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Abstract

This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and
penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey
of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North
are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended
Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released
here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the
SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates.
DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the
MaNGA Stellar Library “MaStar”). We also preview future SDSS-V operations (due to start in 2020), and
summarize plans for the final SDSS-IV data release (DR17).

Unified Astronomy Thesaurus concepts: Astronomy databases (83); Optical telescopes (1174); Infrared astronomy
(786); Redshift surveys (1378); Galactic abundances (2002); Stellar spectral lines (1630); Stellar properties (1624)

1. Introduction

The Sloan Digital Sky Surveys (SDSS) have been observing
the skies from Apache Point Observatory (APO) since 1998
(using the 2.5 m Sloan Foundation Telescope; Gunn et al.
2006) and from Las Campanas Observatory (LCO) since 2017
(using the du Pont 2.5 m Telescope).

Representing the fourth phase of the SDSS, SDSS-IV
(Blanton et al. 2017) consists of three main surveys: the
Extended Baryon Oscillation Spectroscopic Survey (eBOSS;
Dawson et al. 2016), Mapping Nearby Galaxies at APO
(MaNGA; Bundy et al. 2015), and the APO Galactic Evolution
Experiment 2 (APOGEE-2; Majewski et al. 2017). Within
eBOSS, SDSS-IV has also conducted two smaller programs:
the SPectroscopic IDentification of ERosita Sources (SPI-
DERS; Clerc et al. 2016; Dwelly et al. 2017) and the Time
Domain Spectroscopic Survey (TDSS; Morganson et al. 2015).
These programs have investigated a broad range of cosmolo-
gical scales, including cosmology with large-scale structure
(LSS) in eBOSS, the population of variable quasars and stars
with TDSS and X-ray detected active galactic nuclei (AGNs)
and stars with SPIDERS, nearby galaxies in MaNGA, and the
Milky Way and its stars in APOGEE-2.

This paper documents the 16th data release from the SDSS
(DR16), the latest in a series that began in 2001 (Stoughton
et al. 2002). It is the fourth data release from SDSS-IV
(following DR13: Albareti et al. 2017; DR14: Abolfathi et al.
2018; DR15: Aguado et al. 2019). A complete overview of the
scope of DR16 is provided in Section 2, and information on
how to access the data can be found in Section 3. DR16
contains three important milestones.

1. The first data from APOGEE-2 South (APOGEE-2S),
which is mapping the Milky Way in the Southern
Hemisphere from the du Pont Telescope at LCO. With

the SDSS now operating APOGEE instruments in two
hemispheres, all major components of the Milky Way are
accessible (see Section 4).

2. The first and final release of eBOSS spectra from the
emission line galaxy (ELG) cosmology program. The
entirety of this LSS survey was conducted in the interval
between DR14 and DR16. Covering the redshift range
0.6<z<1.1, the eBOSS ELG program represents the
highest-redshift galaxy survey ever conducted within
the SDSS.

3. The full and final release of spectra from the main
observing program of eBOSS, completing that cosmolo-
gical redshift survey. DR16 therefore marks the end of a
20 year stretch during which the SDSS performed a
redshift survey of the LSS in the universe. Over this span,
the SDSS produced a catalog of spectroscopic galaxy
redshifts that is a factor of more than five larger than any
other program. DR16 provides spectra along with usable
redshifts for around 2.6 million unique galaxies. The
catalogs that contain the information to accurately
measure the clustering statistics of ELGs, luminous red
galaxies (LRGs), quasars, and Lyα absorption will be
released later (see Section 5).

DR16 also represents the full release of the TDSS
subprogram, which in total releases spectra for 131,552
variable sources (see Section 5.4). The SPIDERS subprogram
will have a small number of observations in the future to cover
eROSITA targets, but DR16 releases a number of Value Added
Catalogs (VACs) characterizing both X-ray cluster and X-ray
point sources that have already been observed (as well as the
optical spectra; see Section 5.3). There are no new data from
MaNGA or MaStar (Yan et al. 2019) in DR16; however, a
number of new or updated VACs based on DR15 MaNGA data
are released (see Section 6).

2. Scope of DR16

Following the tradition of previous SDSS data releases,
DR16 is a cumulative data release. This means that all previous
data releases are included in DR16, and data products and
catalogs of these previous releases will remain accessible on
our data servers. Table 1 shows the number of spectra
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137 SDSS-IV Spokesperson.
138 Premium Postdoctoral Fellow of the Hungarian Academy of Sciences.
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contained in DR16 along with those from previous releases and
demonstrates the incremental gains with each release. We
strongly advise to always use the most recent SDSS data
release, as data will have been reprocessed using updated data
reduction pipelines (DRPs), and catalogs may have been
updated with new entries and/or improved analysis methods.
These changes between DR16 and previous data releases are
documented in this paper and on the DR16 website:https://
www.sdss.org/dr16.

The content of DR16 is given by the following sets of data
products.

1. eBOSS is releasing 860,935 new optical spectra of
galaxies and quasars with respect to its previous SDSS
data release. These targets were observed between MJD
57,520 (2016 May 11) and 58,543 (2019 March 1), and
bring the total number of spectra observed by eBOSS to
1.4 million. This number includes spectra observed as
part of the TDSS and SPIDERS sub-surveys, as well as
the spectra taken as part of the eBOSS reverberation
mapping (RM) ancillary program. All spectra, whether
released previously or for the first time in this data
release, have been processed using the latest version of
the eBOSS DRP v5_13_0. In addition to the spectra,
eBOSS is also releasing catalogs of redshifts, as well as
various VACs (see Table 2). DR16 is the last SDSS data
release that will contain new eBOSS spectra from the

main program, as this survey has now finished. Addi-
tional observations of X-ray sources under the SPIDERS
program and continued monitoring of quasars under the
RM program are planned before the end of SDSS-IV,
which will lead to another increment of single-fiber
spectra from the Baryon Oscillation Spectroscopic Survey
(BOSS) spectrograph in DR17.

2. APOGEE-2 is including 751,864 new infrared spectra;139

The new spectra comprise both observations of 195,936
new stars and additional epochs on targets included in
previous DRs. The majority of the stars are in the Milky
Way (including Omega Centauri), but DR16 also contains
stars from the Large and Small Magellanic Clouds and
dwarf spheroidal satellites. A total of 262,997 spectra, for
102,200 unique stars, were obtained in the Southern
Hemisphere from the APOGEE-S spectrograph at LCO.
These new spectra were obtained from MJD 57,643 to
MJD 58,301 (2016 September 12 to 2018 July 2) for
APOGEE-2N from APO and from MJD 57,829 to MJD
58,358 (2017 March 17 to 2018 August 28) for APOGEE-
2S from LCO. DR16 also includes all previously released
APOGEE and APOGEE-2 spectra, which have been re-
reduced with the latest version of the APOGEE data
reduction and analysis pipeline. In addition to the reduced

Table 1
SDSS-IV Spectroscopic Data in DR13–DR16

Survey Target Category DR13 DR14 DR15 DR16

eBOSS
LRG samples 32,968 138,777 138,777 298,762
ELG samples 14,459 35,094 35,094 269,889

Main QSO sample 33,928 188,277 188,277 434,820
Variability Selected QSOs 22,756 87,270 87,270 18,5816

Other QSO samples 24,840 43,502 43,502 70,785
TDSS targets 17,927 57,675 57,675 131,552

SPIDERS targets 3133 16,394 16,394 36,300
Reverberation mapping 849a 849a 849a 849a

Standard stars/white dwarfs 53,584 63,880 63,880 84,605

APOGEE-2
Main red star sample 109,376 184,148 184,148 281,575

AllStar entries 164,562 277,371 277,371 473,307b

APOGEE-2S main red star sample L L L 56,480
APOGEE-2S AllStar entries L L L 102,200

APOGEE-2S contributed AllStar entries L L L 37,409
NMSU 1-meter AllStar entries 894 1018 1018 1071

Telluric AllStar entries 17,293 27,127 27,127 34,016
APOGEE-N commissioning stars 11,917 12,194 12,194 12,194

MaNGA
MaNGA Cubes 1390 2812 4824 4824
MaNGA main galaxy sample:

PRIMARY_v1_2 600 1278 2126 2126
SECONDARY_v1_2 473 947 1665 1665

COLOR-ENHANCED_v1_2 216 447 710 710
MaStar (MaNGA Stellar Library) L L 3326 3326
Other MaNGA ancillary targetsc 31 121 324 324

Notes.
a The number of reverberation mapping targets remains the same, but the number of visits increases.
b This number includes multiple entries for some stars; there are 437,485 unique stars.
c Many MaNGA ancillary targets were also observed as part of the main galaxy sample, and are counted twice in this table; some ancillary targets are not galaxies.

139 The number of entries in the All Visit file, which is larger than the number
of combined spectra having entries in the AllStar file as listed in Table 1.
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spectra, element abundances and stellar parameters are
included in this data release. APOGEE-2 is also releasing a
number of VACs (Table 2)

3. MaNGA and MaStar are not releasing any new spectra in
this data release; the spectra and data products included in
DR16 are therefore identical to those that were released in
DR15. However, MaNGA is contributing a number of of
new or updated VACs in DR16, which are based on the
DR15 sample and data products (see Table 2).

4. Since SDSS data releases are cumulative, DR16 also
includes data from all previous SDSS data releases. All
BOSS and eBOSS, APOGEE, and APOGEE-2 spectra
that were previously released have all been reprocessed
with the latest reduction and analysis pipelines. The
MaNGA and MaStar data in DR16 are identical to those
in DR15 (Aguado et al. 2019); SDSS-III MARVELS
spectra have not changed since DR12 (Alam et al. 2015).
SDSS Legacy Spectra in DR16 are the same as those
released in their final form in DR8 (Aihara et al. 2011),
and the SEGUE-1 and SEGUE-2 survey data in DR16 are
identical to the final reductions released with DR9 (Ahn
et al. 2012). The SDSS imaging had its most recent
change in DR13 (Albareti et al. 2017), when it was
recalibrated for eBOSS imaging purposes and DR16
contains this version of the imaging.

An overview of the total spectroscopic content of DR16,
with number of spectra included, is given in Table 1. An
overview of the VACs that are new or updated in DR16 can be
found in Table 2; adding these to the VACs previously released
in the SDSS gives a total of 46 VACs in DR16.140

3. Data Access

The SDSS data products included in DR16 are publicly
available through several different channels. The best way to
access the data products depends on the particular product,
and the goal of the user. The different access options are
described on the SDSS website:https://www.sdss.org/dr16/
data_access/, and we also describe them below. We provide a

variety of tutorials and examples for accessing data products
online athttps://www.sdss.org/dr16/tutorials/.
All software that was used by SDSS to reduce and process

data, as well as to construct derived data products, is publicly
available in either SVN or Github repositories; an overview of
available software and where to retrieve it is given onhttps://
www.sdss.org/dr16/software/.

3.1. Science Archive Server

The main path to access the raw and reduced imaging and
spectroscopic data directly, as well as obtain intermediate data
products and VACs, is through the SDSS Science Archive
Server (SAS, https://data.sdss.org/sas/). Note that all pre-
vious data releases are also available on this server, but we
recommend that users always adopt the latest data release, as
these are reduced with the latest versions of the data reduction
software. The SAS is a file-based system, which allows data
downloads by browsing or through tools such as rsync, wget
and Globus Online (seehttps://www.sdss.org/dr16/data_
access/bulk for more details). The content of each data product
on the SAS is outlined in its data model, which can be accessed
throughhttps://data.sdss.org/datamodel/.

3.2. Science Archive Webapp

Most of the reduced images and spectra on the SAS are also
accessible through the Science Archive Webapp (SAW), which
provides the user with options to display spectra and overlay
model fits. The SAW includes search options to access specific
subsamples of spectra, e.g., based on coordinates, redshift, and/or
observing programs. Searches can also be saved as “permalinks” to
allow sharing with collaborators and future use. Links are provided
to download the spectra directly from the SAS, and to open
SkyServer Explore pages for the objects displayed (see below for a
description of the SkyServer). The SAW contains imaging, optical
single-fiber spectra (SDSS-I/II, SEGUE, BOSS, eBOSS), infrared
spectra (APOGEE-1/2), and stellar spectra of the MaStar stellar
library. All of these webapps are linked fromhttps://dr16.sdss.
org/. Just like the SAS, the SAW provides access to previous data
releases (back to DR8).

Table 2
New or Updated VACs

Description Section Reference(s)

APOGEE-2 red clumps Section 4.5.1 Bovy et al. (2014)
APOGEE-2 astroNN Section 4.5.2 Leung & Bovy (2019a)
APOGEE-2 Joker Section 4.5.3 Price-Whelan et al. (2017, 2018, 2020)
APOGEE-2 OCCAM Section 4.5.4 Donor et al. (2018, 2020)
APOGEE-2 StarHorse Section 4.5.5 Queiroz et al. (2018); Anders et al. (2019);

Queiroz et al. (2020)
eBOSS ELG classification Section 5.1.3 Zhang et al. (2019)
SDSS galaxy single fiber FIREFLY Section 5.1.3 Comparat et al. (2017)
SPIDERS X-ray clusters Section 5.3.4 Clerc et al. (2016); C. Kirkpatrick et al. (2020, in preparation)
SPIDERS Rosat and XMMa-slew sources Section 5.3.5 Comparat et al. (2020)
SPIDERS multiwavelength properties of RASS and XMMSL AGNs Section 5.3.6 Comparat et al. (2020)
SPIDERS black hole masses Section 5.3.7 Coffey et al. (2019)
MaNGA stellar masses from principal component analysis Section 6.1 Pace et al. (2019a, 2019b)
MaNGA PawlikMorph Section 6.2 Pawlik et al. (2016)

Note.
a X-ray Multi-Mirror Mission

140 That is 40 previous released VACs, seven of which are updated in DR16,
and six VACs new to DR16.
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3.3. Marvin for MaNGA

Integral-field spectroscopic data (MaNGA) are not available in
the SAW because they follow a different data format from the
single-object spectra. Instead, the MaNGA data can be accessed
through Marvin (https://dr16.sdss.org/marvin/; Cherinka et al.
2019). Marvin can be used to both visualize and analyze MaNGA
data products and perform queries on MaNGA metadata remotely.
Marvin also contains a suite of Python tools, available through pip-
install, that simplify interacting with the MaNGA data products
and metadata. More information, including installation instructions
for Marvin, can be found here:https://sdss-marvin.readthedocs.
io/en/stable/. In DR16, although no new MaNGA data products
are included, Marvin has been upgraded by providing access to a
number of MaNGA VACs based on DR15 data.

3.4. Catalog Archive Server

The SDSS catalogs can be found and queried on the Catalog
Archive Server (CAS; Thakar et al. 2008). These catalogs
contain photometric and spectroscopic properties, as well as
derived data products. Several value-added catalogs are also
available on the CAS. For quick inspection of objects or small
queries, the SkyServer webapp (https://skyserver.sdss.org) is
the recommended route to access the catalogs: it contains
among other facilities the Quick Look and Explore tools, as
well as the option for SQL queries in synchronous mode
directly in the browser. The SkyServer also contains tutorials
and examples of SQL syntax (http://skyserver.sdss.org/
public/en/help/docs/docshome.aspx). For larger queries,
CASJobs (https://skyserver.sdss.org/casjobs) should be used,
as it allows for asynchronous queries in batch mode. Users of
CASJobs will need to create a (cost-free) personal account,
which comes with storage space for query results (Li &
Thakar 2008). A third way to access the SDSS catalogs is
through the SciServer (https://www.sciserver.org), which is
integrated with the CAS. SciServer allows users to run Jupyter
notebooks in Docker containers, among other services.

3.5. Data Access for Education

We are providing access to a growing set of Jupyter
notebooks that have been developed for introductory141 and
upper-level142 university astronomy laboratory courses. These
Python-based activities are designed to be run on the SciServer
platform,143 which enables the analysis and visualization of the
vast SDSS data set from a web browser, without requiring any
additional software or data downloads.

Additionally, Voyages (http://voyages.sdss.org/) provides
activities and resources to help younger audiences explore the
SDSS data. Voyages has been specifically developed to be used
in secondary schools, and contains pointers to K-12 US science
standards. A Spanish language version of these resources is
now available athttp://voyages.sdss.org/es.

4. APOGEE-2: First Release of Southern Hemisphere Data,
and More from the North

APOGEE is performing a chemodynamical investigation
across the entire Milky Way with two similarly designed near-
infrared, high-resolution multiplexed spectrographs. DR16

constitutes the fifth release of data from APOGEE, which has
run in two phases (APOGEE-1 and APOGEE-2) spanning both
SDSS-III and SDSS-IV. For approximately three years (2011
August–2014 July), APOGEE-1 survey observations were
conducted at the 2.5 m Sloan Foundation Telescope at APO as
part of SDSS-III. In 2014 August, at the start of SDSS-IV,
APOGEE-2 continued data acquisition at the APO Northern
Hemisphere site (APOGEE-2N). With the construction of a
second spectrograph (Wilson et al. 2019), APOGEE-2
commenced Southern Hemisphere operations at the 2.5 m
Iréné du Pont Telescope at LCO (APOGEE-2S) in 2017 April.
Majewski et al. (2017) provides an overview of the APOGEE-1
Survey (with a forthcoming planned overview of the APOGEE-
2 Survey; S. Majewski et al. 2020, in preparation).
In detail, the APOGEE data in DR16 encompass all SDSS-

III APOGEE-1 data and SDSS-IV APOGEE-2 data acquired
with both instruments through 2018 August. The current
release includes two additional years of APOGEE-2N data and
almost doubles the number of stars with available spectra as
compared to the previous public release (in DR14: Abolfathi
et al. 2018). DR16 presents the first 16 months of data from
APOGEE-2S. Thus, DR16 is the first release from APOGEE
that includes data from across the entire night sky.
DR16 contains APOGEE data and information for 437,485

unique stars, including reduced and visit-combined spectra,
radial velocity (RV) information, atmospheric parameters, and
individual element abundances; nearly 1.8 million individual
visit spectra are included. Figure 1 displays the APOGEE
DR16 coverage in Galactic coordinates where each point
represents a single “field” and is color-coded by the overall
survey component (e.g., APOGEE, APOGEE-2N, and APO-
GEE-2S). Fields newly released in DR16 are encircled with
black. As shown in this figure, the dual hemisphere view of
APOGEE allows for targeting of all Milky Way components:
the inner and outer halo, the four disk quadrants, and the full
expanse of the bulge. The first APOGEE-2S observations of
various Southern Hemisphere objects, such as Omega Centauri
(l, b=309°, 15°) and our current targeting of the Large and
Small Magellanic Clouds (l, b=280°,−33° and 303°,−44°
respectively), are visible in Figure 1 as high-density areas of
observation. Moreover, DR16 features substantially increased
coverage at high Galactic latitudes as APOGEE continues to
piggy-back on MaNGA-led observing during dark time.
Figure 2 has the same projection, but uses color-coding to
convey the number of unique targets for each of the APOGEE
fields. Particularly dense regions include the Kepler field which
serves multiple scientific programs, as well as APOGEE “deep”
fields observed with multiple “cohorts” (see Zasowski et al.
2017). Detailed discussions of our targeting strategies for each
Galactic component, as well as an evaluation of their efficacy,
will be presented in forthcoming focused papers (R. Beaton
et al. 2020, in preparation; F. Santana et al. 2020, in
preparation).

4.1. APOGEE Southern Survey Overview

The APOGEE-2S Survey has been enabled by the construc-
tion of a second APOGEE spectrograph. The second instru-
ment is a near duplicate of the first with comparable
performance, simultaneously delivering 300 spectra in the H-
band wavelength regime (λ=1.5–1.7 μm) at a resolution of
R∼22,500. Slight differences occur between the two

141 https://github.com/ritatojeiro/SDSSEPO
142 https://github.com/brittlundgren/SDSS-EPO
143 http://www.sciserver.org/
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instruments with respect to image quality and resolution across
the detectors as described in detail in Wilson et al. (2019).

The telescopes of the Northern and Southern Hemisphere
sites have the same apertures. However, because the du Pont
telescope was designed with a slower focal ratio ( f/7.5) than
the Sloan Foundation telescope ( f/5), the resulting field of

view for APOGEE-2S is smaller than that for APOGEE-2N
and the fibers subtend a smaller angular area. The difference in
field of view is evident in Figure 1 by comparing the size of the
red points (LCO fields) to those shown in blue or cyan (APO
fields). However, the image quality (seeing) at LCO is
generally better than that at APO, and this roughly compensates

Figure 1. DR16 APOGEE sky coverage in Galactic coordinates. Each symbol represents a field, which is 7 square degrees for APOGEE-1 in cyan and APOGEE-2N
in blue and 2.8 square degrees for APOGEE-2S in red (this difference is due to the different fields of view of the two telescopes; see Section 4.1). Fields that have new
data presented in DR16 are highlighted with a black outline.

Figure 2. Sky map in Galactic coordinates showing the number of stars per APOGEE field (across APOGEE-1, 2N, and 2S). The disk is targeted with a symmetric
dense grid within < b 15∣ ∣ . The dense coverage of the bulge and inner Galaxy is for l<30°. Other special programs, like the Kepler-2 follow-up, have initial data in
DR16. The circle sizes reflect the different fields of view of APOGEE-N and APOGEE-S; see Section 4.1.
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for the smaller angular diameter fibers such that the typical
throughput at LCO is similar to, or even better than, that
obtained at APO.

4.2. General APOGEE Targeting

Extensive descriptions of the target selection and strategy are
found in Zasowski et al. (2013) for APOGEE-1 and in
Zasowski et al. (2017) for APOGEE-2. Details about the final
selection method used for APOGEE-2N and APOGEE-2S will
be presented in R. Beaton, et al. (2020, in preparation) and F.
Santana et al. (2020, in preparation), respectively. These papers
will provide descriptions for the ancillary and external
programs, modifications to original targeting strategies required
by evaluation of their effectiveness, and modifications of the
field plan as required by weather gains or losses. We include all
targeting information using flags and also provide input
catalogs on the SAS.

APOGEE-2 scientific goals are implemented in a three-tier
strategy, where individual programs aimed at specific science
goals are classified as core, goal, or ancillary. The core
programs produce a systematic exploration of the major
components of the bulge, disk, and halo and are given the
highest priority for implementation. The goal programs have
more focused science goals, for example follow-up of Kepler
Objects of Interest, and are implemented as a secondary
priority. Ancillary programs are implemented at the lowest
priority; such programs were selected from a competitive
proposal process and have only been implemented for
APOGEE-2N. Generally, the APOGEE-2N and APOGEE-2S
survey science are implemented in the same manner.

In addition to a target selection analogous to that for the
northern observations, APOGEE-2S includes external pro-
grams selected by the Chilean National Time Allocation
Committee or the Observatories of the Carnegie Institution for
Science and led by individual scientists (or teams) who can be
external to the SDSS-IV collaboration. External programs can
be “contributed,” or proprietary; contributed data are processed
through the normal APOGEE DRPs and are released along
with other APOGEE data whereas proprietary programs are not
necessarily processed through the standard pipelines or
released with the public DRs.144 The selection of external
program targets does not follow the standard APOGEE survey
criteria in terms of signal-to-noise ratio (S/N) or even source
catalogs; the scientists involved were able to exercise great
autonomy in target selection (e.g., no implementation of color
cuts). External programs are implemented as classical obser-
ving programs with observations only occurring for a given
program on nights assigned to it.

The APOGEE portion of DR16 includes 437,485 unique
stars. Among these, 308,000 correspond to core science targets,
112,000 to goal science targets, 13,000 to ancillary APOGEE-
2N program targets, and 37,000 to APOGEE-2S external
program targets. These numbers add up to more than 437,485
due to some stars being in multiple categories.

4.3. APOGEE DR16 Data Products

The basic procedure for processing and analysis of APOGEE
data is similar to that of DR14 data (Abolfathi et al. 2018;
Holtzman et al. 2018), but a few notable differences are

highlighted here. Full details, including verification analyses,
are presented in Jönsson et al. (2020).

4.3.1. Spectral Reduction and RV Determinations

Nidever et al. (2015) describes the reduction procedure for
APOGEE data. While the basic reduction steps for DR16 were
the same as described there, improvements were implemented
in the handling of bad pixels, flat-fielding, and wavelength
calibration, all of which were largely motivated by small
differences between the data produced by the APOGEE-S and
APOGEE-N instruments. As an improvement over DR14, an
attempt was made to provide rough relative flux calibration for
the spectra. This was achieved by using observations of hot
stars on the fiber plug plate for which the spectral energy
distribution are known.
RVs were determined, as in DR14, using cross-correlation

against a reference grid, but a new synthetic grid was calculated
for the reference grid, using the same updated models that were
used for the derivation of stellar parameters and abundances
(see Section 4.3.2 for details). No constraint was placed on the
effective temperature range of the synthetic grid based on the
J−K color; DR14 used such a constraint which led to a few
issues with bad radial velocities. Therefore DR16 improves
on this.
For the faintest stars in DR16, especially those in dwarf

spheroidal galaxies, the individual visit spectra can have low
S/N and, as a result, the RV determination fails. In many, but
not all, cases, such objects are flagged as having bad or suspect
RV combination. Users who are working with data for stars
with H>14.5 need to be very careful with these data, as
incorrect RVs lead to incorrect spectral combination, which
invalidates any subsequent analysis. We intend to remedy this
problem in the next DR.

4.3.2. Atmospheric Parameter and Element Abundance Derivations

Stellar parameters and abundances are determined using the
APOGEE Stellar Parameters and Chemical Abundance Pipe-
line (ASPCAP; García Pérez et al. 2016).145 For DR16, entirely
new synthetic grids were created for this analysis. These grids
were based on a complete set of stellar atmospheres from the
MARCS group (Gustafsson et al. 2008) that covers a wide
range of Teff , glog , [Fe/H], [α/M], and [C/M]. Spectral
syntheses were performed using the Turbospectrum code
(Plez 2012). The synthesis was done using a revised APOGEE
line-list which was derived, as before, from matching very
high-resolution spectra of the Sun and Arcturus. The revised
line-list differs from that used previously by the inclusion of
lines from FeH, Ce II, and Nd II, some revisions in the adopted
Arcturus abundances, and a proper handling of the synthesis of
a center-of-disk solar spectrum. Details on the line-list will be
presented in V. Smith et al. (2020, in preparation). The
synthetic grid for red giants was calculated with seven
dimensions, including [N/M] and microturbulent velocity, as
well as the atmospheric parameters previously listed; the range
for [C/M] and [N/M] was expanded over that used for DR14.
For the giants, the [C/Fe] grid was expanded to include −1.25
and −1.50 dex and the [N/Fe] dimension to cover from −0.50
to +1.50 dex. For dwarfs, an additional dimension was
included to account for stellar rotation that included seven

144 To date all external programs have been “contributed” so there are no
proprietary external programs. 145 https://github.com/sdss/apogee
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steps (these being v sin i of 1.5, 3.0, 6.0, 12.0, 24.0, 48.0, and
96.0 km s−1). During the stellar parameter and abundance fits,
regions in the spectrum that were not well matched in the solar
and Arcturus spectra were masked. The full details of the
spectral grid derivations will be given in a dedicated paper on
the APOGEE DR16 pipeline (Jönsson et al. 2020).

The DR16 analysis improves on the measurement of carbon
and nitrogen abundances in dwarf stars over DR14, as DR16
includes separate [C/M] and [N/M] dimensions for dwarfs.

As for previous data releases, stellar parameters were
determined by searching for the best fit in the synthetic grid.
The method used to normalize the observed and model spectra
was improved from previous releases, and a new minimization
option was adopted in the FERRE code (Allende Prieto et al.
2006).146 More details on these changes are given in Jönsson
et al. (2020). As in previous releases, after the stellar
parameters have been determined, these are held fixed while
determining the elemental abundances; for these, only windows
in the spectra that are sensitive to the element in question are
fit, and only a single relevant abundance dimension of the grid
is varied. The windows are chosen based on where our
synthetic spectra are sensitive to a given element, and at the
same time not sensitive to another element in the same
abundance dimension. In addition to the elements measured for
DR14, an attempt was made to measure the abundance of
cerium using a single line from Cunha et al. (2017), but these
results show significant scatter and may be of limited utility.

In previous releases, we derived an internal calibration to the
abundances to account for biases as a function of Teff , but for
DR16 no such calibration is applied because, with the
modification to the abundance pipeline, the trends with effective
temperature for most elements have reduced amplitude as
compared with previous data processing. The zero-point scale
of the abundances was adjusted so that stars in the solar
neighborhood (within 0.5 kpc of the Sun, according to Gaia
parallaxes) with near-solar metallicity (−0.05>[M/H]<0.05)
are adjusted to have a mean [X/M]=0. The reason for this
choice is discussed in detail in Jönsson et al. (2020).

The procedure is described in significantly more detail, along
with an assessment of the quality of the stellar parameters and
abundances, in Jönsson et al. (2020).

4.4. Data Quality

The quality of the DR16 results for radial velocities, stellar
parameters, and abundances is similar to that of previous APOGEE
data releases. Figure 3 shows a Teff– glog diagram for the main
sample APOGEE stars in DR16. The use of MARCS atmosphere
models (Gustafsson et al. 2008) across the entire Teff– glog range
has significantly improved results for cooler giants; previously,
Kurucz atmosphere models (Castelli & Kurucz 2003) were used
for the latter stars, and discontinuities were visible at the transition
point between MARCS and Kurucz. While the stellar parameters
are overall an improvement from previous DRs, we still apply
external calibrations to both glog and Teff . These calibrations are
discussed fully in Jönsson et al. (2020), who also describe the
features in Figure 3 in more detail.

Several fields were observed with both the APOGEE-N and
APOGEE-S instruments. Comparing the results, we find close
agreement in the derived stellar parameters and abundances,

with mean offsets of ΔTeff ∼10 K, Δ glog ∼0.02 dex, and
abundance offsets of <0.02 dex for most elements.

4.5. APOGEE VACs

There are six APOGEE-associated VAC’s in DR16. A brief
description of each VAC and the corresponding publications
are given below. They are also listed in Table 2.

4.5.1. APOGEE Red Clump Catalog

DR16 contains the latest version of the APOGEE red-clump
(APOGEE-RC) catalog. This catalog is created in the same
way as the DR14 version (which is presented in Bovy et al.
2014), with the more stringent glog cut. The DR16 catalog
contains 39,675 unique stars, about 30% more than in DR14.
The red clump stars are cross-matched to Gaia DR2 (Gaia
Collaboration et al. 2018) by matching (R.A., decl.) within a
radius of 2″ using the Vizier xmatch service.147 We include
proper motions (PMs) through this match.

4.5.2. APOGEE-astroNN

The APOGEE-astroNN VAC contains the results from
applying the astroNN deep-learning code to APOGEE
spectra to determine stellar parameters, individual stellar
abundances (Leung & Bovy 2019a), distances (Leung &
Bovy 2019b), and ages (Mackereth et al. 2019). Full details of
how all of these quantities are determined from the DR16 data
are given in Section 2.1 of Bovy et al. (2019). In addition,
properties of the orbits in the Milky Way (and their
uncertainties) for all stars are computed using the fast method
of Mackereth & Bovy (2018) assuming the MWPoten-
tial2014 gravitational potential from Bovy (2015). Typical
uncertainties in the parameters are 60 K in Teff , 0.2 dex in glog ,
0.05 dex in elemental abundances, 5 % in distance, and 30 % in
age. Orbital properties such as the eccentricity, maximum
height above the mid-plane, radial, and vertical action are
typically precise to 4%–8%.

Figure 3. Spectroscopic Hertzsprung–Russell diagram, Teff vs. glog for the
main red star sample in APOGEE DR16. The points are color-coded by their
total metal content, [M/H]. Dwarf-type stars, those with glog > 3.7dex, have
calibrated stellar parameters for the first time in DR16. New stellar grids also
provide reliable measurements to cooler temperatures than in previous DRs.

146 https://github.com/callendeprieto/ferre

147 accessed through the gaia_tools code available here:https://github.
com/jobovy/gaia_tools.
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4.5.3. APOGEE-Joker

The APOGEE-Joker VAC contains posterior samplings over
binary star orbital parameters (i.e., Keplerian orbital elements) for
224,401 stars with three or more APOGEE visit spectra that pass a
set of quality cuts as described in Price-Whelan et al. 2020). The
samplings are generated using The Joker, a custom Monte Carlo
sampler designed to handle the very multi-modal likelihood
functions that are natural to sparsely sampled or noisy RV time
series (Price-Whelan et al. 2017, 2018). For some stars, these
samplings are unimodal in period, meaning that the data are very
constraining and the orbital parameters can be uniquely summar-
ized; in these cases, we provide summary information about the
samplings such as the maximum a posteriori sample values.

Price-Whelan et al. (2020) describes the resulting catalog
from applying of The Joker to APOGEE DR16. Based on some
simple cuts comparing the maximum likelihood posterior
sample to the likelihood of a model for each source in which
the radial velocities are constant (both quantities are provided
in the VAC metadata), we estimate that there are 25,000
binary star systems robustly detected by APOGEE (described
in Price-Whelan et al. 2020, their Section 5). The vast majority
of these systems have very poorly constrained orbital
parameters, but these posterior samplings are still useful for
performing hierarchical modeling of the binary star population
parameters (e.g., period distribution and eccentricity para-
meters) as is demonstrated in Price-Whelan et al. (2020).

While finalizing the DR16 VAC release, we found a bug in
the version of The Joker that was used to generate the posterior
samplings released in this VAC. This bug primarily impacts
long-period orbital parameter samplings, and only for systems
with RV measurements that are very noisy or have a short
baseline relative to the periods of interest. The samplings for
systems with precise data or with many epochs should not be
affected. Price-Whelan et al. (2020) describe the this bug in
more detail. The VAC will be updated as soon as possible.

4.5.4. Open Cluster Chemical Abundances and Mapping

The goal of the Open Cluster Chemical Abundances and
Mapping (OCCAM) survey is to create a uniform (same
spectrograph, same analysis pipeline) open cluster abundances
data set. We combine PM and RV measurements from Gaia
DR2 (Gaia Collaboration et al. 2018) with RV and metallicity
measurements from APOGEE to establish membership prob-
abilities for each star observed by APOGEE in the vicinity of
an open cluster. DR16 is the second VAC from the OCCAM
survey. We do not impose a minimum number of reliable
member stars as in the previous version (released in DR15,
Aguado et al. 2019, and described in detail in Donor et al.
2018), but we do enforce a visual quality cut based on each
cluster’s PM-cleaned color–magnitude diagram. A detailed
description of the updated methods is provided in Donor et al.
(2020). The VAC includes 10,191 APOGEE stars in the
vicinity of 126 open clusters. Average RV, PM, and
abundances for reliable ASPCAP elements are provided for
each cluster, along with the visual quality determination.
Membership probabilities based individually upon RV, PM,
and [Fe/H]are provided for each star. The reported cluster PM
is from the kernel-smoothing routine used to determine cluster
membership. Reported RVs and chemical abundances are
simply the average value from cluster members; in practice, the

uncertainties for chemical abundances are small and show
small variation between stars of the same cluster.

4.5.5. APOGEE DR16 StarHorse Distances and Extinctions

The APOGEE DR16 StarHorse catalog contains updated
distance and extinction estimates obtained with the latest version
of the StarHorse code (Queiroz et al. 2018; Anders et al. 2019).
The DR14 version of these results were published as part of the
APOGEE DR14 Distance VAC (Abolfathi et al. 2018; Section
5.4.3). DR16 results are reported for 388,815 unique stars, based
on the following input data: APOGEE DR16 ASPCAP results,
broadband photometry from several sources (PanSTARRS-1,
Two Micron All Sky Survey, AllWISE), as well as parallaxes
from Gaia DR2 corrected for the zero-point offset of −0.05mas
found by Zinn et al. (2019). Typical statistical distance
uncertainties amount to 10% for giant stars and 3% for dwarfs,
respectively. Extinction uncertainties amount to 0.07 mag for
stars with optical photometry and 0.17 mag for stars with only
infrared photometry. The APOGEE DR16 StarHorse results are
presented in Queiroz et al. (2020), together with updated results
derived using spectroscopic information from other surveys.

5. eBOSS: Final Sample Release

Observations for eBOSS were conducted with the 1000-fiber
BOSS spectrograph (Smee et al. 2013) to measure the
distance–redshift relation with the baryon acoustic oscillation
(BAO) feature that appears at a scale of roughly 150Mpc. The
last observations that will contribute to LSS measurements
concluded on 2019 March 1. All eBOSS observations were
conducted simultaneously with either TDSS observations of
variable sources or SPIDERS observations of X-ray sources.

5.1. eBOSS

The first generation of the SDSS produced a spectroscopic
LRG sample (Eisenstein et al. 2001) that led to a detection of
the BAO feature in the clustering of matter (Eisenstein et al.
2005) and the motivation for dedicated LSS surveys within the
SDSS. Over the period 2009–2014, BOSS completed a BAO
program using more than 1.5 million galaxy spectra spanning
redshifts 0.15<z<0.75 and more than 150,000 quasars at
z>2.1 that illuminate the matter density field through the Lyα
forest. Operating over the period 2014–2019, eBOSS is the
third and final in the series of SDSS LSS surveys.
The eBOSS survey was designed to obtain spectra of four

distinct target classes to trace the underlying matter density
field over an interval in cosmic history that was largely
unexplored during BOSS. The LRG sample covers the lowest-
redshift interval within eBOSS, providing an expansion of the
high-redshift tail of the BOSS galaxy sample (Reid et al. 2016)
to a median redshift z=0.72. Galaxy targets (Prakash et al.
2016) were selected from imaging catalogs derived from Wide-
field Infrared Survey Explorer (WISE; Wright et al. 2010) and
SDSS DR13 imaging data. A new sample of ELG targets
covering 0.6<z<1.1 was observed over the period
2016–2018, leading to the highest-redshift galaxy sample from
the SDSS. Galaxy targets were identified using imaging from
the Dark Energy Camera (DECam; Flaugher et al. 2015). The
ELG selection (Raichoor et al. 2017) reaches a median redshift
z=0.85 and represents the first application of the DECam
Legacy Survey data (DECaLS; Dey et al. 2019) to spectro-
scopic target selection in any large clustering survey. The
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quasar sample covers the critical redshift range 0.8<z<2.2
and is derived from WISE infrared and SDSS optical imaging
data (Myers et al. 2015). Finally, new spectra of z>2.1
quasars were obtained to enhance the final BOSS Lyα forest
measurements (Bautista et al. 2017; du Mas des Bourboux et al.
2017). A summary of all these target categories, with redshift
ranges and numbers, is provided in Table 3.

The surface area and target densities of each sample were
chosen to maximize sensitivity to the clustering of matter at the
BAO scale. The first major clustering result from eBOSS
originated from the two year DR14 quasar sample. Using
147,000 quasars, a measurement of the spherically averaged
BAO distance at an effective redshift z=1.52 was performed
with 4.4% precision (Ata et al. 2018). The DR14 LRG sample
was used successfully to measure the BAO distance scale at
2.6% precision (Bautista et al. 2018) while the DR14 high-
redshift quasar sample led to improved measurements of BAO
in the auto-correlation of the Lyα forest (de Sainte Agathe et al.
2019) and the cross-correlation of the Lyα forest with quasars
(Blomqvist et al. 2019). The DR14 samples have also been
used to perform measurements of redshift–space distortions
(RSD) (e.g., Zarrouk et al. 2018), tests of inflation (e.g.,
Castorina et al. 2019), and new constraints on the amplitude
of matter fluctuations and the scalar spectral index (e.g.,
Chabanier et al. 2019).

5.1.1. Scope of eBOSS

With the completion of eBOSS, the BOSS and eBOSS
samples provide six distinct target samples covering the
redshift range 0.2<z<3.5. The number of targets for each
sample is summarized in Table 3 and the surface density of
each sample is shown in Figure 4.

Figure 5 shows the DR16 eBOSS spectroscopic coverage in
equatorial coordinates. For comparison, the SDSS-III BOSS
coverage is shown in gray. The programs that define the unique
eBOSS clustering samples are SEQUELS (Sloan Extended
Quasar, ELG, and LRG Survey; initiated during SDSS-III;
LRG and quasars), eBOSS LRG+QSO (the primary program
in SDSS-IV observing LRGs and quasars or quasi-stellar
objects (QSOs)), and ELG (new to DR16).

5.1.2. Changes to the eBOSS Spectral Reduction Algorithms

The data in DR16 were processed with version v5_13_0
of the pipeline software idlspec2d (Bolton et al. 2012;
Dawson et al. 2013). This is the last official version of the
software that will be used for studies of LSS with the SDSS

telescope. Table 4 presents a summary of the major changes in
the pipeline during SDSS-IV (eBOSS) and we document the
final changes to idlspec2d below.
There were two major changes from DR14 to DR16 to the

reduction algorithm. First, a new set of stellar templates was
used for the flux calibration. This set of templates was
produced for the Dark Energy Spectroscopic Instrument
(DESI) pipeline and provided to eBOSS. These templates
reduce residuals in flux calibration relative to previous releases
through improved modeling of spectral lines in the F-stars. The
second major change was in the extraction step, where the
background flux is now fitted prior to the extraction of the flux
of individual traces. This modification improved the stability of
extraction and removed occasional artifacts observed in low-S/
N spectra. While these changes did not measurably improve the
spectroscopic classification success rates, they represent an
improvement in the overall data quality.

5.1.3. eBOSS VACs

There are two VACs based on eBOSS data which we release
in DR16. These catalogs offer insight into galaxy physics with
eBOSS spectra beyond the core cosmological goals. The
catalogs are described below.

1. Classification eBOSS ELGs. This catalog gives the
classification of 0.32<z<0.8 eBOSS ELGs into four
types: star-forming galaxies, composites, AGNs and low-
ionization nuclear emission-line regions. It also contains
the parameters: [O III]/Hβ, [O II]/Hβ, [O III] line velocity
dispersion, and stellar velocity dispersion, u−g, g−r,
r−i, i−z, which are used for classification. The
classification is based on a random forest model trained
using z<0.32 ELGs labeled using standard optical
diagnostic diagrams (Zhang et al. 2019). The codes, data,
and data models are available athttps://github.com/
zkdtc/MLC_ELGs in addition to the standard location
for VACs (see Section 3).

2. FIREFLY Stellar Population Models of SDSS Galaxy
Spectra (single fiber). We determine the stellar popula-
tion properties (age, metallicity, dust reddening, stellar

Table 3
Main Target Samples in eBOSS and BOSS

Sample Redshift Rangea Number

eBOSS LRGs 0.6<z<1.0 298762
eBOSS ELGs 0.6<z<1.1 269889
eBOSS QSOs 0.8<z<2.2 434820
BOSS “LOWZ”b 0.15<z<0.43 343160
BOSS CMASSc 0.43<z<0.75 862735
BOSS Lyα QSOs 2.2<z<3.5 158917

Notes.
a Range used in clustering analysis
b The low redshift targets in BOSS
c
“Constant mass” targets in BOSS

Figure 4. Normalized surface density (N(z)) of the spectroscopically confirmed
objects used in the BOSS and eBOSS clustering programs. The SDSS-I,-II, and
-III sample of confirmed quasars is also presented to demonstrate the gains in
the number of quasars that eBOSS produced over the interval 0.8<z<2.2.
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mass, and star formation history (SFH)) for all single-
fiber spectra classified as galaxies that were published in
this release (including those from SDSS-I, -II, -III, and
-IV). This catalog contains the newly completed samples
of eBOSS LRGs and eBOSS ELGs and will be useful for
a variety of studies on galaxy evolution and cosmology
(e.g., Bates et al. 2019). This is an update of the
calculation done by Comparat et al. (2017) on the galaxy
spectra in DR14 (Abolfathi et al. 2018). We perform full
spectral fitting on individual galaxy spectra using the
FIREFLY148 code (Wilkinson et al. 2015, 2017; Goddard
et al. 2017a, 2017b) which make use of high spectral
resolution stellar population models from Maraston and
Strömbäck (2011). Calculations are carried out using the
Chabrier (2003) stellar initial mass function and two
input stellar libraries MILES and ELODIE (Sánchez-
Blázquez et al. 2006; Prugniel et al. 2007; Falcón-
Barroso et al. 2011). We publish all catalogs of properties
through the SDSS web interfaces (SAS and CAS, see
Section 3) and also make individual best-fit model spectra
available through the FIREFLY website.149

In the future, we will also present a catalog of more than 800
candidate strong galaxy gravitational lens systems discovered
by the presence of higher-redshift background emission lines in
eBOSS galaxy spectra (M. Talbot et al. 2020, in preparation).
This Spectroscopic Identification of Lensing Object (SILO;
Talbot et al. 2018) program extends the method of the BOSS
Emission-Line Lens Survey(Brownstein et al. 2012) and Sloan
Lens ACS(Bolton et al. 2006) survey to higher redshift, and
has recently been applied to the spectroscopic discovery of

strongly lensed galaxies in MaNGA. The catalog will be
released after DR16, but will be based on the DR16 sample.

5.1.4. Anticipated Cosmology Results from eBOSS

The final eBOSS BAO and RSD measurements will be
presented in a series of independent analyses for each target
class. The measurements performed with LRG, ELG, and
z<2.2 quasars will be performed in configuration space and
Fourier space. Systematic errors will be assessed through the
use of large N-body mock catalogs populated with galaxies
according to a halo occupation distribution prescription that
approximates the observed data, extending the work done in
previous DRs (e.g., Gil-Marín et al. 2018). Consensus values of
the angular diameter distance, the Hubble parameter, and fσ8
will be provided for each tracer based on the two measure-
ments. Measurements of the angular diameter distance and the
Hubble parameter will be reported at z>2.1 using both the
auto-correlation of the final Lyα forest sample and the cross-
correlation of the Lyα forest with quasars. All eBOSS results
will be combined with the lower-redshift studies from SDSS
and BOSS to offer new constraints on the cosmological model
as was done in the DR11 sample for BOSS (Aubourg et al.
2015).
As part of the main cosmological goals of eBOSS, there will

be a number of VACs based on the final eBOSS data released
in DR16. VACs which are planned and will be publicly
released in the future include the following.

1. Large-scale Structure (from ELGs, LRGs, and QSOs).
These LSS VACs will be based on all available eBOSS
data used for the clustering studies. Covering the main
target classes, this VAC provides the tools to map the
three-dimensional structure of the universe across
0.6<z<2.2 (A. Ross et al. 2020, in preparation).

Figure 5. DR16 eBOSS spectroscopic coverage in equatorial coordinates (map centered at R.A.=8h˙r.) Each symbol represents the location of a completed
spectroscopic plate scaled to the approximate field of view. SPIDERS-maximal footprint is the same as BOSS, and SPIDERS-complete is SEQUELS. For more details
on SPIDERS coverage see Comparat et al. (2020).

Table 4
Spectroscopic Pipeline Major Changes

Data Release idlspec2d version Major changes

DR12 v5_7_0 Final SDSS-III/BOSS release
DR13 v5_9_0 Adapting software to SDSS-IV/eBOSS data, new unbiased extraction algorithm
DR14 v5_10_0 New unbiased flux correction algorithm, ADRa corrections on individual exposures
DR16 v5_13_0 Improved background fitting in extraction, new stellar templates for flux calibration

Note.
a Atmospheric differential refraction.

148 https://github.com/FireflySpectra/firefly_release
149 https://www.sdss.org/dr16/spectro/eboss-firefly-value-added-catalog/

13

The Astrophysical Journal Supplement Series, 249:3 (21pp), 2020 July Ahumada et al.

https://github.com/FireflySpectra/firefly_release
https://www.sdss.org/dr16/spectro/eboss-firefly-value-added-catalog/


2. Lyα Forest Transmission VAC. This VAC will contain
the estimated fluctuations of transmitted flux fraction
used for Lyα forest BAO measurements. The catalog will
provide the estimates over the Lyα and Lyman-β rest
frame regions of high-redshift quasars (H. du Mas des
Bourboux 2020, in preparation).

3. eBOSS Quasar Catalog. Beginning with SDSS-I, the
SDSS has maintained a tradition of releasing a visually
inspected quasar catalog alongside major data releases.
The new SDSS-DR16Q catalog (DR16Q; Lyke et al.
2020) will represent the most recent and largest catalog of
known unique quasars within the SDSS.

5.2. RM Program and Other Repeat Spectroscopy

The SDSS-RM (Shen et al. 2015a) project is a dedicated
multi-object RM program that began observations as a part of
SDSS-III in 2014 January. Although not specifically estab-
lished as a survey within eBOSS, observations of those same
targets using the BOSS spectrograph continued through SDSS-
IV. The SDSS-RM program monitors a sample of 849 quasars
in a single ∼7 deg2 pointing (observed with three plates, 7338,
7339, and 7340, with identical targets), with the overall goal of
measuring black hole masses via RM in ∼100 quasars at a wide
range of redshifts (details on the quasar sample itself are
provided by Shen et al. 2019b). During the first season of
SDSS-III monitoring, SDSS-RM obtained 32 epochs of SDSS
spectroscopy, and has subsequently obtained ∼12 epochs yr−1

during 2015–2017 and ∼6 epochs yr−1 during 2018–2020 as
part of SDSS-IV. The field has also been monitored
photometrically with the Canada–France–Hawaii Telescope
(CFHT) and the Steward Observatory Bok telescope in order to
increase the observing cadence and the overall yield of RM
time-lag measurements. The SDSS-RM field is also coincident
with the Pan-STARRS 1 (PS1 Kaiser et al. 2010) Medium
Deep Field MD07, and thus has been monitored photome-
trically since 2010. Observations with SDSS and the Bok
telescope will continue through 2020.

The program has been largely successful in obtaining RM
measurements: Shen et al. (2016b) reported several RM
measurements from the program after analyzing the first year
of spectroscopic data only, and Li et al. (2017) measured
composite RM signals in the same data set. Grier et al. (2017)
combined the first year of spectroscopy with the first year of
photometry and recovered 44 lag measurements in the lowest-
redshift subsample using the Hβ emission line. With the
additional years of SDSS-IV monitoring included, Grier et al.
(2019) reported 48 lag measurements using the CIV emission
line; the addition of another year of SDSS spectroscopy and the
inclusion of the PS1 photometric monitoring from 2010 to
2013 demonstrated the utility of longer time baselines in
measuring additional lags (Shen et al. 2019a). Homayouni et al.
(2019) measured inter-band continuum lags in many sources,
allowing for investigations of accretion-disk properties. Addi-
tional studies based on SDSS-RM data that aim to evaluate and
improve RM and black hole-mass measurement methodologies
have also been completed (Li et al. 2019; Wang et al. 2019).
The final SDSS-RM data set, which will make use of the PS1
monitoring of the SDSS-RM field and seven years of SDSS
spectroscopic monitoring, will span more than 10 years and
allow for the measurement of lags in the highest-luminosity
subset of the quasar sample.

The SDSS-RM data set is extremely rich and allows for
many other types of investigations beyond RM and black hole
masses. The SDSS-RM group has also reported on many other
topics, such as studies of quasar host galaxies (Matsuoka et al.
2015; Shen et al. 2015b; Yue et al. 2018), broad absorption-line
(BAL) variability (Grier et al. 2015; Hemler et al. 2019),
studies of extreme quasar variability (Dexter et al. 2019), and
investigations of quasar emission-line properties (Sun et al.
2015, 2018; Denney et al. 2016a, 2016b; Shen et al. 2016a).
RM observing will continue through 2020 at APO. Building on
this program in SDSS-IV, an expanded multi-object spectro-
scopic RM program is included in the black hole mapper
(BHM) program in the upcoming SDSS-V survey post-2020
(see Section 7).
In addition to the dedicated RM program, there were several

fields in SDSS-III and SDSS-IV that were observed multiple
times and thus offer similar potential for time-domain spectro-
scopic analyses. Those fields with at least four observations are
as follows.

1. Plates 3615 and 3647: contain the standard BOSS
selection of targets. These two plates have identical
science targets and contain 14 epochs that are classified
as “good” observations during SDSS-III.

2. Plate 6782: contains targets selected to be likely quasars
based on variability from multi-epoch imaging data in
Stripe 82 (York et al. 2000; Ivezić et al. 2007).150 This
plate contains four epochs that are classified as “good”
observations during SDSS-III.

3. Plates 7691 and 10000: contain a standard eBOSS
selection of LRG, quasar, SPIDERS, and TDSS targets.
The two plates have identical selections and were
observed nine times during SDSS-IV.

4. Plate 9414: contains ELG targets and TDSS targets from
Stripe 82 and was observed four times to develop higher-
S/N spectra that could be used to test the automated
redshift classification schemes.

These multi-epoch fields and a few others from BOSS are
described in more detail on the DR16 “Special Plates” website
(https://sdss.org/dr16/spectro/special_plates/).

5.3. SPIDERS

SPIDERS is one of two smaller programs conducted within
eBOSS. SPIDERS was originally designed as a multi-purpose
follow-up program of the Spectrum-Roentgen-Gamma (SRG)/
eROSITA all-sky survey (Merloni et al. 2012; Predehl et al.
2016), with the main focus on X-ray-selected AGNs and
clusters of galaxies. Given the delay in the launch of SRG
(which took place in 2019 July, i.e., after the end of the main
eBOSS survey observing) the program was re-purposed to
target the X-ray sources from the ROSAT All-Sky Survey
(RASS; Voges et al. 1999, 2000) and XMM-Newton (X-ray
Multi-mirror Mission; Jansen et al. 2001), which will be
eventually have their X-ray emission better characterized by
eROSITA.
All SPIDERS spectra taken since the beginning of SDSS-IV

have targeted either X-ray sources from the revised data
reduction of ROSAT (RASS, 2RXS; Voges et al. 1999, 2000;
Boller et al. 2016) and XMM-Slew (Saxton et al. 2008)

150 Also see https://classic.sdss.org/dr7/coverage/sndr7.html for details on
Stripe 82 multi-epoch imaging.
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catalogs, or red-sequence galaxies in clusters detected by
ROSAT (part of the CODEX catalog; Finoguenov et al. 2020)
or by XMM (XClass catalog; Clerc et al. 2012). We define two
areas: “SPIDERS-Maximal” which corresponds to the sky area
covered by an SDSS legacy or BOSS/eBOSS/SEQUELS
plate, and “SPIDERS-Complete” which corresponds to the area
covered by the eBOSS main survey and SEQUELS good
plates. SPIDERS-Maximal (Complete) sky area amounts to
10,800 (5350) deg2. The sky area corresponding to SPIDERS-
Complete is shown in Figure 5.

5.3.1. SPIDERS Clusters

In this section we describe the DR16 target selection, data
scope, and VACs related to X-ray clusters. In DR16, 2740
X-ray-selected clusters (out of a total of 4114) were spectro-
scopically confirmed by SPIDERS observing over the
SPIDERS-Complete area. This constitutes the largest X-ray
cluster spectroscopic sample ever built. It forms the basis of
multiple studies of structure formation on cosmological times
(Furnell et al. 2018; Erfanianfar et al. 2019).

The majority of SPIDERS clusters targets are galaxies
selected via the red-sequence technique around candidate X-ray
galaxy clusters (Rykoff et al. 2012, 2014). These systems were
found by filtering X-ray photon over-densities in RASS with an
optical cluster finder tool using SDSS photometry. The target
selection process for these targets is described fully in Clerc
et al. (2016). The corresponding target bits and target classes
are fully described in the SDSS DR14 data release (Abolfathi
et al. 2018). We have also considered several additional
SPIDERS cluster target classes which we describe below.

5.3.2. SPIDERS Target Selection Update

New for DR16 is data from “chunk eboss20,26,27.” In
chunk 20, SPIDERS_RASS_CLUStargets are obtained by
extending the red-sequence search up to five times the cluster
virial radius in CODEX clusters detected through their weak-
lensing signature (Shan et al. 2014). The virial radius used in
the target selection is provided in the value-added catalog.
Moreover, in chunks 26 and 27, we introduce three new target
subclasses, taking advantage of deeper optical data sets that
enable cluster member measurements at higher redshifts.

1. SPIDERS_CODEX_CLUS_CFHT. Following the proce-
dure described in Brimioulle et al. (2013), pointed
CFHT/Megacam observations and CFHT-LS fields
provide deep (u)griz photometry. A total of 54 (out of
462 targets) spectra were acquired and labeled with the
bit mask EBOSS_TARGET2=26;

2. SPIDERS_CODEX_CLUS_PS1. A sample of 249 high-
redshift (zλ>0.5) CODEX cluster candidates were
searched for red-sequence counterparts in Pan-STARRS
PS1 (Flewelling et al. 2016) using a custom algorithm. A
total of 129 (out of 1142 targets) spectra were acquired,
and labeled with the bit mask EBOSS_TARGET2=27;

3. SPIDERS_CODEX_CLUS_DECALS. These targets
are output of a custom red-sequence finder code applied
to DECaLS photometric data151 (5th data release;
Dey et al. 2019). A total of 48 spectra (out of 495
targets) were acquired and labeled with the bit mask
EBOSS_TARGET2=28.

5.3.3. SPIDERS Galaxies and Redshifts

In the SPIDERS-Complete area, a total of 48,013 galaxy
redshifts (observed by SDSS-I to -IV) are matched to red-
sequence galaxy targets, regardless of any actual membership
determination (Clerc et al. 2020) Of those, 26,527 are
SPIDERS targets specifically. The additional redshifts were
collected from past SDSS-I, -II, -III, and other eBOSS
programs. The median i-band magnitudes of the 26,527 newly
acquired targets are ifiber2=20.0 and icModel=18.5. The
spectra are typical of red, passive galaxies at 0.05  z  0.7,
displaying characteristic absorption features (Ca H+K, G-band,
Mg I, NaD, etc.). Such magnitude and redshift ranges and the
purposely narrow spectral diversity make the automated
galaxy redshift determination a straightforward task for the
eBOSS pipeline, which is well-optimized in this area of the
parameter space (Bolton et al. 2012). In total, 47,492 redshifts
are successfully determined with a ZWARNING_NOQSO=0.
The remaining (∼1%) showing a non-zero flag are mainly
due to due to unplugged fibers or bad columns on the
spectrograph CCD or very low S/N; their redshift is not
measured. Full details on the statistical properties of the
sample, and in particular the success of redshift determination,
are given in C. Kirkpatrick et al. (2020, in preparation).

5.3.4. VAC: SPIDERS X-Ray Clusters Catalog for DR16

Within the SPIDERS-Complete area, 2740 X-ray clusters
showing a richness λOPT>10 were spectroscopically vali-
dated based on galaxy redshift data from SDSS-I to -IV in their
red-sequence. The richness, λOPT, is defined as the sum of the
membership probability of every galaxy in the cluster field. It
was measured by the redmapper algorithm (Rykoff et al. 2012).
A total of 32,326 valid redshifts were associated with these
galaxy clusters, leading to a median number of 10 redshifts per
cluster red-sequence. The process of this validation is a
combination of automatic and manual evaluations (C. Kirkpa-
trick et al. 2020, in preparation). An automated algorithm
performed a preliminary membership assignment and interloper
removal based on standard iterative σ-clipping methods. The
results of the algorithm were visually inspected by six
experienced galaxy cluster observers (11 different people since
the beginning of the survey), ensuring at least two independent
inspectors per system. A web-based interface was specifically
developed for this purpose: using as a starting point the result
of the automated algorithm, the tool allows each inspector to
interactively assess membership based on high-level diagnos-
tics and figures (see Figure 16 in Clerc et al. 2016). Validation
is in most cases a consequence of finding three or more red-
sequence galaxies in a narrow redshift window all within the
X-ray estimated viral radius, compatible with them all being
galaxy cluster members. A robust weighted average of the
cluster member redshifts provides the cluster systemic redshift.

5.3.5. X-Ray Pointlike Sources

Throughout SDSS-IV, the SPIDERS program has been
providing spectroscopic observations of ROSAT/RASS and
XMMSL1 sources in the BOSS footprint (Dwelly et al. 2017).
In addition to those targeted by SPIDERS, a large number of
ROSAT and XMMSL1 sources received spectra during the
SDSS-I/II (in 2000–2008; York et al. 2000) and SDSS-III
BOSS (in 2009–2014; Eisenstein et al. 2011; Dawson et al.
2013) surveys. By combining the SDSS-I to -IV spectra, the151 http://legacysurvey.org/decamls/
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spectroscopic completeness achieved for the ROSAT sample is
10,590/21,945=50% in the SPIDERS-Complete area. It
increases to 53% when considering only high-confidence
X-ray detections, and to 95% when considering only sources
with high-confidence X-ray detections and optical counterparts
with magnitudes in the nominal eBOSS survey limits
(  i17 22.5mFiber2 ). In the SPIDERS-Maximal area, the
spectroscopic completeness of the ROSAT sample is lower,
17,300/40,929=42% (45% and 62% respectively).

For ROSAT sources, the major difficulty lies in the
identification of secure counterparts of the X-ray sources at
optical wavelength, given the large positional uncertainties. To
solve this problem, the Bayesian cross-matching algorithm
NWAY (Salvato et al. 2018) was used. The priors for this were
based on ALLWISE (Cutri et al. 2013) infrared color–
magnitude distributions which, at the depth of the 2RXS and
XMMSL2 surveys, can distinguish between X-ray-emitting
and field sources. WISE positions were matched to photometric
counterparts in the SDSS. So for the DR16 value-added
catalogs, instead of reporting RASS of XMMSL1 measured
X-ray fluxes, we report the updated 2RXS and XMMSL2
fluxes. Comparat et al. (2020) present the SPIDERS spectro-
scopic survey of X-ray pointlike sources, and a detailed
description of the DR16 value-added catalogs. We summarize
this below.

5.3.6. VACs: Multi-wavelength Properties of RASS and
XMMSL AGNs

In these two VACs, we present the multiwavelength
characterization over the SPIDERS-Complete area of two
highly complete samples of X-ray sources.

1. The RASS X-ray source catalog (2RXS; Boller et al.
2016).

2. The XMM-Newton Slew Survey point source catalog
(XMMSL2, Version 2; Saxton et al. 2008).

We provide information about the X-ray properties of the
sources as well as of their counterparts at longer wavelengths
(optical, infrared, and radio) identified first in the AllWISE
Infrared catalog via a Bayesian cross-matching algorithm
(Salvato et al. 2018). We complement this with dedicated
visual inspection of all the SDSS spectra, providing accurate
redshift estimates (with confidence levels based on the
inspection) and source classification, beyond the standard
eBOSS pipeline results. These two VACs supersede the two
analogous ones published in DR14.

5.3.7. VAC: Spectral Properties and Black Hole Mass Estimates for
SPIDERS DR16 Type 1 AGNs

This VAC contains optical spectral properties and black hole
mass estimates for the DR16 sample of X-ray-selected
SPIDERS type 1 (optically unobscured) AGNs. This is the
DR16 edition of an earlier SPIDERS VAC covering SPIDERS
type 1 AGNs up to DR14, which was presented by Coffey et al.
(2019) and Aguado et al. (2019). The spectral regions around
the Mg II and Hβ emission lines were fit using a multi-
component model in order to derive optical spectroscopic
properties as well as derive quantities such as black hole mass
estimates and Eddington ratios.

5.3.8. Future Plans for SPIDERS

In addition to these programs, completed and fully released
in DR16, the performance verification data being taken as part
of the eROSITA Final Equatorial Field Depth Survey are
currently planned to be available by November 2019 and
should consist of 120 deg2 observed to the final eROSITA all-
sky survey depth over an equatorial field overlapping with the
GAMA09 (Robotham et al. 2011) survey window. To address
at least part of the original goals of SPIDERS (i.e., eROSITA
follow-up) within SDSS-IV, we plan to dedicate a special set of
12 special plates for these targets, to be observed in spring
2020, and released as part of the final 17th DR. An extensive
eROSITA follow-up program is also planned for the next
generation of the survey, SDSS-V (Kollmeier et al. 2017, and
see Section 7) and 4MOST (Finoguenov et al. 2019; Merloni
et al. 2019).

5.4. TDSS

TDSS is the second large subprogram of eBOSS, the goal of
which is to provide the first large-scale, systematic survey of
spectroscopic follow-up to characterize photometric variables.
TDSS makes use of the BOSS spectrographs (Smee et al.
2013), using a small fraction (about 5%) of the optical fibers on
eBOSS plates. TDSS observations thus concluded with the end
of the main eBOSS survey data collection 2019 March 1, and
the full and final TDSS spectroscopic data are included
in DR16.
There are three main components of TDSS, each now with

data collection complete.

1. The primary TDSS spectroscopic targets are selected
from their variability within Pan-STARRS1 (PS1 multi-
epoch imaging photometry, and/or from longer-term
photometric variability between PS1 and SDSS imaging
data; see, e.g., Morganson et al. 2015). TDSS single-
epoch spectroscopy (Ruan et al. 2016) of these targets
establishes the nature of the photometric variable (e.g.,
variable star versus variable quasar, and subclass, etc.),
and in turn often then suggests the character of the
underlying variability (e.g., pulsating RR Lyrae versus
flaring late-type star versus cataclysmic variable, etc.).
More than 108,000 optical spectra of these TDSS
photometric variables have been observed through
DR16 (in both eBOSS and the eBOSS pilot program
SEQUELS). Adding in similar variables sources for-
tuitously already having optical spectra within the SDSS
archives (from SDSS-I, -II, or -III), approximately one-
third of the TDSS variables can be spectroscopically
classified as variable stars, and the majority of the
remaining two-thirds are variable quasars.

2. A sample of 6500 TDSS spectroscopic fibers were
allotted to obtain repeat spectra of known star and quasar
subclasses of unusual and special interest, which were
anticipated or suspected to exhibit spectroscopic varia-
bility in few-epoch spectroscopy (FES; see e.g., MacLeod
et al. 2018). A recent specific example of this category of
sources are TDSS spectra of nearly 250 dwarf carbon
stars that provide strong evidence of statistical RV
variations indicative of subclass binarity (Roulston et al.
2019).

3. The more recently initiated TDSS Repeat Quasar Spectrosc-
opy (RQS) program (see MacLeod et al. 2018) obtains
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multi-epoch spectra for 16,500 known quasars, sampling
across a broad range of properties including redshift,
luminosity, and quasar subclass type. This has a larger
sample size, and also a greater homogeneity and less a priori
bias to specific quasar subclasses compared to the TDSS
FES program. All RQS targets have at least one earlier
epoch of SDSS spectroscopy already available in the SDSS
archive. The RQS program is designed especially to
investigate quasar spectral variability on multi-year time-
scales and, in addition to its own potential for new
discoveries of phenomena such as changing-look quasars
or BAL variability and others, also provides a valuable (and
timely) resource for planning of yet larger-scale multi-epoch
quasar repeat spectral observations anticipated for the
SDSS-V BHM program (see Section 7).

In total, TDSS has selected or co-selected (in the latter case,
often with eBOSS quasar candidate selections) more than
131,000 spectra in SDSS-IV that probe spectroscopy in the
time domain. All of these spectra are now being released
in DR16.

6. MaNGA: VACs Only

MaNGA continues to observe galaxies at APO and,
following the end of eBOSS observing, now uses all dark
time at APO. Technical papers are available which overview
the project (Bundy et al. 2015), target selection (Wake et al.
2017), instrumentation (Drory et al. 2015), observing (Law
et al. 2015; Yan et al. 2016a), and data reduction and
calibration strategies (Law et al. 2016; Yan et al. 2016b). For
DR16 there is no new data release of MaNGA data cubes or
analysis products; all remaining data will be released in DR17.
However, two new or updated MaNGA related VACs are
provided, which we document here. Previously released VACs,
which are still available, include those that provide stellar
masses, morphologies, and neutral hydrogen (H I) followup
(for details of DR15 VACs, see Aguado et al. 2019152).

6.1. Stellar Masses from Principal Component Analysis

This VAC provides measurements of resolved and total
galaxy stellar masses, obtained from a low-dimensional fit to
the stellar continuum: Pace et al. (2019a) document the method
used to obtain the stellar continuum fit and measurements of
resolved stellar mass-to-light ratio, and Pace et al. (2019b)
address the aggregation into total galaxy stellar masses,
including aperture-correction and accounting for foreground
stars. The measurements rely on MaNGA DRP version
v2_5_3, data analysis pipeline version 2.3.0, and PCAY
version 1.0.0.153 The VAC includes maps of stellar mass-to-
light ratio and i-band luminosity (in solar units), a table of
aperture-corrected total galaxy stellar masses, a library of
synthetic model spectra, and the resulting low-dimensional
basis set.

The low-dimensional basis set used to fit the stellar
continuum is generated by performing principal component
analysis (PCA) on a library of 40,000 synthetic SFHs: the
SFHs are delayed-τ models ( ~ t-t eSFR t ) modulated by
infrequent starbursts, sharp cutoffs, and slow rejuvenations

(see Pace et al. 2019a, Section 3.1.1). Broad priors dictate the
possible range in stellar metallicity, attenuation by foreground
dust, and uncertain phases of stellar evolution such as blue
stragglers and blue horizontal branch stars (see Pace et al.
2019a, Section 3.1.2). The system of six principal component
spectra (“eigenspectra”) is used as a low-dimensional basis set
for fitting the stellar continuum. A distribution of stellar mass-
to-light ratio is obtained for each MaNGA spaxel (line of sight
in a galaxy) by weighting each model spectrum’s known mass-
to-light ratio by its likelihood given an observed spectrum. The
median of that distribution is adopted as the fiducial stellar
mass-to-light ratio of a spaxel, and multiplied by the i-band
luminosity to get an estimate for the stellar mass.
For DR16, i-band stellar mass-to-light ratio and i-band

luminosity maps (both in solar units) are released. Stellar mass-
to-light ratios have been vetted against synthetic spectra, and
found to be reliable at median S/Ns, from S/N=2–20, across
a wide range of dust attenuation conditions (optical depth in the
range 0–4), and across the full range of realistic stellar
metallicities (−2 to +0.2 dex), with respect to solar (see Pace
et al. 2019a, Section 4.10). Typical “random” uncertainties are
approximately 0.1 dex (including age–metallicity degeneracies
and uncertainties induced by imperfect spectrophotometry),
and systematic uncertainties induced by choice of training
SFHs could be as high as 0.3 dex, but are believed to be closer
to 0.1–0.15 dex (see Pace et al. 2019a, Sections 4.10 and 5).
In addition to resolved maps of stellar mass-to-light ratio and

i-band luminosity, the VAC includes a catalog of total stellar
masses for MaNGA DR16 galaxies. We provide the total mass
inside the integral field unit (IFU; after interpolating over
foreground stars and other unreliable measurements with the
median of its eight nearest neighbors: see Pace et al. 2019b,
Section 4). We also supply two aperture corrections intended to
account for mass falling outside the spatial grasp of the IFU:
the first adopts the median stellar mass-to-light ratio of the
outermost 0.5 effective radii, and the second (recommended)
adopts a mass-to-light ratio consistent with the (g−r) color of
the NSA flux minus the flux in the IFU (see Pace et al. 2019b,
Section 4). A comparison of these total masses with those from
the NASA-Sloan Atlas (NSA; Blanton et al. 2011) and MPA-
JHU154 catalog (Brinchmann et al. 2004) is shown in Figure 6.

6.2. PawlikMorph Catalog

This catalog provides the shape asymmetry, alongside other
standard galaxy morphological related measurements (CAS,
Gini, M20, curve of growth radii, and Sérsic fits), based on
SDSS DR7 imaging (Abazajian et al. 2009) using the eight-
connected structure detection algorithm described in Pawlik
et al. (2016)155 to define the edges of the galaxies. We make
this available for all galaxies in the MaNGA DR15 release
(Aguado et al. 2019). The algorithm is specifically designed to
identify faint features in the outskirts of galaxies. In this
version, stars are not masked prior to creating the eight-
connected binary mask, therefore stars lying within the
extended light of the galaxies cause incorrect measurements.
More than 10% of objects with unusual measurements have
been visually inspected using Marvin and SkyServer, and the
WARNINGFLAG set to 1 for the fraction of these where a star or
other problem is identified. Users should not use these

152 DR15 VACs are found at: https://www.sdss.org/dr15/data_access/
value-added-catalogs/.
153 https://www.github.com/zpace/pcay

154 Max Planck Institute for Astrophysics and the Johns Hopkins University.
155 Available fromhttps://github.com/SEDMORPH/PawlikMorph.
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measurements, and additionally may wish to visually inspect
small samples or outliers to ensure that the sample is
appropriate for their science goals.

7. Conclusions and Future Plans

This data release, which is the 16th overall from the SDSS
(DR16), is notable for containing the first release of data from
Southern Hemisphere observing as part of APOGEE-2S and
the last release of large-scale cosmological redshift-survey data
from the SDSS (the main program of the eBOSS survey).
DR16 contains no new data from the MaNGA survey.

SDSS-IV has one final year of operations remaining, and is
planning a further final public data release. That data release,
which will be the 17th from SDSS overall (DR17), will
comprise all remaining data taken by all surveys in SDSS-IV.
What follows is a brief summary of the intended contents
of DR17.

1. Due to an accelerated pace of observing in 2018
February–2019 March 1, eBOSS has finished observing,
and so DR16 is the final data release for both the main
eBOSS survey and TDSS. A number of catalogs of
redshifts based on eBOSS DR16 spectra have been
constructed; these will be released in the future. The
successful launch of the eROSITA satellite (Predehl et al.
2014) means there will be a small number of additional
SPIDERS plates for followup of eROSITA targets, the
spectra from which will be released in DR17.

2. MaNGA has been observing in all remaining dark time
from APO since 2019 March 2, and is on schedule to
meet, or slightly exceed, its intended goal of 10,000
galaxies. In addition MaNGA has been approved time to
observe a subset of (N∼400) galaxies at an exposure
time four times deeper than the typical survey.

3. APOGEE-2 continues to observe from both the Northern
(APO) and Southern (LCO) Hemisphere. DR16 is the
first release of data from the Southern Hemisphere, and
DR17 will be the final release of all APOGEE data from
all phases of APOGEE. DR17 will have the complete
multi-epoch samples spanning as long as 10 years for
some targets, as well as reaching both full depth and
coverage in the disk, bulge, and halo programs, and
completing large-scale programs to characterize photo-
metric objects of interest in Kepler, K2, and TESS.

7.1. SDSS-V

Starting in 2020, after SDSS-IV has ended observations at
APO and LCO, the next generation of the SDSS will begin—
SDSS-V (Kollmeier et al. 2017).156 SDSS-V is a multi-epoch
spectroscopic survey to observe nearly six million sources
using the existing BOSS and APOGEE spectrographs, as well
as very large swathes of interstellar medium (ISM) in the Local
Group using new optical spectrographs and a suite of small
telescopes. SDSS-V will operate at both APO and LCO,
providing the first all-sky “panoptic” spectroscopic view of the
sky, and will span a wide variety of target types and science
goals.
The scientific program is divided into three “Mappers.”

1. The Milky Way Mapper (MWM) is targeting millions of
stars with the APOGEE and BOSS spectrographs,
ranging from the immediate solar neighborhood to the
far side of the Galactic disk and the Milky Way’s satellite
companions. The MWM will probe the formation and
evolution of the Milky way, the physics and life-cycles of
its stars, and the architecture of multi-star and planetary
systems.

2. The BHM is targeting nearly half a million super-massive
black holes and other X-ray sources (including newly
discovered systems from the eROSITA mission) with the
BOSS spectrograph in order to characterize the X-ray
sky, measure black hole masses, and trace black hole
growth across cosmic time.

3. Finally, the Local Volume Mapper (LVM) employs a
wide-field optical IFU and new optical spectrographs
(with R∼4000) to map ∼2500deg2 of sky, targeting the
ISM and embedded stellar populations in the Milky Way
and satellite galaxies. These maps will reveal the physics
of both star formation and the interplay between these
stars and the surrounding ISM.

SDSS-V builds upon the operational infrastructure and data
legacy of earlier SDSS programs, with the inclusion of several
key new developments. Among these are the retirement of the
SDSS plug–plate system and the introduction of robotic fiber
positioners in the focal planes of both 2.5m telescopes at APO
and LCO. These focal plane systems enable more efficient
observing and larger target densities than achievable in
previous SDSS surveys. In addition, the LVM is facilitated
by the construction of several �1m telescopes at one or both
observatories, linked to several new optical spectrographs
based on the DESI design (Martini et al. 2018). SDSS-V
continues the SDSS legacy of open data policies and
convenient, efficient public data access, with improved data

Figure 6. Comparison of MaNGA-PCA total stellar masses with NSA (blue
points and dashed black line) and MPA-JHU (orange points and solid black
line) stellar masses as a function of galaxy g−r color. The lines show a
locally weighted regression. This plot is reproduced from Figure 6 of Pace et al.
(2019b).

156 https://www.sdss.org/future

18

The Astrophysical Journal Supplement Series, 249:3 (21pp), 2020 July Ahumada et al.

https://www.sdss.org/future


distribution systems to serve its large, diverse, time-domain,
multi-object, and integral-field data set to the world.

After 20 years of Sloan Digital Sky Surveys the data coming
out from SDSS-IV in DR16 is making significant contributions
to our understanding of the components our Galaxy, galaxy
evolution in general, and the universe as a whole. The SDSS-
IV project will end with the next data release (DR17), but the
future is bright for SDSS with new technology and exciting
new surveys coming in SDSS-V.
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