
Bates College Bates College 

SCARAB SCARAB 

Honors Theses Capstone Projects 

5-2024 

The Impact of Stable Modes on Saturation in Magnetorotational The Impact of Stable Modes on Saturation in Magnetorotational 

Turbulence Turbulence 

Hongke Lu 
Bates College, hlu@bates.edu 

Follow this and additional works at: https://scarab.bates.edu/honorstheses 

Recommended Citation Recommended Citation 
Lu, Hongke, "The Impact of Stable Modes on Saturation in Magnetorotational Turbulence" (2024). Honors 
Theses. 460. 
https://scarab.bates.edu/honorstheses/460 

This Open Access is brought to you for free and open access by the Capstone Projects at SCARAB. It has been 
accepted for inclusion in Honors Theses by an authorized administrator of SCARAB. For more information, please 
contact batesscarab@bates.edu. 

https://scarab.bates.edu/
https://scarab.bates.edu/honorstheses
https://scarab.bates.edu/capstone
https://scarab.bates.edu/honorstheses?utm_source=scarab.bates.edu%2Fhonorstheses%2F460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scarab.bates.edu/honorstheses/460?utm_source=scarab.bates.edu%2Fhonorstheses%2F460&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:batesscarab@bates.edu


The Impact of Stable Modes on Saturation in

Magnetorotational Turbulence

Hongke Lu

Department of Physics and Astronomy, Bates College, Lewiston, ME 04240





The Impact of Stable Modes on Saturation in

Magnetorotational Turbulence

An Honors Thesis

Presented to the Department of Physics and Astronomy

Bates College

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Hongke Lu

Lewiston, Maine

April 1, 2024



Contents

List of Figures iii

Acknowledgments i

Abstract ii

Chapter 1. Introduction 1

1. Magnetorotational Instability 1

2. Conjugate Stable Mode 3

3. Our Approach 3

Chapter 2. Methods 5

1. System Set-up 5

2. Linear Growth Rate 7

3. Dedalus Implementation 9

Chapter 3. Analysis 11

1. Eigenmode Structure 11

2. Energy Evolution 12

3. Left Eigenmode 15

4. Eigenmode Projection 17

Chapter 4. Summary and Conclusions 22

1. Summary and Conclusions 22

2. Future work 22

Appendix A 23

Bibliography 24

ii



List of Figures

1.1 A canonical model of Magnetorotational Instability 2

2.1 System set-up 6

2.2 MRI growth rate 8

2.3 The growth rate of the max growing mode of MRI for various different Rm 10

3.1 Plot of eigenvalues in the real and complex plane 11

3.2 Eigenmode structure 12

3.3 Unstable eigenmode in 2D 13

3.4 Conjugate stable eigenmode in 2D 13

3.5 Time evolution of Vrms 14

3.6 Time evolution of total energy in linear scale 15

3.7 Evolution of total energy in log10 scale 16

3.8 Eigenmode projection in linear scale 18

3.9 Eigenmode projection in log10 scale 19

3.10Evolution of the state vectors in 2D 20

iii



Acknowledgments

I would like to thank my mom, dad, and all my family members for their efforts to give me

the opportunity to study at Bates College. Thanks to my advisor, Professor Jeffrey S. Oishi, for

introducing me to the area of plasma physics and guiding me to complete this interesting project.

I also want to thank all the physics faculty, especially Professor Aleksandar M. Diamond-Stanic,

Professor Hong Lin, Professor Wesley C. Gillis, and Professor Nathan E. Lundblad for their help

and guidance along my undergraduate years.

i



Abstract

The magnetorotational instability (MRI) plays a pivotal role in the dynamics of protoplane-

tary disks and the accretion processes near black holes in galactic nuclei. MRI drives turbulence

that transports density, heat, and angular momentum in the accretion disk. In ideal MRI, each

unstable mode has a corresponding conjugate stable mode with a similar absolute value of

the growth rate. This thesis investigates local magnetorotational turbulence in a shearing box

with a uniform magnetic field through 3D incompressible magnetohydrodynamic simulations.

Utilizing the Dedalus framework, we formulate an eigenvalue problem for MRI, and found the

fastest-growing mode and its conjugate stable mode, along with their mode structures. We

observed that in the linear growth phase, the most unstable mode dominated the state vectors

of the MRI simulation. Using eigenmode projection, we found that in the turbulence phase,

stable modes are excited and contribute to the turbulence of MRI.
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CHAPTER 1

Introduction

1. Magnetorotational Instability

As much as 99%, according to some estimates, of the observable universe is made up of

plasma, or the fourth state of matter [1]. From fusion devices and Earth’s ionosphere to the

interstellar medium, plasma is everywhere. As a result, understanding the properties and be-

haviors of plasma under different conditions is fundamental to understanding a wide range of

physical phenomena and technological applications.

Among these behaviors of plasma is magnetorotational instability (MRI), a fundamental

process that plays a crucial role in astrophysical dynamics. The disks of dust and ionized gas,

which are in plasma states [2], are found around massive celestial bodies like neutron stars

and black holes [3][4]. These disks of dust and gas create an accretion motion under weak

magnetic fields in the universe, and MRI is found to be a powerful model to explain the rapid

transportation of angular momentum and mass in the disk, enabling us to simulate the evolution

of celestial bodies. The canonical model of MRI is depicted in figure 1.1, where two masses are

connected by a spring. Because of the gravity of the central object, the inner mass moves

faster than the outer mass, resulting in the inner mass being pulled back while the outer mass

is propelled forward. This dynamic leads to the outward transport of angular momentum.

MRI was first formulated by Velikhov and Chandrasekhar in conducting liquid Couette flow

[5][6], and not until about thirty years later did Balbus and Hawley identify MRI as a potential

1



1. MAGNETOROTATIONAL INSTABILITY 2

Figure 1.1. A canonical model of Magnetorotational Instability, with modeling
the magnetic field as springs that connecting two masses.

mechanism for transporting angular momentum in astrophysical systems [7]. The advancements

in our understanding of MRI have been remarkable, with recent decades witnessing significant

progress in numerical simulations [8][9][10][11]. These efforts have provided deeper insights into

the mechanisms underlying MRI and its implications for astrophysical processes. A landmark

achievement in this field was made by Wang and his colleagues, who obtained direct evidence

of MRI’s existence through experimental work conducted at the Princeton Plasma Physics

Laboratory [12].
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2. Conjugate Stable Mode

Astrophysicists have used analytical methods to solve and predict the linear growth phase

of magnetorotational instability, yet the turbulence phase remains a vibrant area of research.

Among the methods proposed to explain the saturation of energy in plasma flow, the excitation

of conjugate stable modes is particularly notable due to its general behavior in plasma flows

[13][14][15][16][17][18][19]. This stable mode excitation is first observed in collisionless trapped

electron mode turbulence [13]. For local (quasihomogeneous) systems, when we solve a system of

linearized partial differential equations, just like solving an equation with complex roots, in some

case for every unstable mode there is a conjugate stable mode. During the linear phase, unstable

modes grow exponentially while stable modes decay at a similar rate. However, in the nonlinear

phase, energy transitions from unstable to stable modes via cross-term interactions. The concept

of damped mode excitation, alongside these findings, has been explored both computationally

and theoretically in various contexts. Furthermore, it has been confirmed through observations

in dipole-confined plasma within laboratory experiments [20].

3. Our Approach

We investigate the impact of conjugate stable modes on the turbulence of magnetorotational

instability (MRI). First, by formulating a rotating plane Couette flow under a weak magnetic

field, we create a localized MRI scenario using the shearing box approximation [21]. Second,

we study the linearized nondimensionalized magnetohydrodynamics equation to investigate the

growth rate of the three dimensional MRI. We identified the maximum growing eigenmode and

its conjugate stable eigenmode using the Dedalus Package [22]. This package also allows us to

export the structure of the eigenmodes. Subsequently, we constructed an initial value problem,
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or simulation, of the MRI turbulence. Then we performed eigenmode analysis by projecting

the left-eigenmodes against the nonlinear simulation of MRI turbulence. This analysis enables

us to determine the eigenmode amplitude for both the unstable mode and its conjugate stable

mode.



CHAPTER 2

Methods

1. System Set-up

We study the 3D time evolution of incompressible magnetized rotating plane Couette (rPC)

flow to investigate magnetorotational turbulence, as figure shown in 2.1. Taylor-Couette flow

occurs in the gap between two concentric cylinders that can rotate independently of each other.

By taking the limit as the radius of the concentric cylinders approaches infinity, the curvature

of the cylinder effectively becomes zero. Assuming periodic boundary conditions around the

circumference, we can establish a rotating plane Couette flow. We express the incompressible

rotating plane Couette flow using a set of partial differential equations, where u denotes the

three-dimensional velocity field, and P denotes the scalar pressure field.

∂tu+ u · ∇u = −1

ρ
∇P − 2Ω× u+ ν∇2u(2.1)

∇ · u = 0(2.2)

In the equations above, ν is the fluid viscosity and Ω is the rotation rate. Then we apply

a magnetic field to our system. We assume the charged particle move with the fluid element,

therefore the moving charge will create an induced magnetic field. Thus we can add the induced

magnetic field components to our system of differential equations. We use vector potential A

to enforce the condition where ∇ ·B = 0, and A is defined as B = ∇× (A+∇ϕ). J is volume

current density and J = ∇×B. As a result, the complete system of partial differential equations

5



1. SYSTEM SET-UP 6

Figure 2.1. Diagram of our set-up, an rotating plane Couette flow with initial
magnetic field B0. Our system is a cube where the side length is L. The back-
ground flow drives by rotating planes each plane with velocity of u0 and the whole
system is rotating with rotation rate Ω0. Then we exert an weak magnetic field
B0.

is:

∂tu+ u · ∇u = −1

ρ
∇P + J×B− 2Ω× u+ ν∇2u(2.3)

∇ · u = 0(2.4)

∂tA = u×B+ η∇2A+∇ϕ(2.5)

∇ ·A = 0(2.6)

Where η is resistivity of the charged fluid and ϕ is the electric potential.

We can then nondimensionalized our system of partial differential equations by dividing

each term by T 2

L
, where T is characteristic time scale and L is characteristic length, then every

terms become unitless, including parameters ν, Ω, η become unitless parameters, and velocity
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field, magnetic field, vector potential, volume current density all become unitless vectors. The

system of partial differential equation become:

∂t∗u∗ + u∗ · ∇u∗ = −∇P∗ + CoJ∗ ×B∗ − 2Ω× u∗ +
1

Re
∇2u∗(2.7)

∇ · u∗ = 0(2.8)

∂tA∗ = u∗ ×B∗ +
1

Rm
∇2A∗ +∇ϕ∗(2.9)

∇ ·A∗ = 0(2.10)

Where Co ≡ 2v2A
Ω2L2 is the Cowling number and v2A ≡ B2

0/ρ is the square of the Alfvén speed,

Re ≡ u0L
ν

is Reynolds number, a measurement of turbulence of the fluid , Rm ≡ u0L
ν

is the

magnetic Reynolds number, a measurement of the resistivity of the fluid. Variable u∗, B∗, A∗,

etc represents nondimensionalized quantities.

2. Linear Growth Rate

We perturb all the vectors in all three dimensions to solve for the linear growth rate for

MRI. In order to do this, we write u as u0 + u1, B as B0 +B1, A as A1, and J as J1 where

u1, B1, A1, and J1 are some infinitesimal perturbation to our system. Thus we can expend our

system of partial differential equations as:

∂t∗u1 + u0 · ∇u1 + u1 · ∇u0 − CoJ1 ×B0(2.11)

−2Ω0 × u1 −
1

Re
∇2u1 +∇P1 = −u1 · ∇u1 + CoJ1 ×B1(2.12)

∇ · u1 = 0(2.13)

∂t∗A1 −
1

Rm
∇2A1 − u1 ×B0 − u0 ×B1 +∇ϕ1 = u0 ×B0 + u1 ×B1(2.14)

∇ ·A1 = 0(2.15)

We intentionally write the equation above in the form of M · ∂tX + L · X = F(X , t), Where

M and L are matrices of linear differential operators, and X is the state vectors where in our

case are vectors u∗, A∗,P∗, and ϕ∗. For Keplerian motion, defined by the rotation of particles
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Figure 2.2. MRI growth rate, compared with result from Dedalus three dimen-
sional eigenvalue problem and Umurhan et al [23]. The red line denotes the
Kz = 0.75 and Re(σ)= 0 where the maximum growth rate occurs with critical
parameters that make the MRI stable, or the maximum growth rate is 0.

in a disk around a central mass according to Kepler’s laws, angular velocity Ω is purely a

function of r, and follows a power law characterized by q ≡ − lnΩ
ln r

= 3
2

where r is the radius

to the center of rotational motion and Ω is rotational rate. Then we define the background

flow as u0 = −qΩ0xŷ. We then build our system in Dedalus using a Chebyshev basis in x

direction, since we are solving the mode structure in x. We assume our system is periodic in

y and z directions, so using a Fourier basis in y and z direction. Then we add our boundary

conditions that we assume perfect conductor boundary for the magnetic field and non-slip

boundary conditions on the velocity field. Together we have the boundary condition for ideal

MRI as u = Ay = Az = ϕ = 0 at the boundary x = ±Lx

2
.

We verify our system set-up with comparison with the critical parameters for Rm, Re, and

Co listed in Umurhan et al [23], and we found the same parameters with uncertainty less than

the last significant digit.
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3. Dedalus Implementation

3.1. Eigenvalue Problem. Dedalus is an open source python package that solve partial

differential equations using spectral method. Required by Dedalus, in order to spatially resolve

the change in x direction, as we mentioned in the previous section, we built Chebyshev basis

to solve for the system in x. Then we create our system with the domain of Ly × Lz × Lx =

2π/ky×2π/kz×1, where ky and kz are the Fourier modes exp(ikyy) and exp(ikzz). Therefore, by

solving across a range of ky and kz values, we can identify the specific ky and kz associated with

the most unstable mode. In this thesis, simulations are in the size of Ny×Nz×Nx = 64×64×128

and we verified that the system will be fully resolved under these resolution. We assume the

perturbation in y direction is constant, implying ky = 0. We solve the partial differential

equation using separation of variable and we can then formulate our eigenvalue problem with

eigenvalue σ for u as below:

(2.16) u =
∑
kz

û(x) exp(σt+ ikzz)

The result of the critical parameters of MRI is shown in figure 2.2. We then the eigenvalue

problem with Pm = 1 and Rm = 40Rmc where Rmc = 4.9. Then we have the growth rate plot

shown in figure 2.3

3.2. Initial Value Problem. In order to simulate the magnetorotational turbulence, we

use Dedalus IVP or initial value problem feature to implement our numerical simulation. We

use the same problem setting as the eigenvalue problem except that we build our system using

real number instead of complex number. We then give the initial condition of random noise to

our system as the perturbation.
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Figure 2.3. The growth rate of the max growing mode of MRI for various dif-
ferent Rm, and we keep Pm = 1, Co = 0.08.



CHAPTER 3

Analysis

1. Eigenmode Structure

After we formulated the system of differential equation into an eigenvalue problem, similar

to solving the eigenvalue and eigenvector for an matrix, we will get the eigenvalue with their

corresponding eigenvector or namely eigenmode. While we are solving for the most unstable

mode in the section above, there also exist an conjugate stable mode for the most unstable

mode. We use the solve_dense function in Dedalus to solve for all the eigenvalues. After we

filtered out all the eigenvalues that are infinite, we plot part of the eigenvalues as shown in plot

3.1. We plot vector u and A vectors respect to the x axis. The real and imaginary part of

Figure 3.1. Plot of eigenvalues in the real and complex plane. The blue point
is the most unstable mode with growth rate of 0.58, and the yellow point is the
conjugate stable mode with growth rate of -0.67. All the other mode are marked
in green

11
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Figure 3.2. Plot of eigenmode structure of the most unstable mode and its
conjugate stable mode. The blue lines denote the most unstable mode where
growth rate is 0.58 and the orange lines denote the conjugate stable mode where
growth rate is 0.65. The solid lines and dash lines represent the real and imaginary
part of the eigenmode respectively.

vectors u and A are shown in the figure 3.2. Since the our system is viscid, so the the stable

and unstable mode are not only different in phase, but also different in structure. At the same

time, in our case, because of the viscosity and resistivity the eigenvalue or the growth rate for

the most unstable mode and its conjugate stable mode do not have same absolute value, our

stable mode projection will be damped. As a result, we will refer to We are going to continue

working on the ideal inviscid MRI to further elaborate this project. We also plotted the real

part of the unstable mode and its conjugate unstable mode in two dimension, as shown in figure

3.4, and figure 3.3. In general they looks similar except there is a phase shift between the most

unstable and conjugate stable mode.

2. Energy Evolution

While analyzing our simulation, the first thing is to verify our simulation with the maximum

growth rate we discovered in the previous section. For each step of our simulation, we record
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Figure 3.3. Plot of eigenvectors of the most unstable mode in two dimension.

Figure 3.4. Plot of eigenvectors of conjugate stable mode of the most unstable
in two dimension.

the root-mean-square velocity (Vrms)of the field, which have the same unit as the velocity field,

and therefore should follows the growth rate we calculated in the eigenvalue problem. Recall

the velocity field is in the form of:

(3.1) u = û(x) exp(σt+ ikzz)
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Figure 3.5. Evolution of Vrms respect to time. The orange dashed line is the
linear fit to the linear growing phase of the MRI simulation. The result from
linear fit agreed with the max growth rate calculation from Chapter 2.

Which means the unstable mode should grow exponentially. While the system in the linear

growing phase, the stable mode will decay exponentially. However, since the initial condition

is small, the stable mode will approach zero, and the most unstable mode will dominant Vrms.

Figure 3.5 is what we observed in the evolution of the Vrms. The energy evolution of MRI is

similar to the Vrms evolution. We calculate the magnetic energy and kinetic energy as below:

ME =

∫
B ·BdV(3.2)

KE =

∫
u · udV(3.3)

And the total energy will be simply be KE + ME. As shown in figure 3.6 energy start to

saturate after t = 20 and evolution energy are similar across total energy, KE, and ME. It is

also clear in figure 3.7 that all the energy experienced similar growth rate in the linear growing

phase. We are particular interest in the saturation of MRI and we will use eigenmode projection
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Figure 3.6. Evolution of total energy, magnetic energy and kinetic energy re-
spect to time in linear scale. The energy starts to saturate around t = 20.

to identify the contribution of particular eigenmode in the magnetorotational turbulence in the

next section.

3. Left Eigenmode

To solve for the maximum growth rate, we formulated the system of partial differential

equation into an eigenvalue problem, and we calculated the eigenvalue, which is the growth

rate, and the corresponding eigenvector, or eigenmode. Mathematically we solve a eigenvalue

problem that can be described as:

(3.4) λM ·X + L ·X = 0

Where λ is the eigenvalue, X is state vectors, and M and L are some linear operators. Dedalus

then solved the eigenvalue problem to find λi and Xi with sparse matrix representation of M
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Figure 3.7. Evolution of total energy, magnetic energy and kinetic energy re-
spect to time in log10 scale. The magnetic energy start from 0 since the inital
condition is 0 in A.

and L [22], which satisfies:

(3.5) λiM ·Xi + L ·Xi = 0

Where λi is eigenvalue and Xi is their corresponding eigenvectors. All the eigenvectors together

construct a complete basis to represent the information in the linear operators. Since we are

discrete our system with resolution of Ny × Nz × Nx = 64 × 64 × 128 most of eigenvalue and

eigenvectors are useless and we are only looking for the most unstable mode and its conjugate

stable mode.

The left eigenvectors Yi are defined as:

(3.6) λiY
∗
i ·M + Y ∗

i · L = 0
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And the left and right eigenvectors are orthonormal to each other, and in Dedalus, we can set

left and right eigenvector to be orthnormal to each other, meaning:

(3.7) Y ∗
i ·M ·Xj = δi,j

Where δi,j is the Dirac delta function. We can then call the Y ∗
i · M to be the modified left

eigenvectors. We solved the left eigenmode using Dedalus, codes are available in the link in the

appendix.

4. Eigenmode Projection

We solved the eigenvalue problem to get a basis to describe our time dependent nonlinear

evolution of MRI. The basis will be complete if we solve the eigenvalue problem for all kz , but

it is not realistic. We picked the kz that corresponding to the most unstable mode, namely

to find the kz that corresponding to the maximum growth rate in figure 2.3 .For each value

of kz there will be a set of eigenvalue and eigenvectors depend on spatial resolution that you

choose for x, and in our case Nx = 128. And since there are eight variables in total (three from

velocity field, three from vector potential, one for pressure, and one for electric potential), we

will have 8× 128 = 1024 set of eigenvalue and eigenvector pair (since we also have six τ terms

to help us exert boundary conditions and four of them have two basis, we have 1036 pairs). As

we described in section 1, most of the eigenvalue and eigenmode pairs are useless. And as we

described in section 3, all the eigenmodes are linear independent of each other, since their inner

product are 0 except the left and right eigenmode have the same index. Then we can write an

arbitrary frame of the simulation as a summation of all the eigenmode with their weight [24].

(3.8) f(t) =
∑
kz

Nev∑
j=1

βj(kz, t)f̂je
ikzz

In the arbitrary frame, the time dependent state vectors f(t) can be break up in to a sum over

all the kz and sum over all the index of the eigenvalues, Nev, then for each eigenmode f̂j it have a

corresponding eigenmode amplitude βj . We approach the eigenmode projection method using

Dedalus vector fields where Dedalus enabled conversion between grid space to coefficient space.
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Figure 3.8. Evolution of |β| of the most unstable mode and the conjugate stable
mode in linear scale.

Just like we can decompose a random periodic function using Fourier series, we can decompose

a random function with arbitrary boundary conditions using Chebyshev series. Thus we can

formulate the each state using a series of Fourier and Chebyshev functions. We can write the

left eigenvector |g⟩and right eigenvectors |f⟩ as:

|f⟩ =
∑
n

f̂ne
iknx =

∑
n

f̂n |ϕn⟩(3.9)

|g⟩ =
∑
m

ĝme
ikmx =

∑
m

ĝm |ϕm⟩(3.10)

Where |ϕ⟩ represents Fourier series in this case, but it can also represent any series of orthogonal

polynomials. As we know that the left and right eigenvectors formed a Dirac delta function as

3.7 shown, or in this case ⟨g|f⟩ = 1 if m = n. The right eigenvectors forms a complete basis for

our state vectors in the simulation. As a result, we can implement the eigenmode projection to
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Figure 3.9. Evolution of |β| of the most unstable mode and the conjugate stable
mode in log scale.

calculate β with similar procedure.

⟨g|f(t)⟩ =

(∑
m

⟨ϕm| ĝ†
)(∑

n

βnf̂n(t) |ϕn⟩

)
(3.11)

=
∑
m

∑
n

ĝ†βnf̂n(t) ⟨ϕm|ϕn⟩(3.12)

=
∑
n

βnĝ
†f̂n(t)(3.13)

= β(3.14)

Which means that doing inner product using integration in the grid space is equivalence to

summing all the element-wise product in coefficient space. And since our simulations are in real

space and the eigenmodes are in complex space, we need to take the absolute value of β for our

eigenmode projection.

Figure 3.8 shows a linear plot of the |β| for each step of the simulation. We can see that the

conjugate stable mode was not really excited. However, in figure 3.9, it shows clearly that the
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Figure 3.10. Two dimensional plot of the evolution of the state vectors u and
A at t = 5, 15, and 25.

stable mode was excited but with very small amplitude. This is due to our basis are calculated

in dissipated eigenmodes, meaning the resistivity term Rm and viscosity term Re are not zero.

In figure 3.10 , we can see clearly that in the linear growth phase the most unstable mode is



4. EIGENMODE PROJECTION 21

dominating the simulations. In the turbulence phase, we can see eigenmode excitation but they

are still dominated by the most unstable mode.



CHAPTER 4

Summary and Conclusions

1. Summary and Conclusions

MRI is an important fluid instability in accretion disks around massive astrophysical bodies

like black hole and neutron star. Understanding the evolution of eigenmodes over time lays

the foundational work for studying angular momentum transport in MRIs. This thesis has

developed and utilized a mix of analytical and numerical techniques to explore the saturation of

MRI and the excitation of conjugate stable eigenmode. In the linear phase, the unstable modes

will always grow exponentially and the stable modes will always decay exponentially. However,

because of the nonlinear terms, the evolution of MRI saturated after a certain time step. In

this thesis, we use eigenmode projection techniques and found the stable mode excitation and

saturation of modes amplitude |β| as a result of nonlinear terms appearing in the MRI systems.

2. Future work

In my thesis, the eigenmode have energy dissipation in itself due to the viscosity and re-

sistivity in our problem set-up for the eigenvalue problem. As result of this problem set-up,

the conjugate stable mode is excited but not a lot. We will look in the the ideal inviscid

and resistance free problem set up to further elaborate this problem. We want to study the

magnetorotational turbulence; however, due to limited time, we are not able to run large scale

simulation with high Re and Rm. In our simulation after 50 time steps the turbulence stop. We

want to run on larger clusters for longer time to better understand mode amplitude during tur-

bulence. We are also interested in explore the implications of angular momentum transportation

in the MRI, and how does it related to the eigenmode amplitudes.

22



Appendix A

Python code for formulation of eigenvalue problem and initial value problem, aka. simulation

are available on https://github.com/jsoishi/mri_conjugate_modes

23
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