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Twisted conjugacy and commensurability invariance

Parameswaran Sankaran and Peter Wong*

Communicated by Dessislava Kochloukova

Abstract. A groupG is said to have propertyR1 if, for every automorphism ' 2 Aut.G/,
the cardinality of the set of '-twisted conjugacy classes is infinite. Many classes of groups
are known to have this property. However, very few examples are known for which R1
is geometric, i.e., if G has property R1, then any group quasi-isometric to G also has
property R1. In this paper, we give examples of groups and conditions under which R1
is preserved under commensurability. The main tool is to employ the Bieri–Neumann–
Strebel invariant.

1 Introduction

Given a group endomorphism 'W� ! � , consider the (left) action of � on � via
� � ˛ 7! �˛'.�/�1. The set of orbits of this action, denoted by R.'/, is the set
of '-twisted conjugacy classes or the set of Reidemeister classes. The cardinality
of R.'/ is called the Reidemeister number R.'/ of '. The study of Reidemeister
classes arises naturally in the classical Nielsen–Reidemeister fixed point theory
(see e.g. [23]). More precisely, for any selfmap f WM !M of a compact con-
nected manifoldM with dimM � 3, the minimum number of fixed points among
all maps homotopic to f is equal to the Nielsen number N.f / which is bounded
above by the Reidemeister number R.f / D R.'/, where ' is the induced homo-
morphism by f on �1.M/. While N.f / is an important homotopy invariant, its
computation is notoriously difficult. When M is a Jiang-type space, then either
N.f / D 0 or N.f / D R.f /. While N.f / is always finite, R.f / need not be.
Thus, when R.f / D1, we have N.f / D 0, which implies that f is deformable
to be fixed point free. As a consequence of the R1 property, it is shown in [22]
that, for any n � 5, there exists a compact n-dimensional nilmanifold on which
every self-homeomorphism is isotopic to a fixed point free homeomorphism.

In [27], it is shown that if ' is an automorphism of a finitely generated non-
elementary word hyperbolic group, then R.'/ D1. Since then, many classes of
groups have been shown to possess property R1. However, most of the methods
employed in these works have been ad hoc and specific to the classes of groups
in question. On the other hand, †-theory, i.e., the Bieri–Neumann–Strebel invari-
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ant [5], has been used in [16] to prove propertyR1 under certain conditions on†1.
Subsequent work in [17,18,25,32] further explores the use of†-theory in connec-
tion with property R1. From the point of view of geometric group theory, it is
natural to ask whether or not property R1 is geometric, i.e., invariant up to quasi-
isometry. In general, R1 is not even invariant under commensurability and hence
not invariant under quasi-isometry. The simplest example is that of Z as an index 2
subgroup of the infinite dihedral group D1 (see e.g. [22]), where the former does
not have R1 while the latter does.

Since being non-elementary and word hyperbolic is geometric, the work of [27]
implies that R1 is invariant under quasi-isometry for the family of finitely gener-
ated non-elementary word hyperbolic groups (see also [12] in which a sketch of
proof was given for non-elementary relative hyperbolic groups). Another family
is that of the amenable or solvable Baumslag–Solitar groups BS.1; n/ for n > 1.
These groups have been completely classified in [11] up to quasi-isometry. For
higher BS.m; n/, where m � 2 and n > m, it turns out that they are all quasi-
isometric to each other as shown in [37]. These Baumslag–Solitar groups (the fun-
damental group of the torus, BS.1; 1/, is excluded here) have been shown in [13]
to have property R1. More generally, the family of generalized Baumslag–Solitar
(GBS) groups [26] and any groups quasi-isometric to them also have propertyR1
(see [35]). Moreover, R1 is also invariant under quasi-isometry for a certain solv-
able generalization of the BS.1; n/ (see [36]).

As another class of examples, let ƒ be an irreducible lattice in a connected
semisimple non-compact real Lie group G with finite center. It is known that any
finitely generated group � quasi-isometric to ƒ has the R1-property [30].

Despite the success in [27, 30, 35, 36], there have been no new examples of
groups for which property R1 is geometric. One difficulty is the determination
of the group of quasi-isometries in general. As a first step, we ask the following
question.

Question. For what class of groups is R1 a commensurability property? Equiv-
alently, if G has property R1 and � is commensurable to G (i.e., there exist
subgroups H < G, NH < � so that H Š NH , ŒG W H� <1, Œ� W NH� <1), when
does � also have property R1?

One of the main results of this paper is the following; for the definition of the
class of groups S as well as the proof of the theorem, see Section 3.

Theorem 1.1. Let G be a finitely generated group. Suppose every finite index sub-
group H has the property that b1.H/ D b1.G/. If G 2 S , then every group OG
commensurable to G also has property R1.
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The objective of this paper is to begin a systematic approach to studying R1.
We give conditions under which, when employing †-theory, property R1 is in-
variant under commensurability. In doing so, we introduce a stronger notion of
R1, namely R�1, in Section 2. When the complement .†1/c is a finite spherical
polytope lying inside an open hemisphere, we can find a point Œ�� 2 S.G/ that is
fixed by all automorphisms of G. If Œ�� is rigid, then G has property R�1 (Theo-
rem 3.5) and hence R1.

In Section 4, we investigate situations when the†-invariants ofG are preserved
under automorphisms of a finite index subgroupH . In Section 5, we construct new
families of groups that are direct products and free products with property R1.

2 Background on BNS invariants and R1

2.1 Sigma invariants

Let G be a finitely generated group. The set Hom.G;R/ of homomorphisms from
G to the additive group R is a real vector space with dimension equal to m, the
Z-rank of the abelianization Gab of G. Denote by @1Hom.G;R/ the boundary
at infinity of Rm (i.e., the set of geodesic rays in Rm initiating from the origin).
This is homeomorphic to the character sphere of G defined as the set of equiva-
lence classes S.G/´ ¹Œ�� j � 2 Hom.G;R/ � ¹0ºº, where �1 � �2 if and only
if �1 D r�2 for some r > 0. Let � denote the Cayley graph of G with respect
to a fixed generating set S . Given Œ�� 2 S.G/, define �� to be the subgraph of �
generated by the vertices ¹g 2 G j �.g/ � 0º. We say Œ�� 2 †1.G/ if �� is path
connected. For n > 1, there are higher order †-invariants †n introduced in [6].

The following are some well-known and useful facts (see e.g. [34]). The nota-
tion †1.G/c represents the complement of †1.G/ in S.G/.

Proposition 2.1. Suppose �WG ! H is an epimorphism, and � 2 Hom.H;R/. If
Œ� ı �� 2 †1.G/, then Œ�� 2 †1.H/.

Proposition 2.2. For finitely generated groups G and H ,

†1.G �H/c D .†1.G/c ~ ;/ [ .;~†1.H/c/;

where ~ denotes the spherical join on the character sphere S.G �H/.

Consider a group extension given by the short exact sequence

1! H ! G ! K ! 1;

whereH andG are finitely generated andK is finite. SinceK is finite, the restric-
tion homomorphism Hom.G;R/! Hom.H;R/ is a monomorphism so that S.G/
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can be regarded as a subsphere of S.H/. The following expression relates the †-
invariants of G with those of H (see [25, Corollary 3.2] or [29, Theorem 9.3]).

Proposition 2.3. For n � 1,

†n.G/ D †n.H/ \ @1Fix. O�/;

where �WK ! G is any left transversal such that �.1K/ D 1G , and

Fix. O�/ D ¹� 2 Hom.H;R/ j �.�.q/�1h�.q// D �.h/ for all h 2 H; q 2 Kº

is a subspace of Hom.H;R/.

2.2 Property R
�
1

Recall from [16] the role that †-theory plays is that the †-invariant can be used to
obtain a rational point on the character sphere that is fixed by all automorphisms.
In fact, the underlying principle is the existence of a character �WG ! R such that
� ı ' D � for all ' 2 Aut.G/. In this case, the image Im.�/ is a finitely generated
abelian subgroup of R and is isomorphic to Zr for some positive integer r . The
equality � ı ' D � implies that ' induces the identity on Im.�/, which implies
that R.'/ D1 since Ker.�/ is characteristic.

Definition 2.4 (Cf. [18, Definition 1.6, § 6.E]). LetG be a finitely generated group,
and let �WG ! R be a non-trivial character. The character � is said to be rigid if,
for any r 2 R, r � Im.�/ D Im.�/ implies r D ˙1. We say the character class Œ��
is rigid if, for any s > 0, the character s � � is rigid.

Note that a character � is rigid if and only if its class Œ�� is. Thus if, for
all ' 2 Aut.G/, Œ� ı '� D '�.Œ��/ D Œ�� and Œ�� is rigid, then � ı ' D � for all
' 2 Aut.G/. Evidently, if Œ�� is rational (i.e., �.G/ Š Z), then Œ�� is rigid.

Recall from [18, § 6E] that a character � as well as the class Œ�� are said to
be transcendental if Im.�/ � R has the property that if a; b 2 Im� are non-zero,
then a=b is either rational or transcendental. It follows that if Œ�� is transcendental,
then it is also rigid. It is easily seen that if �WG ! R has image ZC 21=3Z, then
Œ�� is rigid; evidently, it is not transcendental.

Suppose that �WG ! R is a transcendental character and �0WG ! R is a char-
acter such that Im.�0/ � Im.�/. Then �0 is also transcendental. This is in general
not true of rigid characters. For example, ifG D Z3, and �; �0WG ! R are defined
as �.a; b; c/ D aC b

p
2C c� , �0.a; b; c/ D aC b

p
2, then Im.�0/ � Im.�/ but

�0 is not rigid, even though � is.
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Remark 1. Suppose a finitely generated group G has a character sphere S.G/ of
dimension n D dimS.G/. Then, for any automorphism ' 2 Aut.G/, the induced
homeomorphism '�WS.G/! S.G/ has topological degree ˙1. The Lefschetz
number isL.'�/ D 1C .�1/n � deg'�. Thus if n is even and deg'� D 1, then the
Lefschetz fixed point theorem asserts that '�.Œ��/ D Œ�� for some Œ��. However,
there is no guarantee that Œ�� is rigid. Similarly, if †1.G/c is topologically a disk,
then the Brouwer fixed point theorem asserts every '� has a fixed point, but again,
such a fixed point need not be rigid. In fact, there exists a groupG (see [18]), where
S.G/ has a point Œ�� that is fixed by '� for all ' 2 Aut.G/ but Œ�� is not rigid.

The existence of such a globally fixed character that is witnessed by †-theory
leads us to the following stronger notion of property R1.

Definition 2.5. A group G, not necessarily finitely generated, is said to have prop-
erty R�1 if there exists a non-trivial character �WG ! R such that � ı ' D � for
all ' 2 Aut.G/. Note that if G has property R�1, it necessarily must have prop-
erty R1.

Example 2.6. Take G D Fr � BS.1; 2/ � BS.1; 2/, where Fr is the free group of
rank r � 2. It is easy to see that the complement

Œ†1.G/�c D Sr�1 [ ¹C1º [ ¹C10º

is an infinite set, where C1 and C10 denote the north poles of the two distinct
copies of S.BS.1; 2// and Sr�1 is an .r � 1/�dimensional sphere disjoint from
C1 and C10. It follows that either each of the points C1 and C10 is fixed,
in which case one of these endpoints yields a character that is fixed by all auto-
morphisms, or Œ N��, which corresponds to the point on the arc obtained from taking
the average of the characters �; � ı ' associated to those two points, is fixed by
'� for all ' 2 Aut.G/. Here '� is the homeomorphism of S.G/ induced by '.
Since the points C1 and C10 are rational, it follows that Œ N�� is also rational and
hence rigid. Again, we conclude that N� is fixed by all automorphisms. Hence G
has property R�1.

On the contrary, there are examples of groups for which the property R1 does
not imply the property R�1.

Example 2.7. By analyzing the automorphisms of the fundamental group of the
Klein bottle K as in [22, Lemma 2.1, Theorem 2.2], it is straightforward to see
that there is no Œ�� 2 S.�1.K// D †1.�1.K// Š S0 that is fixed by all automor-
phisms. Thus �1.K/ has property R1 but not R�1.
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3 Conditions on the first Betti number

Consider a group extension

1! H ! G ! K ! 1; (3.1)

where H and G are finitely generated and K is finite. Let �WK ! G be a left
transversal with �.1K/ D 1G .

The following simple relation between property R1 for G and that for H is
straightforward (see e.g. [21]).

Lemma 3.1. Given extension (3.1), if H is characteristic and has property R1,
then G has property R1.

Recall that a subset P � S D Rn n 0=� is a spherical polytope if there exist
v1; : : : ; vm 2 Rn such that

(i) all the vj are in a half-space, that is, there exists a linear map f WRn ! R
such that f .vj / > 0 for all j ,

(ii) P D ¹Œv� 2 S j v D
P
1�j�m aj vj ; aj � 0; v ¤ 0º and

(iii) v1; v2; : : : ; vm is a minimal set of such vectors; equivalently, no vi is a posi-
tive linear combination of a subset of vj , j ¤ i .

Then Œv1�; : : : ; Œvm� are the vertices ofP . If ˛ is any homeomorphism of S induced
by an automorphism of the vector space Rn such that ˛.P / D P , then ˛ permutes
the vertices of P .

Definition 3.2. Let S denote the class of all finitely generated groups which satisfy
the following two conditions:

(1) †1.G/c is non-empty and lies inside an open hemisphere of the character
sphere S.G/;

(2) the connected components of †1.G/c are finite spherical polytopes with tran-
scendental vertices.

Now let G be any group, not necessarily finitely generated. Suppose that the
abelianization is Gab Š Zn ˚ T , where T � Gab is the torsion subgroup. Thus
Gab=T is free abelian of finite rank. One may still define the character sphere
S.G/ exactly as for finitely generated groups, and we note that it is homeomorphic
to S.Gab/ Š Sn�1. Moreover, if �WG ! G is any automorphism, then � induces
a homeomorphism of S.G/. A hemisphere in S.G/ is defined as follows. Suppose
that g 2 G is not in ŒG;G�. The hemispheres defined by g are

HCg ´ ¹Œ�� 2 S.G/ j �.g/ > 0º and H�g D ¹Œ�� 2 S.G/ j �.g/ < 0º:
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Clearly, H˙g D H
�
g�1 . The hemispheres are homeomorphic to the open balls in

S.G/. Moreover, if �WG ! G is any automorphism, then ��WS.G/! S.G/ pre-
serves the collection of hemispheres. These statements follow from the obser-
vation that any automorphism of G induces an R-linear automorphism of the
(n-dimensional) vector space Hom.G;R/. In fact, automorphisms of G preserve
the Q-structure Hom.GIQ/ � Hom.G;R/. It is readily seen that if � is transcen-
dental (resp. rigid), so is ��.�/ D � ı �.

When G is not finitely generated, the †-invariant †1.G/ as in [5] is not avail-
able. Although the definition due to K. S. Brown [9] is applicable, we will not need
it for our present purposes.

Let K C G be a characteristic subgroup of a group G such that NG ´ G=K is
a finitely generated infinite group. We do not assume that G is finitely generated.
Then any automorphism � of G induces an automorphism N�W NG ! NG. This leads
to a homomorphism ‰WAut.G/! Aut. NG/. Since NG is finitely generated, one can
apply †-theory to obtain †1. NG/ � S. NG/. Note that Aut.G/ acts on S. NG/ (via ‰)
preserving the sets †1. NG/ and †1. NG/c in S. NG/. Observe that †1. NG/c depends
not only on G but also on the choice of K and is therefore not intrinsic to G.

Definition 3.3. Let zS denote the class of all groups G having a characteristic sub-
group K with quotient G=K in S .

Lemma 3.4. LetG be any group such thatGab has finite rank. Suppose �WG ! R
is a transcendental character and �WG ! G is an automorphism such that the
��-orbit of Œ�� is finite. Let �j D � ı �j , 0 � j < r , where r > 0 is the least
positive integer so that Œ�r � D Œ��. Suppose that the Œ�j � are in an open hemisphere
of S.G/. Let � D

P
0�j<r �j . Then � is transcendental.

Proof. We note that Im.�/ � Im.�/. So it suffices to show that � is non-zero. But
this follows from our hypothesis that the Œ�j � are in an open hemisphere.

Theorem 3.5. If G 2 zS , then G has property R�1.

Proof. Let K C G be a characteristic subgroup such that NG ´ G=K is in S .
As noted above, Aut.G/ acts on S. NG/ leaving †1. NG/c invariant. Since NG 2 S ,
†1. NG/c is a non-empty (finite) union of spherical polytopes. Moreover, the group
Aut.G/ acts on the set of vertices of †1.G/c . Since these vertices are transcen-
dental and all of them are contained in an open half-space, by Lemma 3.4, we
can find a transcendental character �W NG ! R that is fixed by all automorphisms
of G. It follows that the character G ! NG

�
! R is fixed by Aut.G/. Hence G has

property R�1.
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Denote by b1.�/ the first Betti number of a group � .

Lemma 3.6. Given extension (3.1), if b1.H/ D b1.G/ and G 2 S , then H 2 S

and hence has property R�1.

Proof. Since b1.H/ D b1.G/, we conclude that the character sphere of G co-
incides with the character sphere of H , that is, S.G/ D S.H/. By [25, Proposi-
tions 2.1, 2.3], @1Fix. O�/ D @1Hom.H;R/. It follows from Proposition 2.3 that
G andH have the same† invariants. SinceG 2 S , it follows thatH 2 S , and the
last assertion follows from Theorem 3.5.

Remark 2. It should be emphasized that if G (and hence H under the assump-
tion b1.H/D b1.G/) has empty or symmetric (e.g.†1.�1.M//D�†1.�1.M//,
where M is a closed orientable 3-manifold [5]) †-invariants, then we simply can-
not deduce any information regarding property R1. For example, consider the
classical lamplighter groups Ln D Zn o Z. It is known [21] that Ln has property
R1 if and only if gcd.n; 6/ > 1. However, †1.Ln/ D ; for any n 2 N. Another
such example is the fundamental group � of a non-prime 3-manifold, where � has
property R1 (see [19]) but †1.�/ D ;. Furthermore, if M is a closed orientable
3-manifold with H2 �R geometry, then �1.M/ has propertyR1 (see [20]) while
the fundamental group of the 3-torus does not. Here both fundamental groups have
non-empty symmetric †1.

We shall now prove Theorem 1.1.

Proof. Let OG be commensurable toG so that there existH � G, OH � OG such that
ŒG W H� <1, Œ OG W OH� <1 and OH Š H . Let CH be the core of H in G so that
CH � H and CH E G. SinceH is of finite index in G, so is CH . By Lemma 3.6,
we conclude that CH 2 S . Now b1.CH / D b1.H/ D b1.G/. Furthermore,H has
the same †-invariants as G, so we conclude that H 2 S . Since OH Š H , OH 2 S .
Now � OH ´

T
'2Aut. OG/ '.C OH / also has finite index in OG and is characteristic

in OG. Note that � OH is isomorphic to a subgroup NH � H of finite index in H . It
follows from the assumption that b1. NH/ D b1.G/, the subgroup NH 2 S . Now � OH
has propertyR�1. Applying Lemma 3.1, we conclude that OG has propertyR1.

Remark 3. Lemma 3.1 does not necessarily imply R�1 for the extension unless it
has the same †-invariants as the kernel. Thus, in the proof of Theorem 1.1, if we
know for instance that b1.� OH / D b1. OG/, then we can conclude that OG also has
property R�1.
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Example 3.7. Recall that property R1 is a quasi-isometric invariant for the class
of solvable Baumslag–Solitar groups (and their solvable generalizations) [36]. It
is known (see e.g. [25]) that †1.BS.1; n// D ¹�1º contains exactly one ratio-
nal point and b1.BS.1; n// D 1. Furthermore, if H is a finite index subgroup of
BS.1; n/, then H itself is a BS.1; nm/ group (see e.g. [8]) so that b1.H/ D 1.
Thus Theorem 1.1 gives a different proof of the fact that R1 is invariant under
commensurability for the class of solvable Baumslag–Solitar groups.

Example 3.8. For any n � 2, write n D py1

1 : : : p
yr
r as its prime decomposition.

Define a solvable generalization of the solvable Baumslag–Solitar groups by

�n D ha; t1; : : : ; tr j ti tj D tj ti ; tiat
�1
i D a

p
yi
i ; i D 1; : : : ; ri:

Evidently, when r D 1, �n D BS.1; n/. In [32], it has been shown that †1.�n/c

is a finite set of rational points all lying inside an open hemisphere so that �n 2 S .
Moreover, a presentation is also found for any finite index subgroup H of �n.
Using this presentation, one can show that b1.H/ D b1.�n/ D r . Thus Theo-
rem 1.1 gives a different proof of the fact that R1 is invariant under commen-
surability for this class of generalized solvable Baumslag–Solitar groups.

Next we exhibit more examples for which b1.H/ D b1.G/. Note that, in gen-
eral, b1.G/ � b1.H/.

Example 3.9. Let G be a connected semisimple Lie group having real rank at
least 2, and let � be an irreducible lattice in G. For every finite index subgroup H
in � , b1.H/ D b1.�/ D 0. However, in this case, S.H/ D ; D S.�/, and hence
both H and � have empty †-invariants.

Example 3.10. Certain subgroups of PLo.Œ0; 1�/ (oriented PL-homeomorphism
group of Œ0; 1�) possess such property [18, Section 6].

Example 3.11. Suppose G D H Ì� K, where K is finite and � WK ! Aut.H/ is
the action. If �.K/ � Inn.H/, then b1.H/ D b1.G/. From Stallings’ 5-term exact
sequence, we have the exact sequence

H2.K/! H=ŒG;H�! H1.G/! H1.K/! 0:

Since K is finite, both H2.K/ and H1.K/ are finite. It follows that

rkZ .H=ŒG;H�/ D rkZ.H1.G// D b1.G/:
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Since ŒH;H� � ŒG;H�, it suffices to show that ŒH;H� D ŒG;H� under our as-
sumptions. For any g 2 G, g can be uniquely written as g D Oh Nk, where Nk is the
image of k 2 K under the section given by the splitting. For any h 2 H ,

ghg�1h�1 D Oh Nkh Nk�1 Oh�1h�1

D Oh�.k/.h/ Oh�1h�1

D Oh�h��1 Oh�1h�1 for some � 2 H since �.k/ 2 Inn.H/

D . Oh�/h. Oh�/�1h�1 2 ŒH;H�:

It follows that ŒG;H� D ŒH;H�, and hence we have b1.H/ D b1.G/.

Lemma 3.12. Let G be any group. Suppose the commutator subgroup ŒG;G� con-
tains an infinite simple group K with ŒŒG;G� W K� <1. Then, for any finite index
subgroup H of G, b1.H/ D b1.G/.

Proof. To see this, first note that, for every finite index subgroup H , its core
coreG.H/ D CH � H is normal and has finite index in G. Now K \ CH has
finite index in K, so K \ CH is non-trivial. Since K is simple and

coreK.K \ CH / � K \ CH � K;

it follows that K \ CH D K, so we have K � H . Again, K being simple means
that K D ŒK;K�. Since K D ŒK;K� � ŒH;H� � ŒG;G� and K has finite index
in ŒG;G�, we conclude that ŒH;H� has finite index in ŒG;G�. It follows from
Stallings’ 5-term exact sequence that b1.H/ D b1.G/. Note that the argument
above shows that every finite index subgroup of G contains the simple group K.

Remark 4. The hypotheses of Lemma 3.12 are satisfied by a large class of groups.
In particular, for n � 2, the Houghton groups Hn satisfy the conditions of Lem-
ma 3.12 withK D A1. Furthermore, let S be a self-similar group and G D V.S/
the associated Nekrashevych group. Then ŒV .S/; V .S/� is simple (see e.g. [31]).
In fact, under certain conditions, ŒG;G� can be of finite index in G ([33, Theo-
rem 3.3]). Thus, by Lemma 3.12, these aforementioned groups G have the prop-
erty that b1.H/ D b1.G/ for all finite index subgroup H in G.

The R. Thompson group F is known to have property R1 (see [7]). A differ-
ent proof, using †-theory, has been given in [16]. In fact, one can conclude that
F 2 S , so F has property R�1. Now the next result follows from Lemma 3.12,
the fact that ŒF; F � is simple and, by Theorem 1.1, that any group commensurable
to F also has property R1.
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Theorem 3.13. Consider the R. Thompson group F . Then any group commensu-
rable to F also has property R1.

Remark 5. Example 5.5 in [25] follows immediately from Theorem 3.13. The
generalized Thompson groups F0;n have property R1, and every group commen-
surable to one such also has property R1. This result, including Theorem 3.13,
has been proven in [18] using different methods.

Another large class of interesting groups for which finite index subgroups have
the same first Betti numbers is the class of lamplighter groups of the form H o Z,
where H is a finite group. Since lamplighter groups have empty †1, these groups
exhibit different behavior as we illustrate in the next example.

Example 3.14. Let p � 5 be an odd prime. It follows from [21] that G D Zp o Z
does not have property R1. Moreover, no finite index subgroup of G has prop-
erty R1. Since every subgroup of finite index in G is of the form .Zp/k o Z for
some k 2 N, it follows from [21, main theorem] that such a subgroup does not
have property R1. (See Remark 2.)

4 Invariance under Aut.H /

Consider the Artin braid group B3 (on the disk) and its pure braid group P3
on 3 strands. The group P3 is a normal subgroup of index 6 in B3. Moreover,
P3 Š F2 � Z, whereF2 is the free group on 2 generators and Z is generated by the
central element�which is the full-twist of the 3 strands. It follows that b1.P3/D 3
and b1.B3/D 1. By Proposition 2.3,†1.B3/D†1.P3/\ @1Fix. O�/ (for†1.Pn/,
n � 4, see [24]). Since ŒB3; B3� is finitely generated, †1.B3/ D ¹˙1º. Further-
more, P3 has property R1 (see e.g. [14]). Although B3 and P3 both have prop-
erty R1, neither of them belongs to S . Observe that every automorphism of B3
restricts to an automorphism of P3. This leads us to investigate when †n.G/ is
invariant under Aut.H/.

Based on Proposition 2.3, one should seek conditions under which @1Fix. O�/ is
invariant under automorphisms ofH . Recall that, for any left transversal �WK!G

such that �.1K/ D 1G ,

Fix. O�/ D ¹� 2 Hom.H;R/ j �.�.q/�1h�.q// D �.h/ for all h 2 H; q 2 Kº:

For every q 2 K, define ˛q 2 Aut.H/ by ˛q.h/ D �.q/�1h�.q/. It follows that
Fix. O�/ D ¹� 2 Hom.H;R/ j � ı ˛q D � for all q 2 Kº. Denote by ˛q 2 Out.H/
the image of ˛q in Out.H/.
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Proposition 4.1. Given a short exact sequence 1! H ! G ! K ! 1 and a left
transversal �WK ! G with �.1K/ D 1G , if, for every q 2 K, ˛q 2 Z.Out.H//,
the center of Out.H/, then, for any ' 2 Aut.H/, we have '.†n.G// D †n.G/.
Furthermore, if G 2 S and if '�.S.G// D S.G/ for some ' 2 Aut.H/, then we
have R.'/ D1.

Proof. Given any ' 2 Aut.H/, there is an induced isomorphism O' on Hom.H;R/
given by O'.�/ D � ı ' for any � 2 Hom.H;R/. Suppose that � 2 Fix. O�/. For
O'.�/ 2 Fix. O�/, we must have O'.�/ ı ˛q D O'.�/ for every q 2 K. It follows that

� ı ' ı ˛q D � ı ' D � ı ˛q ı '

must hold for all q 2 K. This equality holds if the automorphisms ' ı ˛q and
˛q ı ' differ by an inner automorphism. This holds under the assumption that
˛q lies in the center Z.Out.H// for every q 2 K. Now the invariance of †n.G/
under Aut.H/ follows from Proposition 2.3. Since G 2 S , there exists a rigid
character � that is fixed by all automorphisms ofG. Since this character is obtained
from the †-invariants of G which are invariant under Aut.H/ and the subsphere
S.G/ � S.H/ is invariant under ', we conclude that � is also fixed by '�. It
follows that R.'/ D1.

5 More groups with R
�
1 or R1

Recall from Definition 3.3 the class of groups zS . A group G is in zS if there exists
a characteristic subgroup K GG such that G=K belongs to S . In this section, we
construct many families of groups (not necessarily finitely generated) that are di-
rect products or free products of G;H with G 2 S , whereH is a group belonging
to certain families of groups described below.

(i) Divisible groups. Recall that a group G is divisible if, given any element
g 2 G and an integer n > 1, there exists an h 2 G such that g D hn. Examples
of divisible abelian groups are Qm � .Q=Z/n, m; n 2 N. It is known that there
exist 2@0 many pairwise non-isomorphic groups which are generated by two ele-
ments and divisible. (See [28].) These groups do not have any proper finite index
subgroups. This family is closed under finite direct products. We shall denote this
class of group by D .

(ii) Torsion groups. All torsion groups have vanishing b1. This follows easily
from the basic fact that homology commutes with direct limits. This family of
groups is huge and includes many interesting groups such as Grigorchuk groups,
the group of finitary permutations of N, etc. Elementary (abelian) examples in-
clude A.P /´

L
p2P Zp as P varies in the set of all (infinite) subsets of primes.

Denote this class of groups by T .
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(iii) Acyclic groups. A group is said to be acyclic if its reduced homology with
trivial Z coefficients vanishes. This class includes the Higman four-group [10] and
binate towers [2]. It is known that any finitely generated group admits an embed-
ding into a finitely generated acyclic group [1]. The class of finitely generated
acyclic groups, denoted A, is closed under finite direct products and finite free
products.

(iv) Higher rank lattices. Let G be a connected semisimple (real) linear Lie
group which has no compact factors. Suppose that the real rank of G is at least 2.
(The real rank of a linear Lie group is the dimension of the largest diagonalizable
subgroup isomorphic to R�>0.) Let L � G be an irreducible lattice in G. Then it is
a deep result of Margulis that any normal subgroup ofL is either finite or has finite
index in L. Since L itself is not virtually abelian, it follows that b1.L/ D 0 and
that the same is true of any finite index subgroup of L. (This is not true in the case
of rank-1-lattices.) Again, if Li � Gi , 1 � i � n, are irreducible higher rank lat-
tices, then the product L´

Q
1�i�nLi also has trivial abelianization. Any finite

index subgroup ƒ of L admits a finite index subgroup � which is a product
Q
�i ,

where each �i � Li is a sublattice, i.e., finite index subgroup of Li . It follows that
b1.�/ D 0, and hence b1.ƒ/ D 0. Let us denote by L the class of all finite index
subgroups ƒ of direct products L D

Q
1�i�nLi as above.

We now construct new examples of groups with property R�1.

Proposition 5.1. We keep the above notation. Let C denote D [ T [A [L. Let
G be a group belonging to zS and H a group in C . Suppose that every homomor-
phism H ! G is trivial.

(i) Then G �H belongs to zS and hence has property R�1. If G is finitely gener-
ated, then G �H 2 zS and so has property R�1.

(ii) LetK be a finite index subgroup ofG such that b1.K/ D b1.G/. ThenK �H
and K �H belong to zS and so have property R�1.

Proof. (i) Since any homomorphism H ! G is trivial, the subgroup

H D 1 �H � G �H

is characteristic in G �H . Since G 2 zS , there exists a characteristic subgroup
K GG such that NG ´ G=K is in S . Then K �H is characteristic in G �H .
This is because, under an automorphism of G �H , H gets mapped onto itself
and K mod H gets mapped isomorphically onto K mod H . Hence G �H 2 zS .
By Theorem 3.2, G �H has property R�1.

Next we consider G �H , where G 2 zS is finitely generated. Let K GG be
a characteristic subgroup of G such that NG ´ G=K 2 S . If H 2 D [ T [L,
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then it is easy to see thatH is freely indecomposable. IfH 2 A is acyclic, thenH
is finitely generated. Thus, for any H 2 C , we have a free product decomposition
H D H1 � � � � �Hn, where each Hj is indecomposable as a free product. Since
G is finitely generated, we also have G D G1 � � � � �Gm, where each Gj is inde-
composable as a free product. By our assumption, none of the Hj are isomorphic
to any of the Gi .

A result of Fouxe-Rabinowitsch [15] describes a set of generators of

G �H D C1 � � � � � CmCn;

where Ci D Gi , i � m, Ci D Hi�m, i > m. These are of three types, namely,

(i) permutation automorphisms � which permute the factors (having fixed, once
for all, isomorphisms between two factors Ci ! Cj , i < j , if it exists),

(ii) factor automorphisms � which map each Ci to itself,

(iii) FR-automorphisms � D �.i; y/, y 2 Cj , j ¤ i , where � j Ci equals conju-
gation by y, � j Ck D id if k ¤ i .

By our above observation, any permutation automorphism preserves the Hj for
1 � j � n. It follows that the normal subgroup N of G �H generated by H is
invariant under each of these generators of Aut.G �H/. So N is characteristic in
G �H . It follows that any automorphism � 2 Aut.G �H/ induces an automor-
phism �0 2 Aut.G/ via the natural projection �WG �H ! G. Now �0 2 Aut.G/
induces an automorphism N� 2 Aut. NG/. Denoting by qWG �H ! NG the compo-
sition of the natural quotients, we have N� D q ı � , and Ker.q/ is characteristic in
G �H . So G �H 2 zS and so has the property R�1 by Theorem 3.2.

(ii) By Lemma 3.6, K belongs to S . Since any homomorphism H ! G is
trivial, the same is true if G is replaced by K. Thus the hypotheses of the state-
ment of the theorem are valid when G is replaced by K. Therefore, (ii) follows
from (i).

Remark 6. There are groups with property R�1 but with empty †-invariants.
For example, the group BS.2; 3/ has property R1. A close inspection of the
proof in [13] shows that BS.2; 3/ has property R�1 while it has empty †1 so that
BS.2; 3/ … S .

In general, the requirement that any homomorphism H ! G is trivial is hard
to verify. However, in certain contexts, this is easily verified or known. Examples
of such situations are the following.

(a) H is a torsion group and G is torsion free.
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(b) H admits no finite-dimensional linear representation and G is linear. For ex-
ample, we may take G to be an irreducible lattice in a semisimple linear Lie
group and H to be a binate group ([3, Theorem 3.1], [4]).

(c) IfG is a group such that any non-trivial element inG has at most finitely many
roots in G and H is divisible. For example, take G to be a non-elementary
hyperbolic group or a subgroup of GL.n;Z/ for some n.

Note that if G is the fundamental group of a closed orientable hyperbolic 3-mani-
fold, then, by [5], †1.G/ is symmetric, so G … S . In view of this, (i) of Proposi-
tion 5.1 can be generalized as follows using the same arguments as in the proof of
Proposition 5.1.

Proposition 5.2. Let C denote D [ T [A [L. Let G be a group with property
R1, and let H be in C . Suppose that every homomorphism H ! G is trivial.

(i) Then G �H has property R1.

(ii) IfG is freely indecomposable or is a finite free product, thenG �H has prop-
erty R1.

Proof. Following the proof of (i) of Proposition 5.1, for (i), H D 1 �H is char-
acteristic in G �H with quotient G. Since G has property R1, it follows (e.g.
[21, Lemma 1.2 (1)]) that G �H has property R1. Similarly, for (ii), there is
a characteristic subgroup N in G �H with quotient G so that we can conclude
that G �H must also have property R1.

Concluding remarks

Although the notion of R�1 is inspired by the use of †-theory, there are groups
with this property but empty †1 (for instance, any free products have empty †1).
In the last section, we construct certain free products G �H with property R1.
In particular, when H 2 D is divisible, H does not contain any proper subgroup
of finite index. Yet, if G has property R1 (or G 2 zS) and every H ! G is triv-
ial, then G �H has property R1 (or R�1). On the other hand, it has been shown
in [19] that G �H has property R1 provided both G and H are freely indecom-
posable and each contains proper characteristic finite index subgroups. We ask the
following question.

Question. Let G D G1 � � � � �Gk be a finite free product of freely indecompos-
able (not necessarily finitely generated) groupsGi . DoesG necessarily have prop-
erty R1?
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