Department or Program
Physics and Astronomy
Abstract
In systems with non-trivial topologies that violate time-reversal symmetry, the bulk-boundary correspondence gives rise to the propagation of waves without counter-propagation (back scattering). In this thesis, we investigate three types of systems that ultimately aim to provide insight as to what the minimal number of bands required to support topologically protected edge modes. We begin by exploring a 3 band fluid system that has non-trivial topological phase: rotating shallow water. We then examine the 4 band system comprised of a honeycomb lattice of spring-masses on a rotating platform. Ultimately, we wish to provide an entry point to a classical 2 band system with non-trivial topological phase. These examples will ideally provide vital insight in proving that a 2 band classical system cannot support unidirectional waves and show that 3 bands is the minimal requirement.
Level of Access
Open Access
First Advisor
Oishi, Jeffrey
Date of Graduation
5-2021
Degree Name
Bachelor of Arts
Recommended Citation
Koepnick, Kirstin E., "Minimal Requirements for Topologically Protected Edge Modes" (2021). Honors Theses. 365.
https://scarab.bates.edu/honorstheses/365
Number of Pages
25
Open Access
Available to all.