Publication Title

Economic Modelling

Document Type

Article

Department or Program

Economics

Publication Date

9-1-2015

Keywords

Adaptive Learning, Bounded rationality, Forecasting, Underparameterization

Abstract

I develop a framework where agents forecast despite knowing only a subset of the variables in the true economic model. I then examine whether the discovery of an additional variable improves forecasting. Because agents do not know all of the variables in the model, they form expectations using bounded rationality. Under adaptive learning, agents form expectations by regressing a variable of interest on the revealed variables. Surprisingly, I find that the revelation of an additional variable often worsens forecasts, an event deemed a red herring, with probability greater than one-half. If the model includes endogenous variables that depend on agents' expectations, then revealing a new variable will occasionally lead to a catastrophic worsening of forecast accuracy. Under structural coefficients expectations, agents know how each revealed variable appears in the true model and they use this information to forecast. Now, the revelation of a new variable improves forecasting more often than not. I then apply the framework to a calibrated New Keynesian model and find that the revelation of a new variable usually worsens forecasting. Collectively, these results show that learning about a new variable may actually make forecasts less accurate.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

Copyright Note

This is the author's version of the work. This publication appears in Bates College's institutional repository by permission of the copyright owner for personal use, not for redistribution.

Required Publisher's Statement

Original version is available from the publisher at: https://doi.org/10.1016/j.econmod.2015.05.012

Share

COinS