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THE BNS INVARIANTS OF THE GENERALIZED SOLVABLE
BAUMSLAG-SOLITAR GROUPS AND OF THEIR FINITE INDEX
SUBGROUPS

WAGNER SGOBBI AND PETER WONG

ABSTRACT. We compute the Bieri-Neumann-Strebel invariants $! for the generalized solvable
Baumslag-Solitar groups I',, and their finite index subgroups. Using X!, we show that certain
finite index subgroups of I';, cannot be isomorphic to I'y for any k. In addition, we use the
BNS-invariants to give a new proof of property R, for the groups I',, and their finite index
subgroups.

1. INTRODUCTION

The Bieri-Neumann-Strebel invariant $'(G) [1] of a finitely generated group G is an impor-
tant object of study in geometric group theory and has many connections to other areas of
mathematics, especially with the Thurston norm in low dimensional topology. However, the
computation of X! is very difficult in general and there are only few classes of groups for which
Y1 is known (see e.g. [7] and the references therein).

A group G is said to have property R, if R(() is infinite for every automorphism ¢ € Aut(G).
Here, R(yp) is the number of twisted conjugacy classes of ¢, that is, the number of equivalence
classes in G given by the relation g ~ h < 2gp(2)~! = h for some z € G. Twisted conjugacy
classes are important in topological fixed point theory.

Let X be a space with universal covering X and f : X — X be a homeomorphism with
induced automorphism f : 71 (X) — 71 (X). Then R(f,) is actually the number of (topological)
lifting classes of f in X given by a deck transformation conjugation, which also partitions the
fixed points of f in X. This number is an upper bound for the Nielsen number N(f), which is
a sharp lower bound for the minimal number of fixed points in the homotopy class [f] and one
of the main objects of study in Nielsen Theory (see [6]). For instance in [5], property R., was
used to show that for any n > 5, there exists a n-dimensional nilmanifold M such that every
self-homeomorphism f : M — M is isotopic to be fixed point free.

The motivation for this work is [I1] in which J. Taback and P. Wong showed property R
for the generalized solvable Baumslag-Solitar groups I',, and for every group quasi-isometric to
I',,, using geometric group theoretic techniques. In [4], D. Gongalves and D. Kochloukova used
the Bieri-Neumann-Strebel (BNS or ') invariant to deduce property R, for certain classes
of groups, including a new proof of the property R, for the Thompson’s group F'. Since the
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2 WAGNER SGOBBI AND PETER WONG

Y-invariants of the Baumslag-Solitar groups BS(1,n) are sufficient to guarantee property R,
it is natural to ask whether property R, for I';, and for their finite index subgroups can also
be deduced using X!

In this paper, we show that the property R, for I';, and for their finite index subgroups can
be deduced from their respective BNS-invariants. Here we compute the X! invariants of ', and
of all its finite index subgroups H. We show that these invariants lie in an open hemisphere
of the corresponding character spheres so that property R, follows from [4]. Furthermore, we
extend the result to any finite direct product of these groups. Using X!, we show that there
exist finite index sugbroups of I', that cannot be isomorphic to any 'y, in contrast to the
fact that every finite index subgroup of a solvable Baumslag-Solitar group BS(1,n) is again a
BS(1,k).

The paper is organized as follows. In section 2 we compute the X! for T',, (Theorem [2.4)).
In section 3, we classify all the finite index subgroups H of I',, in terms of specific generators
and index (Theorem [3.4)), and give a presentation of H (Theorem [3.5)). Then we compute their
! invariant (Theore and use it to show that some H cannot be a generalized solvable
Baumslag-Solitar group (Theorem [3.9)). In section 4 we use geometric arguments about the
behavior of the induced homeomorphisms ¢* : S(G) — S(G) to show that finding some special
invariant convex polytopes in the character sphere of a finitely generated group G is sufficient
to guarantee property R, for G. In section 5, we give new proofs (Theorems and of
property R, for the groups I',, and H above and also for any finite direct product of them
(Theorem [5.4)). Finally, in Proposition we exhibit a family of groups G where Theorem
can be used to guarantee property R, without complete information on X'(G).
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2. CoMPUTATION OF X'(T,)

In this section we compute the X! invariants of the generalized solvable Baumslag-Solitar
groups I',. First we recall the definition of the BNS-invariant ¥!(G) of a finitely generated
group GG. There are other equivalent definitions (see [I] and [9]) but we employ the following
for our purposes.

Definition 2.1. Let GG be a finitely generated group. The character sphere of G is the quotient
space
S(G) = (Hom(G,R) = {0})/ ~ = {[x] | x € Hom(G,R) —{0}},

where y ~ x’' < rx = )’ for some r > 0.
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It is well known that if the free rank of the abelianized group G is n with generators
T1, ..., Ty, then S(G) ~ S with homeomorphism

h:S(G) — 5"
(X(21), ey x(22))

Following [9], we have

Definition 2.2. Let G be a finitely generated group with finite generating set X C G. Denote
by I' = I'(G, X)) the Cayley graph of G with respect to X. The first X-invariant (or BN S
invariant) of G is

YHG) = {[x] € S(G) | T' is connected},
where Iy is the subgraph of I' whose vertices are the elements g € G with x(g) > 0 and whose
edges are those of I' which connect two such vertices.

The solvable Baumslag-Solitar group BS(1,n),n > 1 is defined by the presentation
BS(1,n) = (a,t | tat™* = a").
We consider the following solvable generalization of BS(1,n).
Definition 2.3. Let n > 2 be a positive integer with prime decomposition n = p1¥'...p,.¥", the
p; being pairwise distinct. We define the solvable generalization of the Baumslag-Solitar group
by ,
Uy = (a,tr, .ty | ity =tits, i # j, tiat,"' =a””, i=1,..,7).
More generally, let S = {nq,...,n,} be a set of pairwise coprime positive integers such that
n; > 2 for some i. Define
L(S) = (a,t1, ...t | tit; = tjt;, i # j, tiat; ' =a™, i=1,..,r).

The group I'(S) is always torsion-free.
Note that BS(1,n) is a metabelian group and it admits the following splitting

1 -
1—Z {—} — BS(1,n) - Z — 1.
n

where Z [ 1] denotes the n-adic rationals and contains the commutator subgroup [BS(1,n), BS(1,n)].
Similarly, I',, is characterized by the following short exact sequence

1
(2.1) 1—>ZH—>rni>ZT—>1.
n

Here, ¢ is the canonical projection with a — 1, Z [%} =(aj, jE€EZ]|a} =a;n, j€E Z) and is
generated by the elements ' '
a; = (tl...tr)]a(tl...tr)_J € Fn

Using the presentation Z" = (t1,...,t, | tit; = t;jt;,i # j), the exact sequence (2.1)) splits using
the section Z" — T',, sending t; — t;. Thus, I'), = Z [ﬂ X Z" is the semidirect product of
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these two subgroups, and every element w € I',, can be uniquely written as w = t{*...t% u for
u € Z [%] and a; € Z (we put u on the right side following the notation from Bogopolski in
[3]). Observe that the “t;-coordinates” in T, are well behaved, that is, (£5*...£2 u)(t7" .. tFru/) =
t?lw Lo thry” for some u” € Z [ﬂ Secondly, because of the presentation of the subgroup
7 [ﬂ, we see that any two generators a;, a; must be powers of the common generator amingi -
Note that Z [%] is an infinitely generated abelian group and I, is metabelian.

Theorem 2.4. The complement 1 (T'(S))¢ of the ¥t of the group
P(S) = <a,t1, ...,tr | tztj = tjti, 7 7& j, tiati_l = a”i, 1= 1, ...,7”>

1S given by
SHT(9) = {Ix] [xi(ts) = Land xi(t;) = 0 for j # i},

In particular, if n = p{*...p¥" is a prime decomposition, then

SHTW) = {bal, - Dol

Furthermore, X1 (T'(S))¢ lies inside an open hemisphere in S(I'(S)).

Proof. As pointed out in [I], the X! coincides with Y of [2]. For the metabelian group I'(.S),
the quotient Z" is the torsion-free part of the abelianization so that S(I'(S)) = S(Z"). It follows
from Proposition 2.1 and formula (2 3) of [2] that

U{ (9)) [ x(A) > 0}

XeC(A

where A = Kerp = Z [1] as a Z[Z"]-module and C(A4) = {\ € Z[Z'] | \-a = o, for all a € A}
is the centralizer of A. Let [x] € S(I'(9)).

Case (1): If x(t;) < 0 for some 4,1 < i < r then we let A = n;t;'. Note that ni;' - a =
t7'a"it; = a. Tt follows that A € C(A) and [x] € ZY(T(9)).

Let I, = {i; | 1 < iy < ... < i <71}, k> 2, be asubset of the set [ = {1,2,...,7}.

Case (2): If x(t;;,) >0 for i; € Iy and X( ) =0 for s € I\ I} then we let A = Z?Zlajtij
where «; are 1ntegers such that a1n; + ... + a,.n, = 1 since n,,,...,n;, are pairwise relatively
prime. It is easy to see that A € C'(A).

If x(\) > 0 then [x] € ZY(T(9)).

Now suppose £ = x(A) < 0. Without loss of generality, we may assume that «;, > 0. Since
ni, t;" € C(A), it follows that for any integer M, MA — (M — 1)(ni,t;") -a = a™~M-D = ¢
so that Ay = MA — (M — 1)(ng, t;. 1) € C(A). Now, it is straightforward to see that Y(Ar) =

(M —1)n;,x(t;,) + Mk. There exists a positive integer M such that x(Ay) > 0. In other words,
] € SHI(S)).

Now, the set of characters that do not belong to Case (1) or Case (2) is {[x;]}, where x;(t;) =1
and x;(t;) = 0 if j # i. To see that this set is the complement of X!(I'(S)), it suffices to show
that [x;] € S1(T'(S))° for each i. Observe that if v = Y ¢;ti € C(A) then either all ¢; > 0
when ¢; # 0 or for some j, ¢; = n; and ¢; = —1 with ¢; = 0 for ¢ # j. Thus, x;(v) = cg
cannot be positive so each [x;] ¢ Z'(T'(9)).

O
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Remark 2.5. In an earlier version of this paper, Theorem was first proved using a general
geometric argument [9, Theorem A3.1].

For the remaining of this paper, we focus on the groups I',,.

3. FINITE INDEX SUBGROUPS OF I,

In this section we study the finite index subgroups H of T,,. First, in Theorem [3.4 we find a
specific set of generators for H using a generalization of an argument given by Bogopolski in
[3]. We use these generators to compute the index of H in T',,. Then, in Theorem , we give a
presentation for H and, in Theorem we compute L!(H). We end the section by exhibiting
finite index subgroups H of I';, which are not isomorphic to [’y for any k > 2.

3.1. Generators, cosets and index. The following useful lemma has an elementary proof
and was used by Bogopolski in [3].

Lemma 3.1. Let n,s > 1 be integers. Let m be the biggest positive divisor of s such that
ged(m,n) = 1. Then s divides mn®.

To facilitate our computation, we aim to find a good set of generators of a finite index
subgroup of I';,. To do so, we need the next two lemmas.

Lemma 3.2 (Replacing jo by any j). Suppose

(3.1) H = <t1k11...trk“af;1,tgk”...trk”a%, ...,trk”affr,aé-o> <Tr,

is a subgroup with arbitrary integers k;;, 1 > 0, k;; > 0 and g;,1;, jo € Z. Then, for any chosen
Jj € Z, we can replace aé-o above by aé., up to modifying | > 0 by another positive integer (also

called 1), that is, H = <t1k“...trk“aéll,tQk”...ter’“aifQ, ...,trk”afﬁ,ap.

Proof. If 7 < jo we know from the presentation of Z [%] that aj, is a positive power of a;, so

aé»o is also a positive power of a; and the lemma is obviously true. Let us treat the case j > jo.

Using that Z [%] is abelian and the relations of I',,, we can show that

ki 4 kir liymai L (¢ ki ki li\—m _ lpi™iVikii . p.mivrkie
(&t ey ) M ag (87 ag )T = ayg)
for every ¢ and every integer m; > 0. Thus we can replace aé-o in the expression of H by this
ki

element aé{’) it p Tmiyrk”, that is, we can multiply the power [ of aj;, by p;™¥i. p, mvrkir in
(3.1)), and since this new power is still positive we can repeat the process recursively. By doing
this for ¢ = 1, ...,r we can replace the power [ of a;, in (3.1) by any number of the form

l<p1m1y1k11 B 'prmlyrklr> (p2m2y2k22 B .perka”). B (prm'ryrk'r'r)

for any myq, ..., m, > 0. By putting together the first primes in the parentheses we rewrite this
as

p1m1y1 kupzmzyzkzz “‘prm’r'y'r'kr'r' I\
for some integer A > 0 depending on the m;. In particular, for the integers m; = ki1...k;;...kpr

we can replace the power [ of a;, by
PP Y2E | p YR\ = RN,

—
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where k& = ki1...k,». But a?:l’\ = a%‘%, which is a positive power of aj,41. We repeat this
process a finite number of times until we reach the index j > j, we wanted and the lemma is

proved. O
Lemma 3.3 (Replacing [ by m). Let
(3.2) H= (tlk“...trk”af;l,tgk”...trk”ag, ...,trk”aé’;, aé-) <r,

be a subgroup with arbitrary integers ki, 1 > 0, kj; > 0 and g;,1;,7 € Z. Let m be the biggest
divisor of 1 such that gecd(m,n) = 1. Then we can replace aé by aj* in the expression above,

that is, H = (" ...t,Frall b5t Feral2 .t Frralr al).
Proof. It suffices to show that the inclusions aé. € (tlk“...tTk”aéll,tgkm...trk?*a%, - trk”aifr, aj')
l

and aj" € H hold. The first inclusion is straightforward, because [ is a multiple of m and so a;

is a power of a]". For the second inclusion first observe that by Lemma , [ must divide mn!

lkyy

and so it must also divide mn** . This implies that the number

mnthrep =Dtk yr-1(kro1r—1=1lker Hg;i H:=j+1 pjvikiikrrl

[
is an integer. Let Ay, ..., A, be the first r generators of H in 1} that is, H = (A4, ..., 4,, aé).
It is straightforward to show that

Ayt AT A YA A A = e,

j
then af* € H, as desired. O

’y:

Theorem 3.4. For any I',,, the following properties hold.

1) Every finite index subgroup H of 'y, can be written as
H= (tlk“...trk”all,tgk”...t,,k”ab, ...,trk”alr,am) (%)

for 0 < kygy ooy ki1 < ki, l; € Z and m > 0 an integer such that ged(m,n) = 1 and
HN{a) = (a™).

2) If H is any subgroup of I',, given by the expression (x) for 0 < ky;,...,ki—1; < ki, l; € Z
and m > 0 such that gcd(m,n) = 1 and H N (a) = (a™), then T = {t;"..t,7 a’ | 0 <
Bi < ki, 0 < j < m} isa transversal of H in T',,. In particular, the index of H in T,
1S k11...k.omoand H has finite index in T'),.

Proof. 1) First, since I',, is finitely generated and H is finite index, by the Reidemeister-Schreier
theorem H must be also finitely generated and we write

H = <t1a11...tra“’01, ...,tlaml...tf,_amrl}m>

for a;; € Z and v; € Z [+]. Note that m > r. Otherwise, ¢(H) would be a subgroup of Z" with
rank < 7 and then would have infinite index, a contradiction because ¢ is surjective. With a
similar projection argument, we see that there must be at least one ¢ such that a;; # 0. Let

k11 = ged {1} Since ky; > 0 is the smallest positive integer combination of the a;; # 0,
;170



THE BNS INVARIANTS OF THE GENERALIZED SOLVABLE BAUMSLAG-SOLITAR GROUPS 7

we can obtain inside H an element of the form t¥1...t,*iru; for some ks, ...,k € Z and
Uy €72 [ﬂ, SO we can write

(3.3) H = (t,° 4,0y, 0% O, 6 M R,

Now, since all the nonzero a;; are multiples of k11, say, a;1 = d;k11, we can replace t14...t, % v;
. . —A. / ! . .

by (1%, %) (R )~ = %2 %) in (3.3)). Then, after relabeling these new

generators, we can write

H = (t,%12 %70y, 12 0, 4P Ry,

We added a new generator and “eliminated” all the ¢; coordinates of the first m generators of
H. This was the first step. In a similar way, we can do this for all the other %o, ..., t, coordinates.
After r steps, we added r new generators and eliminated all the ¢y, ..., ¢, letters from the first
m generators from H, so we have

H = (U1, oo U, 01"t F g 10F22 ot 2yt )
with k; > 0 and v;,u; € Z [ﬂ But in Z [ﬂ we have (vy, ..., v,) = (u) for some u € Z [%] and
(3.4) H = (t" ot Frug 72 g, P, u)

By manipulating the generators above if necessary, we may suppose that 0 < ky;, ..., ki1, <
ki (they could be also positive if we wanted) in 1) Finally, write u; = afziw“ - a; for
4i, 4, lml € Z. Then

(3.5) H = <t1k“...trk1’"alqll,tgk”...trk”af;, ...,trk”‘af]’;,aé)

Let us show that we may assume [ > 0 above. If [ # 0 then, up to changing afl by (OL;)’1 = a;l
if necessary, we are done. If [ = 0, that is,
(3.6) H = (t" ot rall 72, ral2 ot Fralr ),

we do the following: since Z" is abelian, every commutator of elements in H must be in Ker(y)
(and obviously in H). At least one of the commutators between the r generators of H in (3.6)
must be non-trivial. Otherwise, H would be a finite index abelian subgroup of I';, and we would
have ¥1(T,,) = S(T,,) by using Proposition B1.11 in [9], a contradiction to Theorem Then
let aé-/ (I" # 0) be a non-trivial commutator between two generators of H. We can add it to

and up to changing aé-/ by its inverse, we are done.

Our next steps will be eliminating the subindices ¢; from the a letters in the generators of
. Fix some 1 < ¢ < r. If ¢; > 0, then aéii is a power of a and we are done by doing this
replacement in . Suppose ¢; < 0. By Lemma we replace ¢ by ¢; in . Now, let m
be the biggest divisor of [ such that gcd(m,n) = 1. By Lemma we can also replace [ by m
above and obtain

_ k11 kir 11 koo kor l2 krr 1 m
H= (" t," ), t™ 4, 2ra . 6, ay ).

Since ged(m,n) = 1 we also have ged(m,n”%) = 1 and there must be &, € Z such that
am + fn~% = 1. Then for a = [;& and g = [;§ we have am + fn~% = [;, or

li —ma=n"%p.
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Then, using the relations in I';, we have

_ k11 k1 l1 ka2 kor 2 L kir Ui k l m

H = <t1 e q17t . "Qgy s U Z AU ) Qg s STa Qg aql)
— k11 kirgli ¢ k22 kor 12 ki kir qli= kre glegm
= (LM ey el T a Stagagt)

q1’ qz27 "t 7t Qr’ qi

tlku...t klrall to koo t, kzmalz tku t kiraﬁ Lt krr lr CLm>

= (t;"n g gl ke g Rergle tkii...tr’“ira"’w t’“” e gm
q;
( AL SO LIS aral”

and relabeling 8 by [;, m by [ and ¢; by ¢ again we have

H = (" fral k2 Fral2 L bl el al),

that is, we removed the subindex ¢; from af;i in If we do this for all ¢ we remove all the
subindices and obtain

k ki 11 4 k kar 1 krr L
H = (™ a2, e e a))

for some ¢ € Z. We can use Lemma[3.2] to replace ¢ by 0 and we get the desired set of generators
for H. To finish, let m (a new one) be the biggest divisor of [ such that ged(m,n) = 1. By
Lemma , we replace a' by a™ in the expression above. If H ﬂ (a) = (a™), we are done. If
not, let m’ = mln{k >1|a" € H}. It’s easy to see that H N (a) = (a™). Since a™ € H, m is
a multiple of m’ and we have ged(m’,n) = 1. Then, by addlng am to the set of generators of
H, the generator a™ can be removed. By relabeling m’ by m, we obtain the desired result.

2) Let H be such a subgroup. As shown in item 1), we may suppose that k;; > 0 for all
t,7. Let us first show that I'), = Utlgl._.trﬂ,.ajeT Ht#1. . t,Pra7. Every element of T, is written
as t; .t~ alty M., for ag,y; > 0 and | € Z. Since ki; > 0 for all 4, j, one can show
that every coset of I',, is of the form Ha't,"...t," for | € Z and 7; > 0. Now we claim that
every such coset can be also written as Ht;7...t,"a" for some integer . In fact, because
1 = ged(m,n) = ged(m, pi¥'...p,Y"), the prime decomposition of m does not involve any of
the p;. Then it is also true that ged(m,p;"¥..p, 7)) = 1. Let k,k’ be integers such that
km + k'py7¥ L p Y = 1. Then | + (—lk)m = (IK')p,"¥ ...p, 7" and relabeling —lk by k and
IK' by k' we get | + km = K'p;"¥...p, Y. Now since a™ € H we do

Hd't,"..t,07 = H(a™)*a't," ..t
= Hatemgmn g,or

k'py Y191 ... YT YT -

= Hag""” p tl’YlmtTW

/
= Htl’Yl ...tﬂrak

and relabeling &’ by I’ we showed the claim. To transform this coset into one of the cosets
in the theorem, we apply successive algorithms: choose some index 7. If v; < k;; we stop the
algorithm. If 7; > k;;, by manipulating this coset we show that

. e / roqr
Htl’yl...t,,«,ﬁ(ll = Htlwl...ti_l%_lti% k“ti+1%+1...t7«7’"al
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for some integer I'. If ~; — k;; < k;; we stop the algorithm. If v; — k;; > k;; we do the above
again. Then after finite steps our “i-algorithm” shows that

) ) / ;o
H’tl’Yl'“tT’Yral = Htl’Yl".ti717zfltiﬁzti+1’yi+1.“trﬂral

for some 0 < 3; < k;;. Now, starting with the coset Ht,7...t,""a!, we successively apply the
“t-algorithm” for ¢ = 1,2, ..., and obtain exactly

Htm ...tﬂral — Htlﬁl mtrﬁral’

for 0 < f8; < ki and I’ € Z. Finally, write I' = gm + j for 0 < j < m. Then Ht,P . t,Prdd =
Ht .. t,Pra) because

8PP d (P Pra) T = P Prdt I P
t Pt Bramag, =P g mh
= (am)@ e

This shows that I',, = Utlﬁl.-'tTﬁrajeT Ht P t.Pral.
Now let us show that the cosets over T are all distinct. Let Ht;% .. .t,%ral = Ht,P1...t,Prad’
for 0 < f3;, B! < ki and 0 < j, 7/ < m. By definition,

!

w = ap1y161...pryrﬁr(j—jl)tlﬁl—ﬂi‘_‘trﬁr—ﬁﬁ — tlﬁl...trﬂraj_j,t]_—ﬁl...tr_ﬁrt]_ﬁl_ﬁi...tr'BT_BT
to P (0% 4P )T e H.

Then, projecting in Z",

(61 — ﬁi, '-‘767' — 5;) = <p(w) - (p(H) = <(l€11, ]{?12, ceey ]Ch«), (0, ]CQQ, ceey ]CQ,«), cevy (0, ...,O,I{?m«» .

Write

(61 — 517 vy B — ﬁ;) = A1 (K11, k1, o kae) + A2(0, kagy ooy kop) 4+ oo+ A0 (0, .., 0, Ky )

for integers A;. Since the first vector (ki1 k12, ..., k1) is the only one with non-vanishing first
coordinate we have 8; — ] = Arkq1. Since 0 < (1, 51 < k11 we must have 5, = ] and therefore
A1 = 0. By easy induction we can show that all the A\; must vanish. Now, we just have to show
that j = j/. We already have a?""”" """ (i) ¢ H. Since H N (a) = (™) (by item 1)), we
have
i p (= ) = gm

for some ¢ € Z. So m divides p¥*%'...p,¥P (j — j'). Since ged(n,m) = 1, m does not contain
any of the p; in its prime decomposition, and therefore m must divide j—j’. Since 0 < j,j' <m
we have j = j/, as desired. This completes the proof. 0
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3.2. A presentation. We now give a presentation for an arbitrary finite index subgroup H of
|

Theorem 3.5. Let H be any finite index subgroup of 'y, (see Theorem , say,
H = (t,"1 gl gyl g kergl2 g Frrgle g™) (%)

for ki; >0, k;; >0, ; € Z and m > 0 an integer such that gcd(m,n) =1 and H N (a) = (a™).
Then H has the following presentation:

H ~ <a Ty, @y | miaw;t =o't xixjx;le = ozR”'>,
where P; = p¥*i Lpyrkie G=1,...,r) and R;; € Z characterized by
liPi(1 = P;) = [;P;(1 — F;) = Ryym.

Proof. It is easy to see that (tFi.. .thral)a™ (t% . thirgl)=1 = @™ in T, for i = 1,...,r. Also,
since
(tF o thor ) (¢57 R al ) (£ b gl ) 7L (597 bl )7L = P OPILRO-R) ¢ F(a) = (a™),
we have [;P;(1 — P;) — ;P;(1 — P;) = R;jm for some integer R;;.

We write (t?”...tf"ali)(tfjj...t],f”alj)(tf”’...t’j"ali)_l(tﬁjj...tfjralj)_l = a™%. Now define a
group

-1 j 1,1 .
G = <a,x1,...,xr | miax; =, e x; = aR“>.

The group G has the relations
T, = OzPiJ:i, xioz_l = ofpixi, Tir; = aR”'xjxi, xixj_l = a:j_loz_R”xi,
which shows that, for every fixed ¢, all the x;-letters in a word with positive power can be

pushed right as much as we want. Similarly, the relations

—1 -1 P o -1,-1_ 1 —P -1 _ ~1_ R, _ .—1,-1_ —Ry
ar; =z, o', o =x; oo, x; T, Ly, Loyt = Ty

show that all the x;-letters in a word with negative power can be pushed left as much as we want.
Because of this, any element of GG is of the form :L‘l_)\l L Mgl x51 for \;,0; > 0and M € Z.
Now let us show that G ~ H. Define 6 : G — T, by putting 9( ) = a™ and 0(z;) = ¥ thirgh
fort=1,...,7. It is easy to check that # is a group homomorphism and surjective, so we only
need to show that 6 is also injective. Indeed, let w = ;™. aMzd 25" € G such that
O(w) = 1. Then

01

A S
(thn kgt Mtk al) T M (e gty (ki) = 1
By projecting both sides of equation above on the t;-coordinate by the homomorphism w

(w)™, we get k11(d1 — A1) = 0 and so 6; = A;. Then by conjugating the above equation on both
sides by (#'...tFrah )M we get

(the2 gk gl2) ™

By doing this recursively we get §; = \; for i = 1,...,7 and a™ = 1. Then M = 0 (since a is
torsion free and m > 0). Thus w = 27 M.z ’\Toz%i‘r 23" =1, as desired. This completes the

proof. 0

-

(a1t = 1



THE BNS INVARIANTS OF THE GENERALIZED SOLVABLE BAUMSLAG-SOLITAR GROUPS 11

3.3. The X! invariant. Let H be a finite index subgroup of T',,, say,

H = (t,"0 o Fral k22t kgl Rl g™) (%)
for k; > 0, k;j; > 0, l; € Z and m > 0 an integer such that gcd(m,n) =1 and H N (a) = (a™).
By Theorem 3.5 we write H as

H = <a,x1, oy | 2wt = ol xixjxi’l:cj’l = aR”>,
for P, = p*  pyrkir (i = 1,...,r) and some R;; € Z. Here, a = a™ and z; = t;*#...t,Frali.
Since all the p?" are > 2, obviously the P; also are > 2 and so it is easy to see that o must

have torsion in the abelianized group H®. The x; are torsion-free, though. So we have the
homeomorphism

h:S(H) — S

(x(21), .- x(r))
||(X(x1)a iy} X(xr))H ‘

[X] —

To compute X.!'(H) inside this sphere, we will use the following fact.

Proposition 3.6. Let G be a finitely generated group and H < G a finite index subgroup with
inclusion i : H — G and induced map i* : S(G) — S(H), i*[x] = [x o i] = [x|u]. Suppose that
any homomorphism x : H — R can be extended to a homomorphism x : G — R. Then

SYH) = *(Z4G)) and SHH)® = i*(SH(G)°).

Proof. By Proposition B1.11 in [9], for any [x] € S(G) we have [x] € 2(GQ) < [x|u] € Z1(H).
Then i*(XY(G)) € LY(H). On the other hand, let [x] € L'(H) and let ¥ : G — R be an
extension of . We have [Y|g] = [x] € X'(H), so again by Proposition B1.11 in [9] we have
[X] € Z1(G). Then [x] = i*[x] € i*(X!(G)), as desired. The other equality is similar. O

Lemma 3.7. Let H be a finite index subgroup of I',,, say,
H = (t,7n gl gl g kergle g keegle gm) (%)

for ki >0, k;; >0, l; € Z and m > 0 an integer such that gcd(m,n) =1 and H N (a) = (a™).
Then every homomorphism & : H — R can be extended to a homomorphism x : I', — R.

Proof. The equation x|y = £ is equivalent to a system of r equations

X(tlkll‘,.trklrall) = g(tlkumtrklrall)’
X(t2k22mtrk’2ral2) — f(tgkm...trkwal?)’

X(trkwalr) = g(trkwalr)'

So, to create such an extension x we just have to define y(a) = 0 and define the real numbers
x(t;) satisfying equations (1) to (r) above. Equation (r) is equivalent to

ker(tT) = g(tfw alT)a
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so if we define x(t,) = =&(tFral"), equation (r) is satisfied. Similarly, equation (r — 1) is

kTT‘
equivalent to
kpr—1,r— _ _
kT*l,T‘*lX(t’r‘fl) + kT*ly"‘X(tT‘) — g(tr_ll, ltf:u‘r 1,ralr l)7
so if we define x(t,-1) = —— (it gl ) — —kf:lril x(t.), equation (r —1) is satisfied.

By doing this recursively to all i, we are done. U

Theorem 3.8. Let H be a finite index subgroup of I'y,, say,
H = (tlkn...trk“all,t2k22...trk2ral2, ...,trk""al7', a™) ()
for ki >0, k;; >0, l; € Z and m > 0 an integer such that gcd(m,n) =1 and H N (a) = (a™),
and let o = a™ and x; = t;%4 .. t.Firali be its generators. Then YY(H)® = {[&1], ..., [&]}, where
i) = kyi if j <i and &(x;) =0 if j > i.
In other words, if we identify S(H) ~ S™1 as we did above, then
Zl(H)C: (kll,0,0,...,O) (le,sz,O’--.’()) . (kl’l"7k2’r’7k3r7 "'7k7'7') .

| (k11,0,0, ..., 0)||” || (K12, k22, 0, ooy O)|| 777 [ (Ktry Ky Kz ooy o) ||

Proof. By Lemma SYH)® = i*(SY(T,)°) so by Theorem 2.4 SY(H) = {{xalul, - Dol m]}-
Using that x;(t;) = 1 if ¢ = j and x;(¢;) = 0, it is easy to see that the image of [x;|x] (which
(K1, sKii,0,0.,0)
||(k1’i7"'7kiia07"'70)H .

we denote by [£;]) under the homeomorphism S(H) ~ S™~! described above is
This completes the proof.

3.4. Finite index subgroups that are not I';. In [3] it was shown that every finite index
subgroup of a solvable Baumslag-Solitar group BS(1,n) is also (isomorphic to) a solvable
Baumslag-Solitar group BS(1,n*) for some k > 1. Since the groups I',, are generalizations of
BS(1,n), it is natural to ask whether every finite index subgroup of I',, is also (isomorphic to)
another 'y, for some k > 2. In this section we show that this question has a negative answer.
Below, we consider a specific class of finite index subgroups H of I';, for which we give necessary
and sufficient conditions for H to be isomorphic to I'y for some k > 2.

Theorem 3.9. Let H be a finite index subgroup of I',, such that
H = (thghe gk gk ghar gk gmy
with kyy >0, 0 < ki <ky; forall1 <i<j<r andm >0 such that gcd(m,n) = 1. Then
H ~ Ty for some k > 2 if and only if k;jj =0 for all1 <1< j <.

Proof. Suppose first that k;; = 0 for all 1 < ¢ < j < r. Then from Theorem We immediately
get that H ~ T’y for k = pgflk”...p%'k”'. Suppose now that H ~ I'y for some k£ > 2 and
write £k = ¢;'...¢”, ¢1 < ¢ < ... < @5, z; > 1 the prime decomposition of k. Then in
particular s = card(S*(I'y)¢) = card(SY(H)®) = 1, so k = ¢;*...¢7". By Theorem [3.5 H has the
presentation

1

H=(o,x,..,z, | vyar; =a™, z,x; =x,x; for all 4, j),

Yi

k.. . . .
where n; = p?""._p¥*ir . There is also a split exact sequence

1= ker(n) = HSZ —1
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where 7w(z;) = e;, m(a) = 0 and ker(w) abelian. In particular, every element of H can be
written as z}'..x)u for some \; € Z and u € ker(w). Since H ~ T, then there must be
r + 1 elements 1n81de H (which are the 1rnages of the analogous r + 1 elements in I'y), say,

Ky K
X, =a"armu;, 1 <i < rand A= 2. 2ba for some k{j,k € Z and u;, 0 € ker(m), such

that H = (X1,..., X, A) and X;AX; ' = A%' for all 1 < i < r. By projecting any of these
equations on Z" we obtain ky = ... = k, = 0 and so A = @ = z; ..z, oMo 2 for some
Ai > 0 and M # 0. By replacing this in the r equations above and using that ker(r) is abelian

and the z;’s commute with each other, we obtain the r equations in H
k! K’ —k! —K! Zq
(3.7) it aMa L = oM

for each 1 < i < r. If a power kj; is nonnegative we can use a relation of H to conjugate
oM. If it is negative, though, then since all the x; commute we can push the two z; from the
left side to the right side of equation (3.7) and use the (now positive) power —kj; to conjugate

Ma* - Thus equation (3.7) will always imply an equality of a power of o with a power of

aMa" | Since H is torsion-free and M # 0, this yields an equation of prime decomposition which
depends on the sign of the kj;. After a careful analysis of the possible prime decomposition

equations we can conclude that k; is 1 if i = j and 0 otherwise. The equations (3.7) become

(07

z;0M gt = oM’ This implies p!i* pzyjllk L pyrhie = p¥ ) which implies k;ip1 = ... = ki = 0.
Since ¢ is arbitrary, we have that k;; = 0 for any 1 <14 < j <, as desired. U

4. CONVEX POLYTOPES AND PROPERTY R,

In this section we show that finding a special kind of invariant convex polytope in the charac-
ter sphere S(G) is enough to guarantee property R, for a finitely generated group G (Theorem
. We will use a slightly more general version of Theorem 3.3 in [4], which we state below.
The proof is the same given there, just by observing that the authors didn’t use directly the
definition of ¥!'(G)¢ but only the fact that it is invariant in S(G) (that is, invariant under all
permutations of the form [x] — [x o ¢] for p € Aut(G)).

Theorem 4.1. Let G be a finitely generated group. Suppose there is a nonempty and finite
subset A C S(G) which is invariant in S(G), consisting only of rational points and contained
in an open hemisphere of S(G). Then G has property R.. U

Let G be a finitely generated group whose abelianized group G has free rank n. Consider
the homeomorphism

h:S(G) — 5!
(X(xl)a ) X(ﬁn))

1Oc(a), e x (@)

[X] —
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where the z; € G are the free-abelian generators of G%. Given ¢ € Aut(G), we have the
induced homeomorphism ¢* : S(G) — S(G) with p*[x] = [x o ¢]. Let ¢ : S*~! — §"~1 be
the composition ¢ = ho ¢* o h~t.

By the definition above, K C S(G) is invariant in S(G) if and only if h(K) is invariant under
¢ for all ¢ € Aut(G). From now on, we assume the standard definitions of convex subsets and
convex hulls of euclidean spaces R?. For spherical objects, the definitions will be the following:

Definition 4.2. Let A C S™ C R""! and suppose A is contained in an open hemisphere of S™,

say, A C O(v) = {z € 5" | (z,v) > 0} for some v € S™. We say that A is (spherically) convex
if for any a1, as € A, Yoy .05 (t) = M—:izz” € Aforallt € [0,1]. The convex hull of any subset
A C O(v) is the smallest convex subset of O(v) which contains A and is denoted by conv(A).

It is an easy task to show that conv(A) above can be described as

t1a1 + + tmam
A) =
conv(A) { [t1a1 + . + o]

The following lemma shows a special property of the homeomorphisms .

|\m21,ai6A,ti>O}.

Lemma 4.3. The homeomorphism ¢° : S ' — S" 1 maps convex hulls to convex hulls.
Precisely, let A C O(v) and suppose ¢°(A) C O(w) for some w. Then p%(conv(A)) =
conv(¢®(A)).

Proof. Since (¢1)° = (%), it is enough to show that ¢°(conv(A)) C conv(S(A)). Let

P € conv(A) and write P = % for some a; € A and t; > 0. For each a;, since

bh:S(G) — S™ ! is surjective we write a; = h[y;] and by multiplying the representative y; by
some r > 0 if necessary we can actually suppose a; = h[xi] = (xi(21), ..., xi(z5)). Then, by
definition, ¢%(a;) = 3-(Xi © @(21), -, Xi © (), Where N = [[(xi 0 (1), .., xi © ()| > 0.
Now we compute ©°(P). It is easy to see that h[t1x1 + ... + tXm] = P, since a; = h[x;]. By
denoting

A= [[(t(xa o @) (@1) + oo+t (Xm © ) (T1), s ti(x1 © @) (@n) + o + En(Xm © ©) ()

we have

PP) = L1 0@) @), 000 @) ) + o (0 @) ), - (o © ) )
— %gps(al) 4+ ...+ Am%gos(am)

>\1t1 S )\mtm S
AL S () 4 .. 4 Ambm S (g , , ,

— ” /\lAtISDSE li F— ’\t SOSE ;H (since the above vector is already unitary)
AL (ay) + ...+ o3 (A,

€ conu(5(A)),

as desired. 0

Given an open hemisphere O(v) = {z € S" | (z,v) > 0} of S" for some v € S", consider
the affine n-space v + {v}+ = {v +w | (w,v) = 0} C R*™'. One can show that there is a
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homeomorphism 6, : v+ {v}+ — O(v) with 6,(P) = ﬁ the inverse map given by P +— <H;Hv2> P

(see next figure). From now on we identify R"™ = v + {v}~+.

It is straightforward to show that 6, : R® — O(v) maps convex hulls of R™ to convex hulls
of O(v). Now we will define the convex polytopes in our context.

Definition 4.4 (Euclidean convex polytopes). A closed halfspace in R? is a set of the form
H = {z € R? |{x,v) > [} for some 0 # v € R? and B € R. A convex polytope K in R? is a
finite intersection K = N}_, H; of closed halfspaces H; which is also a bounded subset. Thinking
of K as a submanifold of R? (with boundary), there is a well defined dimension r = dim(K),
so we say that K is an r-polytope.

We can always suppose that the family {H;} of closed halfspaces defining K is irredundant,
that is, is the minimal family necessary to define K.

Definition 4.5 (Spherical convex polytopes). For any n > 0, a closed hemisphere in S™ is a set
having the form C(w) = {p € S™ | (p,w) > 0} for some w € S™. A convex polytope K C S™
is a finite intersection of closed hemispheres in S™. Given a finitely generated group G with

S(G) 2 S™=1 we say that K C S(G) is a convex polytope if h(K) is a convex polytope in S

The next lemma uses some known facts about Euclidean polytopes with which we will assume
the reader is familiar.

Lemma 4.6. Let K C R be a (Euclidean) d-polytope (mazimal dimension) and f : K — K a
homeomorphism. If f maps segments to segments, that is, for any P,Q € K, f(conv(P,Q)) =
conv(f(P), f(Q)), then f maps vertices to vertices.

Proof. Let K = NP, H; for an irredundant family {H;} and let F; = K N H; be its facets. It is
known that n > d+ 1, that 0K = Fy U...UF,, and that a point of K is a vertex if and only if it
belongs to at least d different facets. Since f is a homeomorphism, it must map the boundary
OK to itself, and so f(Fy U...UF,) = Fy U...U F,. Suppose by contradiction that a vertex
P € K is mapped to a non-vertex point f(P) € K (but obviously P, f(P) € 0K). If a point
() € K belongs to any facet of K containing P (say, F'), then conv(Q, P) C F, since every facet
is convex. Then conv(f(Q), f(P)) C f(F) C OK by hypothesis, so the whole straight path
joining f(Q) and f(P) is contained in the boundary 0K. Then one can show that f(Q) must
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be in a facet which also contains f(P). This argument shows that all the facets containing P
must be mapped into the facets containing f(P). But there are at least d facets containing P,
say, F, ..., Fy and at most d — 1 facets containing f(P), say, F; F, Then

id—1-*
f(FLU...UF;) C F;, U..UF;

We continue: since there are at least d+1 facets, let Z € 0K be a point outside F;, U...UF;, |,
say, Z € F;,, and we can suppose F;, is the only facet containing Z. Since f is surjective,
Z = f(W), so W must be a boundary point outside F} U ... U Fy, say, W € F,;,;. By the same
argument above, we must have f(Fyy1) C F;, and so f(FA U ..U F;) C Fj, U...UF,,. If
d+ 1 = n, we stop. If not, we follow these same steps. After a finite number of steps we will
have

19 00

d—1"

f(RU...UF,) C F,,U..UF, |,
so f(OK) € 0K, contradiction. O

Theorem 4.7. Let G be a finitely generated group and K C S(G) a convex polytope contained
in an open hemisphere of S(G). Then K is invariant in S(G) if and only if V(K) is invariant
in S(G).

Proof. The convex polytope h(K) is contained in some open hemisphere O(v) of S"7!. Let
0, : R"1 — O(v) be the homeomorphism previously defined. One can verify from the definition
of 0, that the preimage of a closed hemisphere in S"~! under 6, is a closed halfspace in R".
Then to see that the preimage K’ = 6, (h(K)) is a polytope it suffices to see that it is bounded.
Since h(K) is closed in the compact S"!, it is compact. Since 6, is a homeomorphism, K’ is
also compact in R"~! and therefore bounded, so it is in fact a r-polytope for some 0 < r < n—1.

To show the theorem, let ¢ € Aut(G). It is enough to show that h(K) is invariant under
¢% if and only if V(h(K)) is. Suppose first that V(h(K)) is invariant under ¢°. In Euclidean
space, every convex polytope is the convex hull of its vertices. Since 6, maps convex hulls to
spherical convex hulls, it follows that h(K) is also the convex hull of its vertices. Using Lemma
4.3, we have

P (H(K)) = ¢°(conv(V (H(K)))) = conv(e®(V (h(K)))) = conv(V (h(K))) = b(K),

as desired. Now, suppose ¢°(h(K)) = h(K). If r < n — 1, then K’ is contained in a proper
r-hyperspace of R"! say, E”. There is a linear isomorphism and isometry 7": R” — E" and a
r-polytope K C R" such that K’ = T'(K). Consider the composition of homeomorphisms

A a 0L 1o TTL £

K— K -5 hK)—HhK)— K — K.
Since T" maps straight paths to straight paths, 8, maps straight paths to geodesic paths and
¢ maps geodesic paths to geodesic paths, this composition is a homeomorphism which maps
straight paths to straight paths. Since K has maximal dimension in R”, by Lemma this
composition must map the vertices of K to themselves. Since the vertices of h(K) are the
image of the ones from K, it follows that ¢ must map the vertices of h(K) to themselves, as
desired. If K’ already had maximal dimension r = n — 1, the proof is the same, but we don’t
even need to use K and 7. U
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Theorem 4.8. Let G be a finitely generated group. If there is a convex polytope K C S(G)
contained in an open hemisphere of S(G) and with rational vertices such that it is invariant
under all homeomorphisms induced by automorphisms of G, then G has property R.. In
particular, if X1 (G)¢ is one such polytope, then G has property Ro,

Proof. By the previous theorem, V(K) C S(G) is finite, invariant and by definition contained
in an open half-space of S(G). Then the result follows directly from Theorem . O

5. PROPERTY R, FOR I',, ITS FINITE INDEX SUBGROUPS, AND DIRECT PRODUCTS

In this section we use all the information previously gathered to guarantee property R., for
T, (Corollary [5.2)), its finite index subgroups H (Corollary and also for any (finite) direct
product involving these groups (Corollary . Note that property R, is already known for I,
and its finite index subgroups (see [11]). However, by using sigma theory, we obtain the same
results with new and easier proofs. Corollary for the direct product was not considered in
[T1]. In Proposition [5.6, we exhibit a group G where Theorem can be used to guarantee
property Ro without the need of completely computing the X! invariant.

We will make use of the following theorem.

Theorem 5.1 ([4], Theorem 3.3). Let G be a finitely generated group such that

SHG) = {Dxal, -, o]}
is a (nonempty) finite set of rational points. If {[x1],..., [Xm|} is contained in an open hemi-
sphere of S(G), then G has property Rs

Corollary 5.2. The generalized solvable Baumslag-Solitar groups I',, have property R

Proof. Observe that, by Theorem [2.4] %(T',,) is a finite set of rational points and is contained
Ll ) The result follows from Theorem . O

in the open hemisphere O <m

Corollary 5.3. All finite index subgroups of I',, have property R

Proof. Let H be such finite index subgroup. As above, just observe that, by Theorem

Y1(H)¢ is a finite set of rational points and is contained in the open hemisphere O (H(ﬁ’ 2 gll

of S(H). The result follows from Theorem [5.1] O

Now we show property R, for any (finite) direct product between the groups I',, and its
finite index subgroups.

Corollary 5.4. Let G = G| X ... X G, where each G; is some Iy, or some finite index subgroup
H ofT',,. Then G has Ry, property.

Proof. By Theorems , and by the known formula for the X! invariant of a direct product
of groups (Proposition A2.7 of [9], for example), we easily see that X'(G)¢ is a finite set of
rational points of S(G). Furthermore, by Theorems and , we know that L1(G;)¢ is
contained in an open hemisphere O(v;) of S(G;), for every i. From that, it is easy to see that
Y!(G)¢ is contained in the open hemisphere O(vy, ...,v,,) of S(G). The result follows from
Theorem (.11 O
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Let G be a finitely generated group and X a finite set of generators for G. A path in the
Cayley graph I' = I'(G, X) of G is denoted by p = (g,%1..-yn). The path p starts at g, walks
through the edge (g, y1) until the vertex gy;, walks through (gy;, y2) until gy;y» and so on, until
its terminus gy;...y,. Given x € Hom(G,R), the evaluation function v, is given by

vy (p) = min{x(g), x(g¥1), -, x(gy1---Yn)}-

We are going to use the following geometric 3'-criterion given by R. Strebel (Theorem A3.1)
in [9] in Proposition to illustrate a situation where we can use Theorem to guarantee
property R, for a finitely generated group G' without having to completely compute ! (G).

Theorem 5.5 (Geometric Criterion for '), Let G be a finitely generated group with finite
generating set X and denote Y = X*. Let [x] € S(G) and choose t € Y such that x(t) > 0.
Then the following are equivalent:

1) Ty, is connected (or [x] € XHQ));

2) For every y € Y, there exists a path p, from t to yt in I' such that v\ (p,) > v, ((1,9)).
Proposition 5.6. Let
G = {a,t,s | tat™" =a", sas™' =a™, tst” s =a")
for some coprime numbers n,m > 2 and some r € Z. Then G has property R.

Proof. We have the homeomorphism b : S(G) — S, sending [x] to the normalized of (x(¢), x(s)).
Let us compute X! (G) by the geometric criterion. Fix X = {a,t,s} and Y = {a,a™ ', t,t71 5,57}
1) if x(t) < 0 then [x] € ¥(G). Fix ¢! such that y(¢7') > 0. By using the relations
on G, one can see that the paths p, = (t71,a"), po—1 = (71, a™), pr = (t71,1), p-1 =
(1 t7Y), ps = (t7,a"s) and pe-1 = (71, s7La™") satisfy 2) of 5.5} so [x] € ZHG).
2) if x(s) < 0 then [y] € 2}(G). Similar to item 1).
3) if x(t) =1 and x(s) = 0 then [x] & Z!(G).
Suppose by contradiction that [y] € X'(G). Then, in particular, there is a path
p=(1,w) in T, from 1 to t~'at. Write

w = thghizgr ke ghezgre

Since p is contained in I'y, x(t) = 1 and x(s) = 0 we must have
k?n Z 0, ]{311 + ]{?21 2 O, ceey ]{711 + ...+ kc—l,l Z 0 and kll + ...+ kcl = 0.

By using the relations on G, we push right #*11 until t*2*, then we push right tFi1tk2
until £*#1, and so on. Since ki1 + ... + kg = 0, we eliminate from w all the t-letters and
(after relabeling the s and a powers) we can write w = s*a™...s*a™ in G. But, as a

vertex, w must be the end of the path p. So we have w = t~!at and therefore
a=twt ' =t(s"a".. sPa"N T = (a"s)M " (a7 s) ea,

or
w' = (ars)klan”...(ars)kcflam’“l(ars)kca””_l =1
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in G. By projecting this equation onto the s-coordinate, we have ki + ... + k. = 0. Also,
(a"s)a™ = a™M(a"s) and a™ (a"s)™! = (a"s)"ta™V for every M € Z. This means that,
in w’, the entire positive pieces (a"s)* can be pushed right and the negative ones can
be pushed left. After doing this, we obtain an expression of the form
(ars)—)\aalnrl+...+ac,1nrc,1+ae(m“c—1) (CLTS))\ _ 1,

where each «; is either 1 or a positive power of m. This easily implies
anry + ... + qe_1nre_1 + a.(nr. — 1) = 0.

By putting all the multiples of n above to the left and only . on the right, we get either
Mn =1 (contradiction with the fact n > 2) or Mn = m® for Q > 1 (contradiction with
the fact ged(n, m) = 1). This shows item 3).

4) if x(t) = 0 and x(s) = 1 then [x] ¢ X*(G). Similar to item 3).

Now identify S(G) with S' by the homeomorphism b and let [y;] and [x»] be the points of
items 3) and 4), respectively. Items 1) and 2) showed that the geodesic v in S(G) between
these points contains X!(G)°. We claim that + is invariant in S(G). In fact, if ¢ € Aut(G) and
p € 7, then by Lemma ©*(p) must be in the geodesic between ¢*[x1] and ¢*[x2]. By the X
invariance and by items 3) and 4), p*[x1] and ¢*[x2] are in $'(G)¢; therefore, by items 1) and
2), they must be in 7. Since 7 is a convex subset we have ¢*(p) € 7, which shows our claim.
Thus, in S(G) we have 7 an invariant convex l-dimensional polytope with the two rational
vertices [y;] and the proposition follows from Theorem . O

Remark 5.7. In Proposition 5.6} if » # 0, we do not know whether the group G is metabelian in
general. While in such cases the proof of Theorem does not necessarily apply, the geometric
criterion does apply. Of course, if r = 0, we have G = I'(S) for S = {n,m}, so G is metabelian.
Therefore, Proposition [5.6] illustrates an alternative way to derive property R., besides using
the BNS invariant 1.
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