new notation here.

Definition (∆). We denote the set of all differences p(γ) − p(δ)
by ∆, where γ 6= δ, and γ, δ ∈ U \ {0} :

∆ := {p(γ)− p(δ) : γ, δ ∈ U \ {0} and γ 6= δ}.

Note, in particular, that 0 is not an element of ∆. Hence, we define

the set ∆−1.
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Definition (∆−1). The reciprocals of differences p(γ) − p(δ) can

be a different set, denoted by ∆−1 :

∆−1 := {d−1 : d ∈ ∆}

∆−1 =

{
1

p(γ)− p(δ) : γ, δ ∈ U \ {0} and γ 6= δ

}
.

See that ∆ generates a subring of R, we will denote this subring as

Z [∆] .

Lemma 2.10. The subring Z [∆] is a subset of MR.

Proof. First, letR be the ring Z [p(γ) : γ ∈ U \ {0}] .We will show

that R = Z [∆] by showing that the two sets are subsets of each other.

Clearly, Z [∆] ⊆ R. To show R ⊆ Z [∆] , we consider some element

r ∈ R. By the way that we defined R, r is just a sum of addents:

z · p(γ1) · · · p(γs), where z ∈ Z and γ1, . . . , γs ∈ U \ {0}. Now, since

p(α) = 0, then:

r = z · p(γ1) · · · p(γs) = z · (p(γ1)− p(α)) · · · (p(γs)− p(α)) .

Notice that z · (p(γ1)− p(α)) · · · (p(γs)− p(α)) ∈ Z [∆] , so r ∈ Z [∆] .

Now, we’ll show that p(γ) · MR ⊆ MR for all γ ∈ U \ {0}. Choose

an arbitrary γ ∈ U \ {0} and s ∈ MR. Then, [[0, s]]α,β ∈ M , and so

γ ([[0, s]]α,β) ∈ MR. By linearity, γ ([[0, s]]α,β) = p(γ) · s. Since Z is a

subset of MR, repeatedly applying the previous result shows that MR

contains all of the products z · p(γ1) · · · p(γs), where s ∈ N, z ∈ Z, and

γ1, . . . , γs ∈ U \{0}. Then, since MR is closed under addition, R ⊆MR,

and hence Z [∆] ⊆MR, our desired result. �

Notice that ∆∪∆−1 also generates a subring of R. Let’s denote this

subring as Z [∆,∆−1] .
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Lemma 2.11. The subring Z [∆,∆−1] is a subset of MR.

Proof. Consider (p(γ)− p(δ))−1 ·MR ⊆MR for all γ, δ ∈ U \ {0},
where γ 6= δ. First, we’ll show that p (γ)−1 · MR ⊆ MR is true for

all γ ∈ U \ {0, α}. Let γ and r ∈ MR be arbitrary elements. Then,

[[r, 0]]γ,α ∈ M, so β ([[r, 0]]γ,α) ∈ MR. Recall that p(α) = 0 because we

have [[r, 0]]γ,α. By Proposition 2.9,

β ([[r, 0]]γ,α) =
r − rp(α)

p(γ)− p(α)

=
r

p(γ)
.

Hence,
r

p(γ)
∈ MR, so we have shown that p (γ)−1 ·MR ⊆ MR. Next,

we’ll show that (p(γ)− p(δ))−1 ·MR ⊆ MR. Consider some γ, δ ∈ U \
{0}, where γ 6= δ, and s ∈ MR. Suppose γ 6= α. Then, p(γ)−1s ∈ MR,

so [[0, p(γ)−1s]]γ,δ ∈ M. We know that α ([[0, p(γ)−1s]]γ,δ) ∈ MR. By

Proposition 2.9,

α
(
[[0, p(γ)−1s]]γ,δ

)
=
p(γ)−1s · p(γ)

p(γ)− p(δ)
=

s

p(γ)− p(δ) .

Hence,
s

p(γ)− p(δ) ∈ MR, and we have shown (p(γ)− p(δ))−1 ·MR ⊆
MR. Note that if γ = α, then δ 6= α. �

We’ll use Z [∆,∆−1] to describe MR, and identify some more of the

properties of MR.

Theorem 2.12. The equality MR = Z [∆,∆−1] holds, showing that

MR is a subring of R.

Proof. From our work in Lemma 2.11, we have already shown

that Z [∆,∆−1] ⊆ MR, so the only step left to show for set equality
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is that MR ⊆ Z [∆,∆−1] . The subring fact follows because we already

know that Z [∆,∆−1] is a subring of R. To show that MR ⊆ Z [∆,∆−1] ,

we proceed through a proof by induction on projections of generations

of the origami set; in other words, that α (Mk) and β (Mk) are subsets

of Z [∆,∆−1] . Recall that Mk is a generation of the origami set, and

each is defined recursively, where

M =
∞⋃
k=0

Mk.

For k = 0, α(M0) = β(M0) = M0 = {0, 1} ⊆ Z [∆,∆−1] . Now, let’s

assume our induction hypothesis, that for some k ∈ N, both α(Mk) ⊆
Z [∆,∆−1] and β(Mk) ⊆ Z [∆,∆−1] . We’ll show that our claim holds

for k + 1. Let z be some element of Mk+1. We know that there exist

x, y ∈Mk, and angles γ, δ ∈ U, where γ 6= δ such that

z = [[x, y]]γ,δ.

First, we’ll assume that γ 6= 0 and δ 6= 0. Then, by Proposition 2.9,

γ(z) = α(x) + (β(x)− α(x)) p(γ).

We know α(x) and β(x) are elements of Z [∆,∆−1] . By the induction

hypothesis, γ(x) ∈ Z [∆,∆−1] , and δ(y) ∈ Z [∆,∆−1] . Now, z has

(γ, δ)−coordinates (γ(x), δ(y)) , so by Proposition 2.9,

[[α(z), β(z)]]α,β = z

= [[γ(x), δ(y)]]γ,δ

=

[[
δ(y)p(γ)− γ(x)p(δ)

p(γ)− p(δ) ,
γ(x)− δ(x) + δ(y)p(γ)− γ(x)p(δ)

p(γ)− p(δ)

]]
α,β

.

Hence, α(z), β(z) ∈ Z [∆,∆−1] .
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Next, let’s assume that γ = 0. Note that this implies δ 6= 0, and

let’s further assume that δ 6= α. Consider (α, δ)−coordinates. Then in

a similar process as above, we can see that δ(x), δ(y) ∈ Z [∆,∆−1] . To

show that α(z) ∈ Z [∆,∆−1] , we’ll return to our geometric thinking.

Consider the line x+ R, seen in the following figure.

Re

x+ R

Im

δ(x)

px

α(p) δ(p)α(x)

Figure 2.16. The point p lies on x + R if and only if

α(p)− δ(p) = α(x)− δ(x).

Note that p ∈ C must follow that condition because of the congru-

ency of the triangles with vertices {α(x), x, δ(x)} and {α(p), p, δ(p)}.
So, by induction, α(x) ∈ Z [∆,∆−1] . Hence, α(x)− δ(x) ∈ Z [∆,∆−1] .

By the definition of z, we know that δ(z) = δ(y). Since z ∈ x + R, we

know

α(z) = δ(y) + (α(x)− δ(x)) ,

and both δ(y), (α(x)− δ(x)) ∈ Z [∆,∆−1] . Next, transforming the

(α, δ)−coordinates of z using Proposition 2.9, we have

β(z) =
α(z)− δ(y)− α(z)p(δ)

−p(δ) ∈ Z
[
∆,∆−1

]
.

The case δ = 0 can be reduced to the same case as γ = 0. So, we

have shown that α(z) and β(z) for z ∈ Mk+1 are both elements of

Z [∆,∆−1] , completing our induction. So, MR = Z [∆,∆−1] . �
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We have now shown that MR is a subring of R. Since we have shown

that M is the MR−span of 1 and [[0, 1]]α,β, we can soon show when M

is an origami ring.

5. Origami Rings

We can now provide criteria for an origami set to be an origami

ring, beginning with some trigonometry, and we reach five equivalent

statements. From there, we develop some corollaries. Finally, we show

that M(Ũ), our previous dense origami set, is an origami ring using

our criteria.

Lemma 2.13. We have some preliminaries about an origami set.

(1) The two equalities

[[0, 1]]α,β = −cosα · sin β
sin(α− β)

− i · sinα · sin β
sin(α− β)

|[[0, 1]]α,β|2 =
sin2 β

sin2(α− β)

hold.

(2) The equation [[0, 1]]α,β ·[[1, 0]]α,β =
[[

sin2 β
sin2(α−β) ,

sin2 α
sin2(α−β)

]]
α,β

holds.

(3) For any γ ∈ U \ {0}, we have p(γ) = sin(α−γ) sinβ
sin(α−β) sin γ .

Proof. As a note, all of the quotients are well-defined because

α, β, γ ∈ (0, π) and α 6= β.

(1) By definition, {[[0, 1]]α,β} = (0 + Reiα)∩
(
1 + Reiβ

)
. Then, us-

ing our various representations for complex numbers, we see
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that we must solve the equation λeiα = 1 + µeiβ.

λeiα = 1 + µeiβ

λ (cosα + i sinα) = 1 + µ (cos β + i sin β)

The real parts must be equal to each other, and the imaginary

components must be equal to one another, and so we have:

λ cosα = 1 + µ cos β

λ sinα = µ sin β

 .

From here, solving for λ and µ gets us to the correct expression.

This makes use of many trigonometric identities.

λ cosα = 1 + µ cos β

µ =
λ cosα− 1

cos β

λ sinα =
λ cosα− 1

cos β
sin β

λ sinα =
λ cosα sin β − sin β

cos β

λ sinα = λ cosα tan β − tan β

tan β = λ cosα tan β − λ sinα

λ =
tan β

cosα tan β − sinα

λ = − tan β

sinα− cosα tan β

λ = − sin β

sin(α− β)
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We substitute our new expression for λ into our expression for

µ.

µ =
λ cosα− 1

cos β

µ =
1

cos β

(
− sin β

1

sin(α− β)
cosα− 1

)
µ = − tan β

cosα

sin(α− β)
− 1

cos β

µ = − sinα

sin(α− β)
.

Finally, combining these results for λ and µ with the expres-

sions for the real and imaginary components, we have:

{[[0, 1]]α,β} = λ cosα + iµ sin β

{[[0, 1]]α,β} = −cosα · sin β
sin(α− β)

− i · sinα · sin β
sin(α− β)

.

Squaring this result gives us the expression for |[[0, 1]]α,β|2 .
(2) To show the second part, we start with our last result. Com-

puting z, we have

z := [[0, 1]]α,β · [[1, 0]]α,β

z = [[0, 1]]α,β · (1− [[0, 1]]α,β) .

The intersection R ∩ (z + Reiα) gives the α−projection of z,

and the intersection R ∩
(
z + Reiβ

)
gives the β−projection of

z. By a similar trigonometric argument, we reach that

[[0, 1]]α,β · [[1, 0]]α,β =

[[
sin2 β

sin2(α− β)
,

sin2 α

sin2(α− β)

]]
α,β

.



5. ORIGAMI RINGS 50

(3) The definition of p(γ) tells us that {p(γ)} = R∩([[0, 1]]α,β + Reiγ) .

Using Part (1) of this lemma, we set up the following system:
λ cosα = − cosα sin β

sin(α− β)
+ µ cos γ

0 = − sinα sin β

sin(α− β)
+ µ sin γ.

 .

Solving it, in a similar manner as in Part (1) of this lemma

and facts about projections, give us p(γ) =
sin(α− γ) sin β

sin(α− β) sin γ
,

our desired result.

�

We are now ready for the main theorem of Möller’s work [Möl18].

With Lemma 2.13, we are able to prove some of the criteria easily.

Theorem 2.14. For an origami set M, the following statements

are equivalent:

(1) M is an origami ring.

(2) The complex number [[0, 1]]α,β is integral over MR of degree

two (there exists a monic irreducible quadratic polynomial f ∈
MR [X] such that f ([[0, 1]]α,β) = 0).

(3) Both
sin2 β

sin2(α− β)
and 2

cosα sin β

sin(α− β)
are elements of MR.

(4) Both
sin2 α

sin2(α− β)
and

sin2 β

sin2(α− β)
are elements of MR.

(5) [[0, 1]]α,β · [[1, 0]]α,β is an element of M.

Proof. For readability, let e := [[0, 1]]α,β. Then, 1 − e = [[1, 0]]α,β.

We will show that each statement implies the next, and the final im-

plies the first.

First, let’s show that (1⇒ 2) . Let’s assume that M is an origami

ring. Then we know that e2 ∈ M. By Theorem 2.8, there exist r, s ∈
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MR. where e2r + se. So, the monic quadratic polynomial f := X2 −
sX − r ∈ MR [X] has a zero of e. Since e is not a real number, f is

irreducible, proving Theorem 2.14.2.

Now, we’ll show that (2⇒ 3) . Let’s assume that there exists a

monic irreducible quadratic polynomial f ∈MR [X] such that f ([[0, 1]]α,β) =

0. Since f is a real polynomial, the complex conjugate e of e is also a

zero of f. Then,

f = (X − e)(X − e)

f = X2 − 2Re(e)X + |e|2 .

We know f to be in MR [X] , so 2Re(e) and |e|2 are elements of MR.

Then, using the criteria of Lemma 2.13.1, we have the result of Theo-

rem 2.14.3.

Next, we will show that (3⇒ 4) . Assume that both sin2 β
sin2(α−β) and

2 · cosα sinβ
sin(α−β) are elements of MR. Using the angle difference identities,

sin2 α

sin2(α− β)
= 1 + 2

cosα sin β

sin(α− β)
+

sin2 β

sin2(α− β)
.

Since MR is closed under addition, the above equation shows that
sin2 α

sin2(α− β)
∈MR, hence proving Theorem 2.14.4.

For our penultimate step, we will show that (4⇒ 5) . Let’s assume

that both
sin2α

sin2(α− β)
and

sin2β

sin2(α− β)
are elements of MR. Consider

the (α, β)− coordinates of e(1−e). By Lemma 2.13.2, they are elements

of MR, showing that e(1− e) ∈M, the result of Theorem 2.14.5.
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Finally, we’ll show that (5⇒ 1) . We assume that [[0, 1]]α,β · [[1, 0]]α,β

is an element of M, and we’ll show that this one product tells us if

M is an origami ring. We know that M is a group under addition by

Theorem 2.8. So, e ∈M gives:

e2 = e− e+ e2

e2 = e− e(1− e).

We know that e − e(1 − e) ∈ M. Let e2 = [[r, s]]α,β. Recall that

M = MR + MR · [[0, 1]]α,β. To show that M(U) is a subring of C,

we use linearity and the intersection formula to show closure under

multiplication for some x, y ∈M(U), where x = a+ be and y = c+ de,

and a, b, c, d ∈MR:

xy = (a+ be)(y + de) = ac+ (ad+ bc)e+ bde2

xy = ac[[1, 1]]α,β + (ad+ bc)[[0, 1]]α,β + bd[[r, s]]α,β

xy = [[ac+ bdr, ac+ ad+ bc+ bds]]α,β.

Due to the ring structure of MR, the α− and β− projections of xy are

elements of M−R, showing that xy ∈M , and consequent closure under

multiplication for M. Hence we have shown that if [[0, 1]]α,β · [[1, 0]]α,β is

an element of M, then M is a ring. �

The significance of the first and last statements of Theorem 2.14

cannot be understated. Thus far, we have been understanding our

origami sets by step-wise constructing them, and seeing them to de-

termine underlying structure. However, now, we can calculate only

first-generation points to determine the entire algebraic structure of

the origami set. While these statements are powerful on their own, we

can use them to elucidate even more criteria for an origami set to be
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an origami ring.

Corollary 2.15. If M is an origami ring and if U ′ ⊆ (0, π) con-

tains U, then M(U ′) is an origami ring too. The ring property of M is

preserved under extensions of U.

Proof. Choose α, β ∈ U. Then, since M is an origami ring, by

Theorem 2.14, [[0, 1]]α,β · [[1, 0]]α,β ∈ M. Since U ⊆ U ′, it is clear that

M ⊆M(U ′). Hence [[0, 1]]α,β · [[1, 0]]α,β ∈M(U ′), and by Theorem 2.14,

M(U ′) is an origami ring.

�

The next result answers whether every origami set is a subset of an

origami ring (yes).

Corollary 2.16. If the set U of prescribed slopes contains
π

3
and

2π

3
, then M is an origami ring.

Proof. Set α =
π

3
and β =

2π

3
. Then,

sin2 α

sin2(α− β)
= 1

sin2 β

sin2(α− β)
= 1.

We know that 1 ∈ MR. Hence, by Theorem 2.14 M

(
U ∪

{
π

3
,
2π

3

})
is an origami ring.

�

Corollary 2.15 and Corollary 2.16 show that by allowing at most

two additional slopes, every origami set extends to an origami ring.
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Every origami set is contained in an origami ring. Later, we will ex-

plore how we might be able to classify these “parent” origami rings.

6. An Example

Recall our previous example of M(Ũ), where Ũ =
{

0,
π

3
,
π

4
,
π

5

}
.

Earlier, we noted that this is a dense set, and wondered whether a lack

of topological structure may imply anything about algebraic structure.

We will use the criteria of Theorem 2.14 to show that M(Ũ) is in fact

an origami ring. Set α := π
3
, β := π

4
, and γ := π

5
. Then,

sin2 α

sin2(α− β)
= 6 + 3

√
3

sin2 β

sin2(α− β)
= 4 + 2

√
3.

At first glance, this does not seem particularly helpful, but we will use

other criteria too. It follows that M is an origami ring if and only if
√

3 ∈MR = Z
[
p, 1

p
, 1
p−1

]
. Here,

p := p(γ) =
sin(α− γ) sin β

sin(α− β) sin γ
=
(

1 +
√

3
)√

2 +
2√
5

sin

(
2π

15

)
.

This is the use of Z [∆,∆−1] . See that p is algebraic over Q, and the

minimal polynomial is given by

X8 + 4X7− 8X6− 20X5 +
104

5
X4 + 16X3− 8X2− 16

5
X +

16

25
∈ Q [X] .

Since MR ⊆ Q(p),
√

3 ∈ Q(p) is necessary for M to be a ring. Note

that X2 − 3 ∈ Q(p) [X] splits, showing that
√

3 ∈ Q(p). We proceed

by showing that
√

3 ∈MR. Since

MR = Z
[
p,

1

p
,

1

p− 1

]
=

{
f(p)

pa (p− 1)b
: f ∈ Z [X] and a, b ∈ N

}
,
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we know that
√

3 is an element of MR if and only if there are f ∈
Z [X] and a, b ∈ N such that

√
3pa (p− 1)b = f(p) is satisfied.

To choose f, a, and b, we choose random parameters a, b and check

if X2 − 3p2a(p − 1)2b splits over Q(p). If so, roots can be represented

as polynomials in p with rational coefficients. After a number of steps,

we find that (a, b) = (5, 4) yields:

√
3 =

1

p5(p− 1)4
(−20p13 − 80p12 + 140p11 + 305p10 − 338p9 + 110p8

+ 292p7 − 194p6 − 825p5 + 46p4 + 242p3 − 28p2 − 56p+ 8) ∈MR.

By Theorem 2.14, M is an origami ring. Here, we see that M has

algebraic structure. But, we have noted that M is a dense set. So, it

is possible to have the algebraic structure of a ring without having the

topological structure of a lattice. Prior to this example, we have only

seen origami sets that are both lattices and rings. We now know that

an origami lattice is not a prerequisite for an origami ring.

Now that we understand what gives rise to the structure of an

origami set in C, we will turn our attention to origami sets in H, and

see how the hyperbolic plane might elucidate more about the conditions

for structure in an origami set.



CHAPTER 3

The Hyperbolic Plane and Hyperbolic Geometry

1. Introduction to Hyperbolic Geometry

Thus far, we have been working in the complex plane, which is

a Euclidean space. Now, Euclidean spaces are made from Euclidean

geometry, and Euclidean geometry is familiar to us. Euclidean spaces

must follow the postulates of Euclid, which are listed below [Sta93] A

small explanation is also given below statements to understand their

meanings.

(1) To draw a straight line from any point to any point.

This says that every pair of distinct points can be joined

by a straight line. Furthermore, this includes the assumption

that two points can be joined by at most one straight line.

(2) To produce (extend) a finite straight line continuously in a

straight line.

This tells us that the plane extends infinitely far in all di-

rections.

(3) To describe a circle with any centre and distance (radius).

56
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Given a point A and a line segment AB, there exists a cir-

cle with center A and radius AB.

(4) That all right angles are equal to one another.

The right angle is Euclid’s unit for measuring all rectilineal

angles, but Euclid did not have a way to prove the congruence

of all right angles.

(5) [The parallel postulate]: That, if a straight line falling on two

straight lines make the interior angles on the same side less

than two right angles [in sum], the two straight lines, if pro-

duced indefinitely, meet on that side on which the angles are

less than two right angles.

The parallel postulate can be stated in many different ways. Play-

fair’s expression of the postulate is that given a a Euclidean line L

and a point p which is not on L, there exists a unique line through p

that is parallel to L. However, in hyperbolic geometry, we use the first

four axioms, and do not assume the Parallel Postulate. There are two

ways in which we can ignore the Parallel Postulate: if there is no line

through p that is parallel to L, or more than one line through p that

is parallel to L. If there are no lines satisfying that condition, then we

find ourselves using elliptical geometry. If there are more than one lines

satisfying those conditions, then we find ourselves using hyperbolic ge-

ometry. Hence, given a hyperbolic line ` and a point p not on `, there

are at least two hyperbolic lines through p and parallel to `.
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One representation of the hyperbolic plane is saddle-shaped, which

also has interesting implications for the sum of interior angles in poly-

gons. This introduction to and subsequent discussion of hyperbolic ge-

ometry comes from Anderson’s book on Hyperbolic Geometry [And05].

The hyperbolic plane is simply a plane where the first four postu-

lates hold. Additionally, there are at least two lines through a point p

that are parallel to a given line `. This is true in every representation

of the hyperbolic plane. There are many representations that we can

use for the hyperbolic plane. For our constructions, we will first work

with the upper half-plane H in C, defined as H = {z ∈ C : Im (z) > 0};
the upper half-plane looks like the upper half of the complex plane.

In H, a point retains the same notions from C. The angle between

two curves in H is still defined to be the angle between the curves when

they are considered to be curves in C, which we know to be the angle

between their tangent lines. A Euclidean line ax+ by + c = 0 in terms

of complex coordinates is given by

1

2
(a− ib) z +

1

2
(a+ ib) z + c = 0.

Though single hyperbolic lines share many properties with single Eu-

clidean lines, we have yet to define a hyperbolic line.

Definition (Hyperbolic Line). A hyperbolic line can be defined in

two ways, both in terms of Euclidean objects in C:

(1) as the intersection of H with a Euclidean line in C perpendic-

ular to the real axis R in C.

(2) as the intersection of H with a Euclidean circle centered on

the real axis R.
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Clearly the hyperbolic definition of a line is a little different from a

Euclidean line. But, we can see that there are similarities between the

two.

Theorem 3.1. For each pair p and q of distinct points in H, there

exists a unique hyperbolic line ` in H passing through p and q.

Proof. There are two cases to consider here. First, suppose that

Re (p) = Re (q) . Then, the Euclidean line L given by the equation

L = {z ∈ C|Re (z) = Re (q)} is perpendicular to the real axis and

passes through both p and q. So, the hyperbolic line ` = H ∩ L is the

hyperbolic line through p and q such that Re (p) = Re (q) .

Now, suppose that Re (p) 6= Re (q) . Since the Euclidean line through

p and q is no longer perpendicular to R, we must construct a Euclidean

circle centered on the real axis R that passes through both p and q.

Let Lpq be the Euclidean line segment joining p and q, and let K

be the perpendicular bisector of Lpq. Then, every Euclidean circle that

passes through p and q has its center on K. Since Re (p) 6= Re (q) , then

the Euclidean line K is not parallel to R. Hence, K ∩ R at a unique

point, which we will call c.

Let A be the Euclidean circle centered at c with radius |c − p|
to ensure that A passes through p. Since c lies on K, we know that

|c−p| = |c−q|, so A passes through both p and q. Then, the ` = H∩A
is the hyperbolic line through p and q such that Re (p) 6= Re (q) . �

When p and q have equal real parts, then we know that ` = H∩L,
where ` is the hyperbolic line in H passing through p and q, and L is

the Euclidean line such that L = {z ∈ C|Re (z) = Re (q)}.
Let p and q be distinct points in C with non-equal real parts. Define

Lpq as the Euclidean line segment joining p and q. The midpoint of Lpq



2. ORIGAMI CONSTRUCTIONS IN THE HYPERBOLIC PLANE: A DIRECT TRANSFER?60

is 1
2
(p + q), and the slope of Lpq is m = Im(q)−Im(p)

Re(q)−Re(p)
. The perpendicular

bisector K of Lpq passes through the midpoint, and has slope − 1
m
. So,

K has the equation

y − 1

2
(Im(p) + Im(q)) =

Re (q)− Re (p)

Im(q)− Im(p)

(
x− 1

2
(Re(p) + Re(q))

)
.

The Euclidean center c of A is the x−intercept of K, which is:

c =

[
−1

2
(Im(p) + Im(q))

] [
Im(q)− Im(p)

Re (q)− Re (p)

]
+

1

2
(Re(p) + Re(q))

=
1

2

[
(Im(p))2 − (Im(q))2 + (Re(p))2 − (Re(q))2

Re(p)− Re(q)

]

=
1

2

[ |p|2 − |q|2
Re(p)− Re(q)

]
So, the Euclidean radius of A is r = |c− p| =

∣∣∣12 [ |p|2−|q|2
Re(p)−Re(q)

]
− p
∣∣∣ .

Definition (Parallel Hyperbolic Lines). Two hyperbolic lines are

parallel if they are disjoint.

Now we know what hyperbolic lines are under different circum-

stances. In the following figure, we have several parallel hyperbolic

lines.

2. Origami Constructions in the Hyperbolic Plane: A Direct

Transfer?

In terms of constructions, we can think of our intersections using

the seed points and the above descriptions of hyperbolic lines. Recall

the process for an origami construction: starting with a set of seed

points and a prescribed set of angles, and we form new reference points

using intersections from extensions along the angles from a pre-existing
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Re

Im

Figure 3.1. Several parallel hyperbolic lines: the three

hyperbolic lines to the right are all parallel to the hyper-

bolic line on the left.

reference point.

In the lens of the Euclidean plane, we made the following origami

set using the seed points 0 and 1, and the angles {0, π
3
, 2π

3
}.

0 1 2 3 4 5

Figure 3.2. The origami set constructed from 0 and 1

with angles
{

0, π
3
, 2π

3

}
.

2.1. Euclidean Circles through Seed Points. Now, if we try

to use 0 and 1 as points in the hyperbolic plane, we need to make



2. ORIGAMI CONSTRUCTIONS IN THE HYPERBOLIC PLANE: A DIRECT TRANSFER?62

a decision on how those points are involved in creating the correct

Euclidean circle to form a hyperbolic line. If the Euclidean circle is

chosen to go through a seed point and is centered on the real axis, then

we get the following scenario:

0 1

Figure 3.3. Attempt #1 at an origami construction in H.

Notice that the angle through the seed point is π
2
, which is not an

allowed angle in this particular construction, and we cannot make any

further intersection points. This origami set is just the seed points.

We also have not utilized the angles in making this construction, other

than to determine that this is not the origami set. So, the hyperbolic

line must be something else.

2.2. The Angle through a Seed Point. If we ensure that the

angle through a seed point is given by an angle in U, we must deter-

mine the center of the Euclidean circle. We must also choose a radius.

Then, intersections should be points where these hyperbolic lines in-

tersect. Let’s try this on an example.

We will construct [[0, 1]]π/3,2π/3, and we choose a radius. Let the

radius be 1. So, there is a Euclidean circle that passes through 0, and

the tangent line of this curve has a slope of π
3
. So, there is a point of

magnitude 1 such that the circle centered at this point passes through
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0 with an angle of π
3
. These criteria describe a circle with a center of(

1
2
,−
√
3
2
i
)
, which we plot in the upper half-plane below. This center

was found by analyzing the point on the unit circle where the tangent

line to the boundary was π
3
, and translated accordingly so that the

boundary was at 0, and the center was shifted to the appropriate point.

Re

Im

Figure 3.4. The Euclidean circle passing through 0

with an angle of π
3
.

This is the Euclidean circle
(
x− 1

2

)2
+
(
y +

√
3
2

)2
= 12.

Then, there is a different Euclidean circle that passes through 1,

and the tangent line of this curve has a slope of 2π
3
. If, for a moment,

we think of this Euclidean circle passing through 0, then this describes

the circle with radius 1 and center
(
−1

2
,−
√
3
2
i
)
, plotted below in the

upper half-plane. The center was found using the same procedure as

above.

Re

Im

Figure 3.5. The Euclidean circle passing through 0

with an angle of 2π
3
.

Then, we shift this circle by one unit in the real direction, so we

see:



3. MAPPING FROM C → D 64

Re

Im

Figure 3.6. The Euclidean circle passing through 1

with an angle of 2π
3
.

Note that both of these Euclidean circles are the same Euclidean

circle,
(
x− 1

2

)2
+
(
y +

√
3
2

)2
= 12, and since they are equal, they have

infinitely many intersection points. But, that is far too many intersec-

tion points for this to be an origami set.

Clearly, there is much discretion here, and this freedom can be

limited by instead understanding a mapping from C to H to under-

stand how the origami construction behaves in H. If we know the

image of points of a particular construction, and we know how they

were formed, then we can begin to understand how the set can be con-

structed through origami. After that, we can start to understand the

algebraic properties of a hyperbolic origami set, and how transforma-

tions might change the interactions between points.

3. Mapping from C→ D

There are many existing maps from C to H. Instead of the upper-

half plane model of the hyperbolic plane, let’s use the Poincaré disk,

denoted as D. This is another model for two-dimensional hyperbolic

geometry on the unit disk. The disk has radius 1, and the boundary is

also infinite. The upper half-plane can be thought of as the Poincaré

disk with infinite radius. Eventually, the boundary begins to look like
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a straight line, giving us the upper half-plane. Looking at a previous

origami construction, like Figure 3.2, see how this construction is a

tiling of C by triangles. The Poincaré disk can be similarly tiled by

triangles, as seen in the following figure.

Figure 3.7. A tiling of D by triangles [Chr20].

Notice that in Figure 3.7, there are seven equilateral triangles around

a vertex. Yet, in Figure 3.2, we see that there are six triangles around

a vertex. This is because the sum of interior angles of a hyperbolic

triangle is less than 180◦, allowing for the extra triangle. In fact, seven

is the minimum number of triangle around a vertex. Furthermore, each

triangle in Figure 3.7 has the same area [Sta93]. Maybe if we see how

the folding pattern alters in D, then we can find where the seventh

triangle comes from while maintaining the same area.
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We’ll turn our attention to back the origami set Z [i] , and concen-

trate on the points generated in the first few generations. We return to

Z [i] because the numbers formed in this set are very simple, making

the computations much easier. Using the map from H to D given by

ω =
z − i
z + i

, we can try to map individual points of an origami construc-

tion in C, consider only those with Im(z) > 0. Note that we must still

“delete” half of the construction to get to use the map. Some values of

the image of the Gaussian integers under this map can be found in the

following table, where the original [[p, q]]α,β will help us to understand

the polygons.

Table 1. Mapping the points of Z [i] ∩H to D.

[[p, q]]α,β z ω

[[0, 0]]α,β 0 −1

[[1, 1]]α,β 1 −i
[[0, 1]]π/4,π/2 1 + i 1

5
− 2

5
i

[[1 + i, 0]]0,π/2 i 0

[[1 + i, 1]]0,π/4 2 + i 4
5
− 2

5
i

[[2 + i, 1 + i]]π/2,π/4 2 + 2i 7
13
− 4

13
i

See that Im (1 + i) = Im (2 + i) , and these two points have the

same Im (ω) , possibly giving this map a chance at successfully making

a hyperbolic origami set. However, our seed points 0 and 1 turn into a

purely real and purely imaginary number, respectively. Looking at the

values of the image, the possibility of closure of multiplication looks

unlikely, though of course, we have not calculated the entire image of

Z [i] . Plotting our ω points in the Poincaré disk, and connecting lines

appropriately, we see that we form the following figure.
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0

1

i

1 + i

1 + 2i

2 + i

Figure 3.8. Image of H→ D : ω = z−i
z+i

on {z ∈ Z [i] ∩H}.

While some liberties were taken in connecting sides of the quadri-

laterals of Z [i] , these quadrilaterals are a far cry from our lattice in

C. Compare this to the tiling of the Poincaré disk with a minimum

number of (equilateral) quadrilaterals, we see:

Figure 3.9. A tiling of D by quadrilaterals [Chr20].
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Furthermore, in this mapping, we must find the image of each con-

structed point, and reconstruct the polygons using the angles from C.

The angles of U, aside from 0, also do not seem make as much of an

appearance here.

In our attempts to make a hyperbolic analog of origami construc-

tions in the complex plane, we must choose many more constraints. So,

it is clear that there is not a simple correspondence between a complex

origami construction and a hyperbolic one. This is likely due to the

innate geometry of the hyperbolic plane. We will continue to explore

origami sets in the hyperbolic plane, but rather than looking at a direct

origami set, we’ll classify them using the hyperbolic plane as a modular

space.



CHAPTER 4

Origami, Algebra, and the Hyperbolic Plane

1. Revisiting Origami Lattices

Recall that in an origami construction, when we start with three

angles where one is 0, by Theorem 2.4, we obtain a lattice. We can

represent any general lattice as the integral linear combinations of a

set of basis vectors. By Theorem 2.8, we know that an origami set M ,

can be written as the combination MR +MR[[0, 1]]α,β. Since our origami

constructions are two-dimensional, an origami lattice is some Zz1+Zz2.

For an origami lattice, we know that MR = Z (Theorem 2.4). Hence

an origami lattice can be written as Z + Z[[0, 1]]α,β.

We will now turn our attention to the behavior of complex lat-

tices in H to understand the relationship between origami construc-

tions and the hyperbolic plane. While our original goal was to see how

the origami constructions might exist in the hyperbolic plane and how

hyperbolic geometry might affect the underlying algebra of an origami

set, we will instead classify origami lattices using the hyperbolic plane.

We will use group actions of the classical modular group to guide our

classification scheme. Most of the introduction to the classical modular

group is from Voight’s text Quaternion algebras [Voi18].

We have worked closely with two origami lattices, one made from

U1 = {0, π
3
, 2π

3
} and one from U2 = {0, π

4
, 2π

2
}. From this point forward,

69
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we will consider [[0, 1]]α,β where Im ([[0, 1]]α,β) > 0. We also know that

both are origami lattices and origami rings. For now, we’ll focus on

their lattice properties.

2. Lattices

Definition (Homothetic). Two lattices are homothetic if there ex-

ists u ∈ C \ {0} such that Λ′ = uΛ. Then, we write Λ ∼ Λ′.

Lemma 4.1. Homothety of lattices is an equivalence relation.

Proof. We will show that all three parts of the definition of an

equivalence relation are satisfied.

(1) First, we know that Λ ∼ Λ because Λ = 1Λ, and 1 ∈ C \ {0}.
So homothety is reflexive.

(2) Next, if Λ ∼ Λ′, then there exists u such that Λ = uΛ′. It

follows that 1
u
Λ = Λ′ because u ∈ C \{0}, so 1

u
is well-defined,

and Λ′ ∼ Λ.

(3) Finally, if Λ ∼ Λ′, and Λ′ ∼ Λ′′, then we know that Λ = u′Λ′

and Λ′ = u′′Λ′′. So, Λ = u′(u′′Λ′′) = u′u′′Λ′′. We know that

u′u′′ ∈ C \ {0}, so Λ ∼ Λ′′.

�

Since Λ = Zz1 + Zz2 = Zz2 + Zz1, assume that Im
(
z2
z1

)
> 0. Then

there is a homothety Λ = Z + Zτ ∼ Z + Zτ ′ = Λ′. Here, τ = z2
z1
∈ H.

Since Im
(
z2
z1

)
> 0, then {z1, z2} is an oriented basis, i.e. the basis is

asymmetric in a way that makes it impossible to recreate a reflection

through rotations only. A homothety is a transformation of space that

dilates distances. For our origami sets, we can see that τ = [[0, 1]]α,β.



2. LATTICES 71

Before we see conditions that tell us when lattices are homothetic, we’ll

look at the classical modular group.

Recall that SL2(Z) is the special linear group of 2 × 2 matrices

with integer entries and determinant 1. Additionally, SZ2(Z) is the

subgroup of scalar transformations with determinant 1. The projective

special linear group PSL2(Z) is the quotient group SL2(Z)/SZ2(Z). We

name PSL2(Z) as the classical modular group, and we can also define

it as follows:

PSL2(Z) =

γ =

a b

c d

 : a, b, c, d ∈ Z, ad− bc = 1

 /{±1}.

See that nothing acts trivially on an element of H except for the identity

matrix.

Define

S =

0 −1

1 0

 , T =

1 1

0 1

 ∈ PSL2(Z).

For some z ∈ H, we see that S acts to “invert” a point into the unit

circle, and T acts to translate z one unit to the right. Also note

SS =

−1 0

0 −1

 = 1 ∈ PSL2(Z).

Additionally,

ST =

0 −1

1 1

 ,
and

(ST )3 =

−1 0

0 −1

 = 1.
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We’ll put these thoughts aside for a moment, and try to understand

the action of PSL2(Z).

Consider the fundamental domain, shown below in Figure 4.1. We’ll

denote the fundamental domain as t. The fundamental domain is given

by

t = {z ∈ H : −1

2
≤ Re(z) ≤ 1

2
and |z| ≥ 1}.

See that t is a hyperbolic triangle with vertices at ω = −1
2
−
√
3
2
i,

ω2 = 1
2

+
√
3
2
i, and ∞.

Re

Im

Figure 4.1. The fundamental domain, t, in H.

Applying S and T to the vertices tesselate t. In the following figure,

we see that t is denoted by 1, and words in S, T denote the action.

We’ll now explore the relationship of t to Γ.

Lemma 4.2. For all z ∈ H, there exists a word γ ∈ 〈S, T 〉 such that

γz ∈ t.

Proof. We will determine this word using a reduction algorithm.

Translate z so that |Re(z)| ≤ 1
2
. If |z| ≥ 1, then we are done. If |z| ≤ 1,
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Figure 4.2. Tesselations of t by words S, T [Voi18].

then

Im

(
−1

z

)
=

Im(z)

|z|2 > Im(z).

By repeating this process, we develop a sequence z1, z2, . . . , zn, and

Im(z1) < Im(z2) < · · · < Im(zn). This is completed in a finite number

of steps because we know that

Im(gz) =
Im(z)

|cz + d|2 , g ∈ PSL2(Z),

and the number of c, d ∈ Z such that |cz + d| < 1 is finite. There are

only finite elements of this bound because Z+Zz is a complex lattice.

When this algorithm terminates, we have a word γ in 〈S, T 〉 such that

γz ∈ t, completing our proof.

�

So, we now know that we can make our basis point z of our lattice

in H go into the fundamental domain.

Lemma 4.3. Let z, z′ ∈ t, and suppose z ∈ int(t) lies in the inte-

rior of t. If z′ = γz with γ ∈ Γ, then γ = 1 and z = z′.
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Proof. From our assumptions, we see that

Im(z′) =
Im(z)

|cz + d|2 .

This is a proof by contradiction.

First, let’s suppose that Im(z′) ≥ Im(z). Then,

|cz + d|2 = (cRe(z) + d)2 + c2 (Im(z))2 ≤ 1.

Since Im(z) > Im(ω) =
√
3
2
, we know that c2 ≤ 4

3
, and clearly |c| ≤ 1.

Now, if c = 0, then ad − bc = ad = 1, and a = d = ±1. Hence

z′ = γz = z ± b, which implies b = 0 and γ = 1. Alternatively, if

|c| = 1, then

(cRe(z) + d)2 + c2 (Im(z))2 ≤ 1

(cRe(z) + d)2 ≤ 1− (Im(z))2

(cRe(z) + d)2 ≤ 1− 3

4

(cRe(z) + d)2 ≤ 1

4
.

We also know that |Re(z)| < 1
2
. These two previous inequalities imply

that d = 0, so |cz + d| = |z| ≤ 1, and we know z ∈ int(t), so |z| > 1.

This is our first contradiction.

Now, let’s assume that Im(z′) < Im(z). By the same argument, we

reach |Re(z)| ≤ 1
2
, and consequently, |z| < 1, our second contradiction.

So if z′ = γz with γ ∈ Γ, then γ = 1 and z = z′.

�

We are now ready to show that S and T alone generate Γ =

PSL2(Z).

Lemma 4.4. The elements S and T generate Γ = PSL2(Z).
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Proof. Let z = 2i ∈ int(t). Let γ ∈ Γ, and let z′ = γz. By

Lemma 4.2, there exists a word γ′ ∈ 〈S, T 〉 such that γ′z′ ∈ t. By

Lemma 4.3, we know that γ′z′ = (γ′γ) z = z, so γ′γ = 1 and γ = γ′ ∈
〈S, T 〉.

�

Hence PSL2(Z) has the presentation 〈S, T |S2 = (ST )3 = 1〉.

Corollary 4.5. The set t is a fundamental set for the action of

PSL2(Z) on H.

We’ll use our previous lemmas and discussion of Γ to understand

that PSL2(Z)\H is a moduli space of complex lattices.

Lemma 4.6. Let Λ = Z + Zτ and Λ′ = Z + Zτ ′ be lattices with

τ, τ ′ ∈ H. Then Λ ∼ Λ′ if and only if there exists some A ∈ SL2(Z)

such that τ ′ = Aτ.

Proof. First, let’s prove the forward direction. Let’s assume that

Λ and Λ′ are homothetic. Then there exists some u ∈ C\{0} such that

Λ = uΛ′. So, u and uτ ′ generate Λ, so there exists g ∈ PSL2(Z), where

ατ ′ = aτ + b, and α = cτ + d. Then,

τ =
aτ + b

α
=
aτ + b

cτ + d
=

a b

c d

 τ.
Since τ and τ ′ are both in H, then ad − bc = 1, so g ∈ SL2(Z).

Conversely, suppose there is some A =

a b

c d

 ∈ SL2(Z), such that

τ ′ = Aτ. Let α = cτ + d. Then, ατ ′ = aτ + d, so Λ′ ⊆ αΛ. Since

ad−bc = 1, then τ = A−1τ ′, and A−1 ∈ SL2(Z), showing that αΛ ⊆ Λ′.
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So, Λ is homothetic to Λ′.

�

Lemma 4.6 tells us that there is a bijection

Y = Γ\H→ {Λ ⊂ C}/∼ Γτ 7→ [Z + Zτ ] .

This is telling us that Y = Γ\H parameterizes a class of equivalent

complex lattices up to homothety. In this map, Y, the quotient Γ\H
corresponds to a complex lattice, which is related by homothety un-

der Γτ. Such homothetic lattices are found through Γτ. Since t is the

fundamental domain for the group action of Γ on H, we need γτ to be

within t.

As it turns out, to explore the behavior of origami sets in the hy-

perbolic plane, we do not go through the origami procedure. Instead,

we think about the bijection given above that tells us where homo-

thetic lattices are sent in the fundamental domain. We’ll explore some

homothetic origami lattices, and see their image in t, and raise some

new questions and ways to think about answering them.

3. Finding Homothetic Lattices

Thinking about the origami lattices that we have worked with most,

Z + Z[[0, 1]]π/3,2π/3 and Z + Z[[0, 1]]π/4,π/2, we could try to see if they

are homothetic and where they might be sent under Γ\H. In short,

these two origami lattices are not homothetic, because we know that

[[0, 1]]π/3,2π/3 = 1
2

+
√
3
2
i, while [[0, 1]]π/4,π/2 = 1+ i. There are no γ, γ′ ∈ Γ

such that γ

 1
2
√
3
2

 = γ′

1

1

 because we will never be able to generate
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the
√

3 if the entries of γ are integers. So, we’ll have to creatively ex-

plore other angles that might lead to homothetic origami lattices.

Being creative in this way is very difficult, because we are trying

to find homotheties. But, we must keep in mind that the entries of γ

must be integers, and γ must have a determinant of 1. For example,

trying the two origami lattices given by Z + Z[[0, 1]]π/4,π/2, and Z +

Z[[0, 1]]π/4,3π/4, we find ourselves trying to solve the following equation:a b

c d

1

1

 =

a′ b′

c′ d′

1
2

1
2

 .
Since Γτ = Γτ ′, we should be able to find the right γ′ for any chosen

γ. So, let γ = S. Then

S[[0, 1]]π/4,π/2 =

−1

1

 .
Unfortunately, for us, then we have−1

1

 =

a′2 + b′

2

c′

2
+ d′

2

 .
There are no values of a′, b′ ∈ Z that will satisfy both the condition

of the determinant and the condition provided by γτ. So, these two

origami lattices are not homothetic.

4. Classification Examples

Despite not having a homothety, we can still use Y. We can map

the lattice Z+Z[[0, 1]]π/4,π/2 to the point i in the fundamental domain,
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using γ = ST. Indeed,

ST [[0, 1]]π/4,π/2 = ST

1

1

 =

0

1

 ,
which is the point i, which is in the fundamental domain t. Similarly,

Z + Z[[0, 1]]π/4,3π/4 can be sent to −1
2

+ i because

ST

1
2

1
2

 =

−1
2

1

 ,
which is in the fundamental domain, so γ = 1. If we think about an-

other of our previous examples, Z + Z[[0, 1]]π/3,2π/3, then τ = 1
2

+
√
3
2
,

which is already in the fundamental domain. None of these lattices are

sent to the same point in the fundamental domain, and none of these

lattices are homothetic.

Additionally, if we take a random element of PSL2(Z) and apply it

to τ =

1

1

 , of the Gaussian integers, then we should be able to find

some τ ′ that is homothetic. Consider

γ =

−3 −1

−5 −2

 ,
a randomly generated element of Γ produced by Sage [The20]. Then,

γτ =

−3 −1

−5 −2

1

1

 =

−4

−7

 .
So, we know that Λ1 = Z+Z(−4−7i) is homothetic to Λ2 = Z+Z[1+i].

Is Λ1 an origami lattice? We’ll return to this example.

Looking at some previous work, there are two ways to determine

the form of an origami set depending on the angles. There are special
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lattices that are rings of integers of imaginary quadratic fields. First,

let’s remind ourselves of what algebraic integers are.

Definition (Algebraic Integer [Mar77]). A complex number is an

algebraic integer if and only if it is a root of some monic polynomial

with coefficients in Z.

Another type of classification of origami sets is by their ring struc-

ture. We can determine if particular subrings of C are origami rings.

We have a result about algebraic integers in quadratic fields.

Theorem 4.7 ([Mar77]). Let m be a squarefree integer. The set

of algebraic integers in the quadratic field Q [
√
m] is:

(1) {a+ b
√
m : a, b ∈ Z} if m ≡ 2 or 3 mod 4, or

(2)
{
a+b
√
m

2
: a, b ∈ Z, a ≡ b mod 2

}
if m ≡ 1 mod 4.

The main result of Kritschgau and Salerno’s work, that it is possible

to obtain the ring of integers of an imaginary quadratic field through

an origami construction, then follows.

Theorem 4.8 ([KS17]). Let m < 0 be a squarefree integer, and let

θ = Arg (1 +
√
m) . Then O (Q

√
m) = M(U), where

(1) U =
{

0,
π

2
, θ
}

if m ≡ 2 or 3 mod 4, or

(2) U = {0, θ, π − θ} if m ≡ 1 mod 4.
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Note that the two origami sets given by each part of the theo-

rem are not homothetic, because we cannot find something in SL2 (Z)

to transform one into the other, because the origami sets produced by

Theorem 4.8.1 correspond to the imaginary quadratic fields of the form

of Theorem 4.7.1 while origami sets produced by Theorem 4.8.2 cor-

respond to the imaginary quadratic fields of the form Theorem 4.7.2.

No integral and unit determinant matrix can transform a + b
√
m into

a+b
√
m

2
. Naturally, we wonder if origami lattices satisfying the different

conditions of Theorem 4.8.1 might be homothetic.

Let’s use two examples of origami lattices of the form given in The-

orem 4.8. Notice that these are indeed lattices by Theorem 2.4. If we

consider m = −3, then θ = Arg
(
1 +
√

3i
)

= π
3
. So, our set of angles is

U = {0, π
2
, π
3
}. With seed points 0 and 1, then [[0, 1]]π/2,π/3 = 1 +

√
3i.

So, Λ = Z + Z(1 +
√

3i), and hence τ = 1 +
√

3i. We can map τ to a

point in t. See that

TTS

 1
√

3

 =

2−
√

3

1

 .
Now, consider m = −2, then θ = Arg

(
1 +
√

2i
)

= arctan
(√

2
)
.

Then, we have that [[0, 1]]π/2,arctan(
√
2) = 1 +

√
2i. See that

TTS

 1
√

2

 =

2−
√

2

1

 .
So, despite these two origami lattices having the same form by The-

orem 4.8, they are not homothetic.
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5. Conjectures and Further Questions

These examples raise questions. First, if an origami lattice Λ is also

an origami ring, and Λ is homothetic to another origami lattice Λ′, is Λ′

also an origami ring? We have found different expressions for the same

lattice, which should be related by homothety. Since they produce the

same origami set, the ring structure should be preserved in that case.

Lastly, this work begs the question whether all lattices are origami

lattices. Clearly, we know that all origami lattices are indeed lattices.

Recall our example of Z+Z[1 + i] = Λ2 ∼ Λ1Z+Z[4 + 7i]. Clearly, Λ1

is not the Gaussian integers, but they are homothetic. We wondered

if Λ1 is an origami lattice. See that we cannot perform our origami

process without a basis of length 1. Let our basis for this lattice Λ1 be

given by {1, 4√
65

+ 7√
65
}. Then, we get the scenario in figure below.

0

τ

Figure 4.3. The basis of Λ1 = Z + Z[4 + 7i], with τ included.
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Let U = {0, π
2
, arg τ.}. Then, we may construct, through a sequence

of monomials, the point τ using the angles of U.

0

τ

(a) How τ relates to the

basis.

0

τ

(b) The monomial se-

quence.

Figure 4.4. The sequence of monomials to reach τ .

Along the way of this monomial sequence, we make a number of

points of M(U) that are not elements of Λ1. We see that we can make

Λ1 ⊂ M(U), but it is not possible to eliminate the extra points. We

hypothesize that any lattice Λ = Z+ωZ, we can find Λ ⊂M(U) where

U = {0, π
2
, arg z}. This may relate to the idea of maximal orders. We

further believe that if a lattice, Λ, is not maximal, then Λ ⊂ M(U).

However, if a lattice Λ is maximal, then Λ ⊆ M(U). This may mean

that every lattice is contained in an origami lattice, and hence origami

lattices are maximal orders.



Bibliography

[Abb01] Stephen Abbott. Understanding analysis, volume 2. Springer, 2001.

[And05] James W. Anderson. Hyperbolic geometry. Springer, London, 2nd edi-

tion, 2005.

[BBDLG12] Joe Buhler, Steve Butler, Warwick De Launey, and Ron Gra-

ham. Origami rings. Journal of the Australian Mathematical Society,

92(3):299–311, 2012.

[BC04] James Ward Brown and Ruel V. Churchill. Complex variables and

applications. McGraw-Hill Higher Education, Boston, seventh edition,

2004.

[BR16] Jackson Bahr and Arielle Roth. Subrings of C generated by angles.

Rose-Hulman Undergraduate Mathematics Journal, 17(1):15–31, 2016.

[Chr20] Malin Christersson. Make hyperbolic tilings of images, Non-Euclidean

Geometry, http://www.malinc.se/m/imagetiling.php, 2015. Accessed

07 February 2020.

[Gal09] J. Gallian. Contemporary Abstract Algebra. Cengage Learning, 2009.

[Hoi19] Alison Hoi. Kawasaki’s theorem, Natural Origami,

https://naturalorigami.wordpress.com/2016/06/27/kawasakis-

theorem/, 2016. Accessed 02 December 2019.

[KS17] Juergen Kritschgau and Adriana Salerno. Origami constructions of

rings of integers of imaginary quadratic fields. Integers, 17(34), 2017.

[LLN+18] Jacob LeMoine, Yichun Liu, Gabe Nelson, Senyo Ohene, Adriana

Salerno, and Wuyue. Zhou. Origami constructions of subsets of the

complex plane. Summer Research Article, 1(1):1–14, 2018.

[Mar77] Daniel A. Marcus. Number fields. Springer-Verlag, New York, 1st edi-

tion, 1977.

83



BIBLIOGRAPHY 84

[Mil17] James S. Milne. Algebraic number theory (v3.07), 2017. Available at

www.jmilne.org/math/.
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