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Abstract 

All living cells contain membrane proteins called ion channels. Ion channels 

regulate the diffusion of ions across both sides of the membrane, allowing for vital 

functions such as the regulation of cellular content and the transmission of electrical 

signals between cells. Viroporins are ion channels that are encoded by viruses. 

Viroporins are found in devastating viral pathogens such as COVID-19, HIV, and 

rotavirus. NSP4 is a rotavirus viroporin that disrupts cellular Ca2+
 homeostasis, leading 

to host cell lysis and the proliferation of more virions. Though the structure of some 

domains of NSP4 have been determined, the full-length structure of this viroporin is 

unknown. Until recently, only in vitro methods of structure determination, such as x-ray 

crystallography, were considered to be accurate. However, two recently published 

algorithms demonstrated a high degree of accuracy when determining the structure of 

membrane proteins from their amino acid sequences. These algorithms are known as 

AlphaFold and trRosetta. The goal of this project is to use AlphaFold to predict the 

molecular structure of the full-length NSP4 from SA11 rotavirus and compare this 

structure to a recently determined structure from the Banks lab generated via trRosetta, 

as well as its established crystal structure. This project also includes comparisons 

between predicted and experimental structures for AlphaFold’s intended targets: 

eukaryotic and prokaryotic proteins.  
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Introduction 

 Rotavirus (RV) is a vaccine preventable infectious agent chiefly responsible for 

viral gastroenteritis in young children across the world. In fact, prior to the introduction of 

the rotavirus vaccine, it was estimated that 95% of children worldwide were infected 

with RV gastroenteritis by the age of 5, and caused roughly 450,000 under-5 deaths 

annually (2, 3, 4, 10). The introduction of the RV vaccine has resulted in this annual 

death count to drop to roughly 200,000. However, most of these annual deaths originate 

from low-income countries (1, 3). These deaths are typically met with numerous 

comorbid conditions including malnutrition, lack of available potable water, and limited 

access to health care (3). These comorbidities translate to lower vaccine efficacy in low-

income countries (5, 10). Uncovering the mechanisms of RV pathogenesis will provide 

insight into developing drugs to more effectively counter viral gastroenteritis.  

Rotaviruses are non-enveloped, icosahedral, double-stranded RNA viruses in the 

Sedoreovirinae subfamily of the Reoviridae family. Its three capsids surround a genome 

of 10-12 segments of dsRNA, varying among the different genera, encoding six 

structural and six non-structural viral proteins (3, 5). RV structural proteins allow for viral 

host specificity, cell entry, and enzymatic activity whereas the non-structural proteins 

are responsible for genome replication and the deactivation of the host’s innate immune 

response (3). RV non-structural protein 4 (NSP4) plays a vital role in RV replication, 

morphogenesis, and pathogenesis, making it vital for replication. Therefore, NSP4 has 

proved to be a fascinating target for ongoing drug design.  
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NSP4 is a transmembrane glycoprotein which is initially synthesized in the 

endoplasmic reticulum (ER) (9). In the ER, NSP4 plays a key role in virus maturation. 

When NSP4 is active, it can release Ca2+ from the ER, elevating cytosolic Ca2+ in 

eukaryotic cells (8). This in turn activates Ca2+ activated Cl- channels, resulting in the 

secretion of Cl- in the lumen of mammals. This is the primary pathological mechanism 

which causes RV gastroenteritis. NSP4 is a multifunctional protein consisting of a 

viroporin domain (VPD, residues 47-90) and a coiled-coil domain (CCD, residues 95-

137), motifs that are commonly associated with other virus-encoded ion channel 

Figure 1. Graphic representation of biochemical pathway by which NSP4 increases cytosolic Ca2+. When NSP4 
inserts itself into the ER membrane, it increases cytosolic Ca2+ which activates Ca2+ activated Cl-  channels, resulting in 
the secretion of Cl- in the lumen of mammals. This is the primary mechanism leading to RV gastroenteritis. This graphic 
was created with BioRender.com 
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proteins (viroporins) (8, 9). NSP4 has also been shown to secrete an enterotoxin 

cleavage product (Enterotoxin, residues 112-175) from infected cells (21). The exact 

demarcation of each of these domains is not clearly defined. Structurally, viroporins 

typically consist of 60-120 amino acids. Though viroporins target a wide range of 

intracellular components, this class of proteins tends to share secondary structural 

motifs such as amphipathic alpha-helices and clusters of basic residues (6). The 

electrostatic properties of these common motifs aid in viroporin insertion into the host 

cell membrane. In NSP4, these common motifs are apparent within the VPD (amino 

acids 47-90) (9). Within the VPD exists the amphipathic domain (amino acids 71-92) as 

well as the pentalysine domain (amino acids 63-84), two structures that have been 

found to be critical for NSP4 transmembrane insertion (9). In addition to the 

determination of secondary structures within NSP4, crystallographic studies in the past 

have shown that the CCD of NSP4 has two oligomeric states, a Ca2+ bound tetrameric 

conformation and an ion-free pentameric conformation. The oligomeric state of NSP4 

appears to be affected by changes in pH (9). Apart from these crystallographic studies 

focusing on the several domains of NSP4, the structure of the entire viroporin is largely 

unknown.  

In vitro methods of deducing protein structure, which include cryo-EM, NMR, and 

x-ray crystallography, have several drawbacks. For one, existing in vitro methods 

sometimes struggle to produce atomically accurate structures, especially when there 

are no known homologous structures (12). Additionally, the cost to generate structure 

models from these methods is quite high. Furthermore, these methods suffer from 

exceedingly long turnaround times. This drawback has been exacerbated by supply 
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chain shortages during the COVID-19 pandemic. Owing to this fact, the original aim of 

this study, which was to obtain NSP4 structure models via crystallographic methods, 

has proved to be impossible to complete within the given timeframe. However, our 

inability to obtain crystallization conditions for NSP4 was also attributable to the fact that 

membrane proteins are notoriously difficult to crystallize. Since cryo-EM and NMR do 

not rely on crystallized samples, future studies should attempt these methods to obtain 

NSP4 structure models. Given the critical role of this viroporin in RV pathogenesis, it is 

vital to determine the full-length structures of the NSP4 multimers in order to fully 

understand the various functions of each of its domains. However, previous attempts to 

do so have been bottlenecked by the protein-folding problem. 

 First emerging in 1960, the protein folding problem has proven to be among the 

most elusive mysteries in modern biochemistry. The discovery of the first atomic-

resolution protein structures gave rise to the question of how a protein’s primary 

structure dictates its secondary-quaternary structure(s) (11). However, efforts to 

understand this mystery have been impeded by the previously stated drawbacks of in 

vitro methods. Recognizing that the development of accurate in silico-based protein 

structure modeling methods would allow for modeling from genome sequences, and the 

potential to replace in vitro methods, John Moult created the Critical Assessment of 

Techniques for Protein Structure Prediction (CASP). CASP is a biennial competition to 

test the effectiveness of structure-prediction algorithms within the international 

community of computational biology (11). In this competition, teams are given the 

sequences of proteins whose structures have already been determined experimentally 

but have not yet been publicly disclosed. The structures generated by the computational 
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models are compared to the experimentally determined structures. Last year in the 

Banks lab, Jeremy Bennett utilized a program called trRosetta, which was among the 

most accurate structure prediction algorithms featured at CASP13, to generate, to our 

knowledge, the first full length model of NSP4.  

CASP14 marked the most exciting year in the history of this competition, as 

DeepMind, a Google owned company based in London, released their second iteration 

of a protein folding algorithm called AlphaFold2. AlphaFold2 is the first algorithm of its 

kind to regularly predict protein structures with near experimental accuracy even when 

there is no known homologous structure (12). Interestingly, for many of the predictions 

where AlphaFold2 disagreed with the experimentally determined structures, the margin 

of error from both models was so small that it was not actually clear which was closer to 

the true structure. Although AlphaFold2 had the highest overall accuracy, one weakness 

of this software was its inability to accurately predict the structure of protein complexes. 

The AlphaFold team addressed this shortcoming in October of 2021 with the release of 

AlphaFold-Multimer, a model trained specifically for multimeric inputs which significantly 

increased the accuracy of predicted multimeric interfaces over single-chain AlphaFold 

while maintaining high intra-chain accuracy (13). For homomeric interfaces, AlphaFold-

Multimer successfully predicted the structure in 69% of cases. These astonishing results 

are made possible by deep learning.  

 Neural networks consist of thousands or even millions of densely interconnected 

processing nodes. Nodes within a neural network are typically organized into layers in 

which data flows in one direction (14). Deep learning refers to a subset of neural 

networks with at least three layers of nodes, consisting of an input layer, one or more 
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succeeding layers, and a final output layer. An individual node is typically connected to 

several nodes in a layer beneath it and a layer above it, receiving data from one end, 

and sending data through the other (14). Nodes function by assigning numbers called 

“weights” to each incoming connection.  When a node receives data from an incoming 

connection, this value is multiplied by its associated weight. If the resulting number 

exceeds the threshold value, the node “fires” and sends this value to its outgoing nodes. 

A fully trained neural network consists of properly interacting layers of nodes which can 

learn to recognize patterns within a training dataset. When neural networks are being 

trained, all of the weights and thresholds are set to random values. The output is then 

checked for errors against the training dataset. Data from the errors are used to adjust 

weights and thresholds over “generations” until the neural network is able to 

consistently yield accurate outputs (14). With each generation, weights and thresholds 

associated with proper function emerge, making the algorithm more accurate. 

For protein folding neural networks, the training dataset consists of known protein 

structures from the Protein Data Bank (PDB). AlphaFold is unique from other structure 

prediction algorithms in its use of a secondary training dataset modeled after an 

approach called “noisy student self-distillation” (12). The noisy student approach is a 

type of semi-supervised learning, allowing for the training of deep learning algorithms 

with the use of labeled and unlabeled data in three main steps: 1) train a teacher model 

using labeled data, 2) use the teacher model to assign “pseudo labels” to unlabeled 

data, and 3) train a student model using a combination of labeled and “pseudo labeled” 

data (16). Using the student model as a teacher to train a new student can result in 

highly accurate recognition algorithms. The DeepMind team used a trained neural 
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network to predict the structure of around 350,000 assorted sequences from the 

Uniclust30 database. A combination of these structure predictions as well as PDB data 

was used to train AlphaFold2.  

The training datasets from both AlphaFold and trRosetta do not include viral 

proteins. This is because viruses often encode polyproteins, which have exceedingly 

plastic structures that are often too unpredictable/resource intensive to model. Because 

NSP4 is not cleaved off of a larger polyprotein, we believe this constraint is not 

applicable. Furthermore, both AlphaFold and trRosetta have recently been used in 

addition to molecular dynamics (MD) simulations to model the structure of severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins, though these results have 

yet to be peer reviewed (17,18). Several SARS-CoV-2 proteins, including coronavirus 

NSP4 have not yet been modeled via in vitro methods, making these predictions the 

only available models. 

 Here, we generate SA11 rotavirus NSP4 monomer, tetramer, and pentamer 

models via the Colab notebook version of AlphaFold2/AlphaFold-Multimer. We then 

compare these models to a trRosetta-generated monomeric model as well as the 

multimeric models established by previous crystallographic studies. This will allow us to 

weigh the strengths and weaknesses of each methodology attempted to determine the 

structure of this viroporin. We also generate AlphaFold2 models of a eukaryotic and 

prokaryotic protein to compare with their established crystal structures. Lastly, we 

compare an AlphaFold2 model of SARS-CoV-2 NSP2 that was created and refined via 

MD simulations by (17) with the recently published corresponding crystal structure (21).  
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Results 

 When comparing between the AlphaFold2 model (Figure 2A) and the trRosetta 

model (Figure 2B), we found several structural differences. Aligning the two models 

resulted in a staggeringly high root-mean-square deviation (RMSD) value of 23.70 Å 

(Figure 2C). RMSD is a measure of accuracy in which deviations between different 

models of a particular dataset are compared. An RMSD value of <3 Å is typical for 

homologous proteins. The trRosetta model predicted many more coils separated at 

seemingly random intervals. Furthermore, instead of predicting results consistent with 

the established motifs of the VPD and CCD, this model instead splits the entire structure 

into a series of ~26 amino acid long alpha helices (Figure 3). Similarly, the AlphaFold2 

model was not consistent with the established VPD (Figure 3) (6). However, the 

AlphaFold2 model’s prediction of the CCD was nearly the same as the established 

model. This model predicted the CCD to be at residues 92-139, whereas the 

crystallographic data suggests the CCD to be at residues 95-137.  

 

  

Figure 2. Predicted models of full-length WT rotavirus SA11 NSP4 monomers. (A) The AlphaFold2 model of 
NSP4 is colored in cyan. (B) The trRosetta model of NSP4 is colored in gold. (C) Alignment of the two computational 
models resulted in an RMSD value of 23.70 Å. Homologous molecules are connected by yellow lines. Models were 

rendered using PyMOL Molecular Graphics System, Version 2.0. 
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Figure 3. Motif Demarcation of three models of full-length rotavirus SA11 NSP4 monomers. Blue boxes 
represent predicted helices, and red lines represent coils/unstructured regions between helices. Bennett, Hyser, and 
Weissman models were generated via in silico methods (6).  

To properly compare our full-length tetrameric model with the established 

crystallographic tetramer model of the CCD of the rotavirus SA11 NSP4, we excluded 

the VPD and residues 162-175 from the AlphaFold-Multimer model. (Figure 4A and B) 

reveal a discrepancy in the orientation of residues about the Ca2+ binding site (E120 

and Q123). An initial alignment of the two models resulted in the high RMSD value of 

10.79 Å. However, an alignment of the split-state of the two models resulted in an 

RMSD value of 3.844 Å, suggesting a potentially significant degree of structural 

similarity between the two models. However, the Ramachandran plot of these two 

models reveals a high degree of disparity between the torsional angles phi (φ) and psi 

(ψ) of the backbone of the two models (Figure 7). The AlphaFold-Multimer model has 

many residues consistent with beta-pleated sheet characteristics, motifs that are not 

associated with RV NSP4. Conversely, essentially all of the residues from the crystal 

structure of the tetramer have right-handed helical character, motifs that are heavily 

associated with RV NSP4. Furthermore, (Figure 7A) shows that 0.6% of the residues in 

the AlphaFold model are in structurally disallowed regions.  

 Like the comparison of tetrameric models, we excluded the VPD and residues 

162-175 from our full-length pentameric model for proper comparison of the two models. 

Again, we found a potentially significant degree of similarity between the two models. 
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Aligning the two models resulted in an RMSD value of 3.848 Å, just 0.004 Å higher than 

that of the split-state tetramers. Panels A and B of figure 5 demonstrate the preserved 

rotational symmetry of both models. Despite the structural similarities indicated by the 

acceptable RMSD value, the Ramachandran plot of these two models told a different 

story (Figure 8). Again, this plot shows that the AlphaFold-Multimer model has many 

residues consistent with beta-pleated sheet characteristics despite effectively all the 

residues from the pentameric crystal structure having right-handed helical character. 

Furthermore, (Figure 8A) shows that 0.1% of residues in the AlphaFold model were in 

structurally disallowed regions.  
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A. 

B. 

C. 

D. 

Figure 4. Top-down views of CCD of tetrameric models of WT rotavirus SA11 NSP4. (A) AlphaFold-Multimer model of 
NSP4 CCD in cyan. Rendering of predicted residue location/orientation of Ca2+ binding site included. (B) Crystallographic 
model of NSP4 CCD in green (PDB: 4WB4). Crystallographic models depict a Ca2+ ion about the Ca2+ binding site shown in 
green. This panel also includes renderings of the residues at the predicted Ca2+ binding site. (C) Alignment of both tetrameric 
models resulted in an RMSD value of 10.79 Å. Homologous molecules are connected by yellow lines. (D.) Alignment of split-
state of tetrameric models resulted in an RMSD value of 3.844 Å. Models were rendered using PyMOL Molecular Graphics 

System, Version 2.0. 
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A. B. 

C. 

Figure 5. Top-down views of CCD of pentameric models of rotavirus SA11 NSP4. (A) AlphaFold-Multimer 
model of WT SA11 NSP4 CCD colored in cyan (B) Crystallographic model of Q/E mutant SA11 NSP4 CCD 
colored in green (PDB:4WBA). This model depicts a phosphate molecule shown in red, as a phosphate buffer 
was required to stabilize the pentamer. (C) Alignment of the two models resulted in an RMSD of 3.848. 
Homologous molecules are connected by yellow lines. Models were rendered using PyMOL Molecular Graphics 
System, Version 2.0. 
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Figure 7. Ramachandran plot of: (A) AlphaFold-Multimer model of CCD of tetrameric WT SA11 NSP4 and (B) 
crystal structure of CCD of tetrameric WT SA11 NSP4. Each dot corresponds to a single amino acid within the 
structure. Triangles represent glycine residues, and squares represent every other type of amino acid. Plots were 
rendered using PROCHECK with the above listed protein PDB files as input data (24, 25). 

 

 

A. B. 

Figure 6. Alignments of AlphaFold models (cyan) and crystal structures (green) of: (A) polyethylene 
terephthalate degrading hydrolase (PETase) from Ideonella sakaiensis, RMSD = 0.304 Å, (PDB: 6EQF) and (B) 
Human Sonic Hedgehog protein, RMSD = 0.326 Å, (PDB: 3M1N). Homologous molecules are connected by yellow 
lines. Models were rendered using PyMOL Molecular Graphics System, Version 2.0. 
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Figure 8. Ramachandran plot of: (A) AlphaFold-Multimer model of CCD of pentameric WT SA11 NSP4 and (B) 
crystal structure of CCD of pentameric Q/E mutant SA11 NSP4. Each dot corresponds to a single amino acid within 
the structure. Triangles represent glycine residues, and squares represent every other type of amino acid. Plots were 
rendered using PROCHECK with the above listed protein PDB files as input data (24, 25). 

 

Figure 9. Ramachandran plot of: (A) AlphaFold2 model of PETase and (B) crystal structure of PETase. Each dot 
corresponds to a single amino acid within the structure. Triangles represent glycine residues, and squares represent 
every other type of amino acid. Plots were rendered using PROCHECK with the above listed protein PDB files as 
input data (24, 25). 
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Figure 10. Ramachandran plot of: (A) AlphaFold2 model of Sonic Hedgehog protein and (B) crystal structure of 
Sonic Hedgehog protein. Each dot corresponds to a single amino acid within the structure. Triangles represent 
glycine residues, and squares represent every other type of amino acid. Plots were rendered using PROCHECK with 
the above listed protein PDB files as input data (24, 25). 

 

To showcase AlphaFold’s remarkable predictive capabilities, AlphaFold models 

were generated and compared with their crystal structures for a prokaryotic and 

eukaryotic protein. For this analysis, PETase from Ideonella sakaiensis and Human 

Sonic Hedgehog protein were chosen. The resulting RMSD values for PETase and 

Sonic Hedgehog were 0.304 Å and 0.380 Å respectively. Though homologous 

molecules are still connected by yellow lines, discrepancies between the predicted and 

experimental models are so minute that these lines are effectively invisible. This is 

supported by the Ramachandran plots of the models, showing an exceptional degree of 

similarity in both cases (Figures 9, 10). Though the AlphaFold models have more 
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residues in structurally disallowed regions, some stereochemical violations are to be 

expected in unrefined structure models. 

 

 

Figure 11. (A) Alignment of MD-refined AlphaFold2 model (cyan) and crystal structure (green) of N-terminal SARS-
CoV-2 NSP2 resulted in an RMSD value of 1.617 Å (PDB: 7EXM). Models were rendered using PyMOL Molecular 
Graphics System, Version 2.0. Homologous molecules are connected by yellow lines. (B) Ramachandran plot of MD-
refined AlphaFold2 model of N-terminal SARS-CoV-2 NSP2. (C) Ramachandran plot of crystal structure of N-terminal 
SARS-CoV-2 NSP2. Each dot corresponds to a single amino acid within the structure. Triangles represent glycine 
residues, and squares represent every other type of amino acid. Plots were rendered using PROCHECK with the 
above listed protein PDB files as input data (24, 25). 
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 Because (17) has not yet been peer-reviewed, we compared their MD simulation-

refined AlphaFold2 model (Figure 11B) of N-terminal SARS-CoV-2 NSP2 with the 

recently published crystal structure (Figure 11C) (21). An alignment of the two models 

resulted in an RMSD value of 1.617 Å (Figure 11A). At this resolution, yellow lines 

connecting homologous molecules are difficult to see, indicating that the two structures 

are quite similar. This is supported by their respective Ramachandran plots which 

appear to also be alike. Though 0.2% of residues in the AlphaFold model are in 

structurally disallowed regions compared to 0% of residues in the crystal structure, the 

AlphaFold model actually has 1.3% more residues in the most favored regions of the 

Ramachandran plot (highlighted in red). 
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Figure 13. Chromatogram and western blot of purified whole cell lysates containing: 10X concentrated full-
length WT SA11 NSP4 (13.3 kDa) samples which were loaded onto 14-30% gradient SDS-PAGE gels to resolve 
proteins. Gels were transferred for Western blot analysis where proteins were detected using an a-His6X primary 
antibody (1:10,000). Bands were visualized with an NBT substrate for the alkaline phosphatase-tagged secondary 
antibody (1:10,000). Fractions of the chromatogram (shown at the top) correspond with the wells on the two pictured 
western blots. Ladder, Input, Flow Through, and Wash are labeled L, I, FT, and W respectively. Eluate fractions 
collected post column wash are designated with numbers that correspond to the volume in ml. Fraction numbers from 
the Western blot correspond to the fraction numbers from the chromatogram above showing total protein elution post 
wash.  

Figure 12. Western blot analysis of whole-cell lysates 
containing: 10X concentrated samples of full-length WT 
SA11 NSP4 (13.3 kDa) loaded onto 14-30% gradient SDS-
PAGE gels to resolve proteins. Gels were transferred for 
Western blot analysis where proteins were detected using an 
a-His6X primary antibody (1:10,000). Bands were visualized 
with an NBT substrate for the alkaline phosphatase-tagged 
secondary antibody (1:10,000). Ladder and pellet are labeled 
L and P respectively. Serial pellet extracts are denoted as 
“E#” in the order that they were generated. 
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 As mentioned in the introduction, the original aim of this project was to compare 

SA11 NSP4 structures generated via in silico methods with our own crystallographic 

structures of NSP4. We were unable to determine the crystallization conditions of NSP4 

in the given timeframe and have since shifted the goal of this study. Despite this 

roadblock, there was still a significant amount of progress made towards the 

crystallization portion of the project. Emily-Claire Duffy of the Banks lab proposed the 

use of the detergent n-dodecyl-B-D-maltoside (DDM) in our extraction protocol of NSP4. 

DDM has a long alkyl chain, making it a relatively mild detergent effective at extracting 

membrane proteins (23). However, it is worth noting that structures solved in DDM are 

often lower in resolution compared to proteins extracted with short-chain detergents. A 

new extraction protocol using DDM was devised and scaled up by Osceola Heard, 

another member of the Banks lab. These findings were essential in extracting quantities 

of NSP4 required for crystallographic analysis. Using the Duffy-Heard extraction 

protocol, we were able to obtain cell membrane extracts containing high concentrations 

of NSP4 (Figure 12.). NSP4 was then purified from these extracts via fast protein liquid 

chromatography (FPLC). Presence of purified NSP4 in our fractions was confirmed with 

a chromatogram and western blot analysis (Figure 13.). Due to irregularities in our gel 

electrophoresis process, fractions eluted at a higher kDa than expected. Our purified 

samples of NSP4 were then sent to Creative Biostructure for crystallization condition 

determination.  

 

  

mailto:oheard@bates.edu
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Discussion 

 Though the training dataset of both AlphaFold2 and trRosetta exclude viral 

proteins, the conservation of structural motifs in ion channels across the domains of life 

can still allow for meaningful modeling of viral proteins excluding polyproteins. We 

recognize that these algorithms are not intended for use on viral proteins, and that our 

models represent the limits of what machine-learning based methods are currently 

capable of. Previous attempts at modeling SARS-CoV-2 proteins using AlphaFold 

required refinement based on molecular dynamics simulations (17). Any similarities 

between the experimental and predicted models are indicative of the algorithm’s ability 

to predict protein structures that are not represented in its training dataset.  

 Only limited insight can be drawn from modeling monomeric NSP4, as this 

protein is most functional as a tetramer or pentamer. It is likely that NSP4 only exhibits 

structural stability in these two oligomeric states, as only the tetrameric and pentameric 

forms have been crystallized. The direct comparison between the AlphaFold2 and 

trRosetta models shed light on which algorithm is better suited for modeling viroporins. 

Both machine-learning models deviated from the proposed domains of monomeric 

NSP4 (Figure 3). However, the trRosetta model was unable to predict the CCD as a 

coherent motif, and instead split the entire protein into a series of ~26 amino acid long 

alpha helices. Conversely, the AlphaFold model predicted the CCD to be one long alpha 

helix spanning from residues 92-139. This is remarkably close to previously the 

proposed location of the CCD; residues 95-137. This demonstrates AlphaFold’s ability 

to recognize structural motifs within protein sequences that are not included within its 

training dataset. When aligning the two structures (Figure 2, panel C), the resulting 
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RMSD structure was a staggering 23.70 Å. RMSD values above 4 Å are generally 

considered meaningless. Though trRosetta is undoubtedly a cutting-edge tool in protein 

structure determination, these results speak to this algorithm’s relative inability to predict 

the structure of proteins underrepresented in its training dataset.  

 Both of our AlphaFold-Multimer models were trimmed, excluding the VPD and 

residues 162-175. This was done in order to reduce computational cost and to compare 

the predicted vs. established structures of the CCD. However, as the results from Figure 

2 may have indicated, these excluded regions also contained the most problematic 

regions of the predicted models. The predicted VPD of both multimeric forms of NSP4 

included numerous stereochemical violations mainly consisting of overlapping helices. 

Residues 162-175 were also excluded as AlphaFold predicted this region to be largely 

unstructured. Unstructured regions are generally meaningless in determining 

structure/function relationships. The initial alignment of the two models resulted in a 

discouragingly high RMSD value of 10.79 Å (Figure 4, panel C). However, comparing 

the split-state of these two models resulted in a much more reasonable RMSD value of 

3.844 Å (Figure 4, panel D). Split-state models are another method to reduce the 

computational cost of prediction and allow for more refined domain analysis. Though 

this RMSD value is not within the optimal range of <3 Å, these results show that the 

prediction is somewhat similar to the experimental model, albeit with many sidechains 

placed with the wrong rotamer. This is made apparent in panels A and B of Figure 4, in 

which we see residues in the binding site in the same location, but in different 

orientations. This is also supported by the Ramachandran plot of the two models 

(Figure 7).  Because both models are comprised by alpha-helices (Figure 4), we should 
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expect to see exclusively helical character in these plots. Although this is the case for 

the crystal structure, the AlphaFold-Multimer model has a significant number of residues 

with beta-pleated sheet characteristics. Furthermore, 0.6% of residues in the AlphaFold 

model are placed in disallowed regions compared to 0% of the residues in the crystal 

structure. This suggests that the AlphaFold-multimer model struggles to predict 

accurate torsional angles of the backbone for many of its residues. However, since most 

of the residues have right-handed helical characteristics, the predicted model is clearly 

not entirely wrong.  

 When aligning the pentameric models of NSP4, we obtained an RMSD value of 

3.848 Å, a mere 0.004 Å higher than that of the split-state tetramers (Figure 5C). These 

results indicate a high level of precision in the AlphaFold framework. This slight 

discrepancy in RMSD values is possibly attributable to the different mutant of NSP4 

used in the crystallization of pentameric NSP4. The Q/E mutant of NSP4 was required 

for this crystallization process. Therefore, this demonstrates AlphaFold’s potential to 

predict the structure of WT proteins without the need for mutagenesis. That being said, 

the pentameric AlphaFold model also struggled to predict accurate torsional angles of 

the backbone (Figure 8).  

 The modest RMSD values and problematic Ramachandran plots of the 

AlphaFold-Multimer models reveal that there is much work to be done before machine-

learning models alone can challenge crystallographic analysis for viral proteins. This is 

hardly surprising given that predicting the structure of viral proteins is not AlphaFold’s 

intended purpose (yet). To demonstrate AlphaFold’s predictive capabilities for 

eukaryotic and prokaryotic proteins, “celebrity” proteins petASE from Ideonella 
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sakaiensis and Human Sonic Hedgehog protein were selected. The resulting RMSD 

values were a stunning 0.304 Å and 0.326 Å respectively. It is widely accepted that 

RMSD values of 0.5-1.5 have such high resolution that there are unlikely to be many 

errors. To obtain RMSD values under this range puts into question which structure is 

closer to the proteins true native state. The Ramachandran plots of the predicted and 

experimental models sheds some light on this question (Figures 9 and 10). Though 

these pairs of plots are doubtlessly similar to one another, the AlphaFold models tend to 

have more residues in disallowed regions and less residues in the most favorable 

regions when compared to crystal structures. However, there may be a solution to 

AlphaFold’s inaccuracies.  

 The methodology laid out by (17) in which AlphaFold2 models are refined with 

MD simulations has been devised so recently that its findings have not yet been peer 

reviewed. To test these findings, we compared the MD-refined AlphaFold2 model of 

SARS-CoV-2 N-terminal NSP2 with the recently published corresponding crystal 

structure. An alignment of the two models resulted in an RMSD value of 1.617 Å, 

suggesting a high degree of structural similarity between them (Figure 11A). This is 

supported by the Ramachandran plots of the two models (Figure 11B and C), 

suggesting that the torsional angles of their backbones are consistent with one another. 

Interestingly, the MD refined AlphaFold model (Figure 11B) had 1.3% more residues in 

the most favorable regions than the crystal structure (Figure 11C). This suggests that 

properly refined AlphaFold models significantly reduce incorrectly placed residues, and 

can place residues in the most favored regions more so than crystal structures.  
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This demonstrates the near experimental-grade accuracy of MD-refined AlphaFold2 

protein models.  

 Machine learning based methods are a highly enticing alternative to slower, more 

expensive experimental methods. However, there remain some constraints to machine 

learning models. These methods rely on template-based modeling. As a result, 

predictions largely focus on the average structure from a library of homologous 

sequences. This approach results in an inability to accurately capture differences in 

structure packing because of varying sidechains. This is reflected in figures 9 and 10. 

Physics-based protein model refinement methods can address these shortcomings 

using conformational sampling around the predicted structures. Molecular dynamics, a 

subset of protein model refinement, is one of the most successful methods for refining 

dubious structural features (18). MD-refined AlphaFold2 structures allowed for accurate 

modeling of SARS-CoV-2 proteins early in the COVID-19 pandemic (17). Unfortunately, 

until our methodology includes some variation of protein model refinement, our models 

cannot hold up to the established crystal structures of NSP4.  

 The advent of accurate and precise structure prediction algorithms marks a new 

era of proteomics. Here, we demonstrate a methodology in which anyone with a 

computer and stable internet connection can feasibly generate experimental-grade 

protein structures in the span of a single afternoon. We also demonstrate that when 

used properly, structure prediction algorithms can potentially challenge experimentally 

obtained protein structures. This will result in increased competition between companies 

capable of these expensive and inaccessible methods of structure determination, 

hopefully resulting in lower costs and more rapid turnarounds.  
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 Ongoing studies should attempt to refine our models of NSP4. This can first be 

done by utilizing the full version of AlphaFold. Though the Colab notebook version of 

AlphaFold is user friendly, it is a simplified version of the full algorithm. Future studies 

should resume our attempts to run the full version of AlphaFold via the Bates Leavitt 

HPCC. Our NSP4 models can also be improved by using protein model refinement, 

namely molecular dynamics simulations. Ongoing studies should also attempt other in 

vitro methods of structure determination such as cryo-EM or NMR due to their relative 

success in modeling membrane proteins. They may also re-attempt the more 

challenging task of crystallizing NSP4. Future studies should also explore generating 

models with RoseTTAFold, another highly accurate open-access algorithm featured at 

CASP14.  
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Methods 

Computational Modeling 

The amino acid sequence of SA11 rotavirus NSP4 was obtained from NCBI, and 

the sequences of PETase and Sonic Hedgehog protein were obtained from the 

Research Collaboratory for Structural Bioinformatics Protein Data Bank (PDB). These 

sequences were inserted into the Colab notebook version of AlphaFoldv2.1.0 and 

AlphaFold-Multimer in FASTA format. The outputs of the algorithm were downloaded as 

PDB files. All protein structure models were rendered, and RMSD values generated, 

using PyMOL Molecular Graphics System, Version 2.0 (Schrödinger, LLC) for detailed 

analysis. All Ramachandran plots were generated using PROCHECK, a free tool 

developed by UCLA-DOE that checks the stereochemical quality of a protein structure 

(24, 25).   

 The AlphaFold-generated NSP4 models were compared with a monomeric 

model created last year in the Banks lab via trRosetta, as well as the established 

crystallographic tetramer and pentamer models (Jeremy Bennett, Unpublished) (9). The 

PDB codes for NSP4 the tetramer and pentamer are 4WB4 and 4WBA respectively. 

The AlphaFold-generated PETase and Sonic Hedgehog protein models were compared 

with their established crystal structures. The PDB codes for the crystal structures of 

PETase and Sonic Hedgehog protein are 6EQF and 3M1N respectively (19) (20).  

Overexpression of NSP4 

 We completed bacterial cell culturing as previously described by (6). Plasmids 

encoding WT SA11 NSP4 residues 47-146 (accession number AF087678.1) were 
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transformed into BL21 (DE3) pLysS E. coli cells (Promega) via heat shock in a 42°C hot 

water bath for 30 seconds, and then recovered at 37°C for 1 hour prior to plating onto 

LB broth (Research Products International) containing 1% glucose, 50 mg/mL 

carbenicillin, and 37 mg/mL chloramphenicol. Single colonies were picked, and grown 

overnight at 37°C in LB containing 1% glucose, 50 mg/mL carbenicillin, and 37 mg/mL 

chloramphenicol plates and shaken at 200 rpm overnight. The overnight culture was 

diluted into fresh media and grown until the optical density (OD) at 600 nm reached the 

range of 0.4-0.6. At this point, the culture was induced with 1M Isopropyl ß-D-1-

thiogalactopyranoside (IPTG) for 2-3 hours. The culture was then divided into 250 mL 

bottles and centrifuged at 11,000 rpm for 10 minutes. The supernatant was discarded, 

and the pellets were stored at -20°C for detergent extraction of NSP4 from membrane 

fragments using a method initially developed by Dr. Lori Banks and optimized by Emliy-

Claire Duffy and Osceola Heard (other Banks Lab members).  

Purification of NSP4 

    Where specified, cell pellets were resuspended in 1X Phosphate Buffered Saline 

(PBS) containing 10 mM imidazole 1X DDM and stirred on ice. Suspensions were 

centrifuged at 10,000 rpm for 15 minutes at 4̊ C, and the extracted proteins in the 

supernatant were collected. The extraction process was repeated two more times. 

Lysate samples were centrifuged at 10,000 rpm for 10 minutes and combined for 

loading onto a nickel-charged IMAC column run on our NGC Protein Purification System 

(BioRad). Later purification runs employed the same protocol with the exception that 20 

mM Tris pH 7.4, containing 10 mM imidazole and 1X DDM, with either 100 mM or 500 

mM NaCl, as the extraction buffer. Pooled extracts were filtered and then loaded onto a 
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5mL nickel-charged IMAC column at 5mL/min, washed with 20 mM Tris pH 7.4, 

containing 10 mM imidazole and 1X DDM, with either 100 mM or 500 mM NaCl. 

Proteins were eluted using a linear gradient of 20 mM Tris pH 7.4, containing 500mM 

imidazole and 1X DDM, with either 100mM or 500 mM NaCl, at a flow rate of 5mL/min. 

1 mL fractions were collected, and samples taken for Coomassie and Western blot 

analysis to determine NSP4-containing fractions and protein purity. 

Western Blot Analysis of NSP4 

Extract and pellet fractions from the above protocol were then prepared for 

western blot analysis to specifically detect the fractional location of our NSP4 construct. 

10X concentrated whole-cell lysates containing WT SA11 NSP4 residues 47-146 

(predicted monomer size, 13.3 kDa) were loaded onto 4-20% Tris-glycine gradient SDS-

PAGE gels to resolve proteins. Gels were either stained with BioSafe Coomasie 

solution to see total protein, or transferred for Western blot analysis using a semi-dry 

method, where proteins were detected using an a-His6X primary antibody (1:10,000). 

Bands were visualized with a 5-bromo-4-chloro-3-indolyl phosphate (BCIP)/nitro blue 

tetrazolium (NBT) substrate for the alkaline phosphatase-tagged secondary antibody 

(1:10,000). 
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